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Abstract

We introduce (1/r)-cuttings for collections of surfaces in 3-space, such that the
cuttings are sensitive to an additional collection of curves. Specifically, let S be a set of
n surfaces and let C be a set of m curves in R3 , all of constant description complexity.
Let 1 ≤ r ≤ min{m, n} be a given parameter. We show the existence of a (1/r)-cutting
Ξ of S of size O(r3+ε), for any ε > 0, such that the number of crossings between the
curves of C and the cells of Ξ is O(mr1+ε). The latter bound improves, by roughly a
factor of r, the bound that can be obtained for cuttings based on vertical decompositions.
We view curve-sensitive cuttings as a powerful tool for various scenarios that involve
curves and surfaces in three dimensions. As a preliminary application, we use the
construction to obtain a bound of O(m1/2n2+ε), for any ε > 0, on the complexity of
the multiple zone of m curves in the arrangement of n surfaces in 3-space. After the
conference publication of this paper [15], curve-sensitive cuttings were applied to derive
an algorithm for efficiently counting triple intersections among planar convex objects in
three dimensions [12], and we expect additional applications to arise in the future.

1 Introduction

Motivation. (1/r)-cuttings (see below for definitions) have attracted considerable atten-
tion in the computational geometry community, as they turned out to be crucial to the
solution of many central problems in the field [5, 6, 7, 8, 9, 10, 14, 16, 17]. For some ap-
plications, special properties possessed by the cutting can lead to improved results. For
instance, the tree structure of hierarchical cuttings [6] is of great help in numerous settings
[4, 17].

We construct a (1/r)-cutting for a collection of surfaces in 3-space, such that the cutting
is sensitive, in the sense defined below, to a collection of curves given as additional input to
the construction. We apply this cutting to obtain a bound of O(m1/2n2+ε), for any ε > 0,
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on the complexity of the multiple zone of m curves in the arrangement of n surfaces in 3-
space, all of constant description complexity. The multiple zone is defined as the collection
of all cells of the arrangement of the given surfaces that are crossed by at least one of the
curves. It is a generalization of both the concept of the zone of a curve in an arrangement
[3, 13] and the widely studied notion of many faces/cells in arrangements [2].

We expect curve-sensitive cuttings to find additional uses in contexts that involve the
interaction of curves and surfaces. It has already been applied, after the conference publi-
cation of this paper [15], to derive an algorithm for efficiently counting triple intersections
among planar convex objects in three dimensions [12].

Overview. Let S be a set of n surfaces in R3 of constant description complexity, and
let C be a set of m curves in R3 of constant description complexity; that is, each surface
and curve is defined as a Boolean combination of a constant number of polynomial equa-
tions and inequalities of constant maximum degree. Let 1 ≤ r ≤ min{m,n} be a given
parameter. A (1/r)-cutting of S is a subdivision of 3-space into connected cells, each of
constant description complexity, so that each cell is crossed by at most n/r surfaces of S.
We wish to construct a (1/r)-cutting Ξ of S of size near O(r3), so that the number of pairs
(c, τ), where c ∈ C, τ a cell of Ξ, and c∩ τ 6= ∅, is near O(mr); that is, the average number
of cells of Ξ crossed by a curve of C is near O(r).

A standard method (in fact, the only general-purpose method known to date) for con-
structing a (1/r)-cutting for arrangements of non-linear surfaces is to take an appropriate
random sample R of the surfaces of S, and to construct the vertical decomposition of the ar-
rangement A(R) of R [18]. The construction of this decomposition proceeds in two stages.
First, for every edge of A(R) and every vertical tangency curve (also known as the sil-
houette) on every surface of R, we erect a 2-dimensional vertical visibility wall, defined as
the union of all z-vertical segments that have an endpoint on this edge (or curve) and are
interior-disjoint from all surfaces of R. This first stage results in a decomposition of A(R)
into vertical pseudo-prisms, such that the floor of each prism, if it exists, is contained in a
single surface of R, and similarly for the ceiling of each prism. However, the combinatorial
complexity of a single prism can still be fairly high.

In the second stage of the construction we refine the decomposition as follows. For
every prism as above, consider its projection onto the xy-plane. It is a 2-dimensional semi-
algebraic set, which we decompose in the plane by erecting zero, one, or two y-vertical
(possibly infinite) visibility segments on each of its vertices and y-vertical tangency points
on its edges, where a visibility segment is defined as a maximal y-vertical segment that
has an end-point on this vertex (or tangency point), is contained in the considered prism
projection, and is interior-disjoint from its boundary. We then erect z-vertical 2-dimensional
walls inside the original prism, defined as its intersection with the z-vertical walls spanned
by all the y-vertical segments erected by the planar decomposition. Repeating this process
for each of the above prisms decomposes A(R) into cells of constant description complexity.

We can choose R as a single sample from S of size ar log r, for an appropriate abso-
lute constant a. It can then be argued that, with high probability, the resulting vertical
decomposition of A(R) is indeed a (1/r)-cutting. This is a consequence of the probabilistic
analyses of Haussler and Welzl [14] and of Clarkson [9]. Using a variant of the method of
Chazelle and Friedman [7] or of Chazelle [6], slightly reduces the size of the resulting cutting
from O(r3 log3 r) to O(r3).
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(a) (b)

Figure 1: A curve (the x-axis, shown dashed) crossing a quadratic number of cells of the
vertical decomposition. (a) A side view of the input set. (b) A view from above of the
second-step subdivision of the cells mentioned in the text.

Unfortunately, vertical decompositions may fail to satisfy our requirement concerning
the number of crossings between the curves of C and the cells of the cutting. In fact, a curve
may cross nearly Ω(r2) such cells. An example is shown in Figure 1, where R is a collection
of r planes. Half of them are parallel to the x-axis and pass above it, all appearing on
the lower envelope of this group, which looks like a tunnel in the x-direction with a convex
roof that is symmetric about the xz-plane. The remaining r/2 planes are all parallel to
the y-axis, and form a fixed angle, say 45◦, with the xy-plane. These latter planes are
sufficiently separated from each other, so that their portions that lie above the xy-plane
and below the lower envelope of the first group have pairwise disjoint xy-projections. The
x-axis crosses Θ(r2) cells of the vertical decomposition of these planes: Indeed, the first
decomposition step creates (among others) r/2 cells whose top facet is the portion of some
slanted plane of the second group that lies below the lower envelope of the first group. The
second decomposition step subdivides each of these cells into Θ(r) subcells, and the x-axis
crosses them all.

In contrast, the undecomposed arrangement of Θ(r log r) surfaces is sensitive to the
curves of C, because each curve crosses each surface at O(1) points, so it crosses O(r log r)
cells of the arrangement. However, the undecomposed arrangement is generally not a (1/r)-
cutting. On the other hand, the decomposed arrangement is (with high probability) a
(1/r)-cutting, but, as we have just seen, it may fail to be sensitive to C. (Actually, as we
will show in Section 2.1, the first stage of the vertical decomposition is also sensitive to C,
but in general it is still not a (1/r)-cutting.)

In this paper we describe a technique that achieves the better of both worlds and con-
structs cuttings that satisfy the desired properties. The construction proceeds by taking a
sample R of the surfaces, as described above, and decomposing A(R) into vertical prisms
using the first stage of the vertical decomposition construction. Inside each prism we con-
struct a decomposition that takes into account the parts of the curves of C that lie inside
the prism. Specifically, we construct a hierarchical sequence of cuttings, somewhat reminis-
cent of the construction in Chazelle [6], that reduces the number of crossings between the
curves of C and the boundaries of the cells of the cuttings. We are able to guarantee that
the curves of C are not cut more than O(mr1+ε) times, for any ε > 0, overall.

3



Before describing our results in detail, we remark that we can construct an alternative
(and simpler) curve-sensitive decomposition scheme for the special case where the surfaces
are planes and the curves are lines (as in the example of Figure 1), by using the Dobkin-
Kirkpatrick hierarchical decomposition [11] in each cell of A(R). This approach, however,
does not extend to general curves and surfaces. (An expanded discussion of this remark is
given in the application paper [12].)

2 A Curve-Sensitive Decomposition

In this section we present a new decomposition scheme that is a (1/r)-cutting for S and
satisfies the desired bounds on the number of cells and on the number of curve-cell crossings.
For simplicity of exposition, we will base our analysis on a single random sample of surfaces
from S (rather than the more elaborate repeated-sampling scheme of [7]). Moreover, we
consider samples of size r (rather than Θ(r log r)). This simplifies the calculations, but will
only produce a O(log r/r)-cutting. We get the desired cutting by simply replacing r, at the
end of the analysis, by the above larger sample size.

2.1 First Stage of the Decomposition

We begin with taking a random sample R of r surfaces of S, and a random sample R′ of
r curves of C. We form the arrangement A(R) of R, and apply to it the first step of the
vertical decomposition. That is, we erect vertical walls up and down from each curve of
intersection of pairs of surfaces in R, as well as from the silhouette of each surface in R; the
walls are extended until they hit another surface of R, or, failing that, all the way to ±∞.
In addition, we erect similar vertical walls from each curve c ∈ R′, which are also extended
to the first surface above and below.

Let A1 = A1(R,R′) denote the resulting decomposition. Note that each cell τ of A1 is a
vertical prism-like cell: the intersection of each vertical line with τ is connected. However,
the xy-projection τ∗ of τ can have arbitrary shape and complexity.

For each cell τ of A1, let ξτ denote its combinatorial complexity (i.e., the number
of vertices, edges and faces on its boundary), and let Cτ denote the set of all connected
components of the nonempty intersections between τ and the curves of C. Let λq(r) denote,
as usual, the maximum length of a Davenport-Schinzel sequence of order q on r symbols
[18], and put βq(r) = λq(r)/r, which is thus an extremely slow-growing function of r. We
have

Lemma 2.1. (a) The number of cells of A1 and their overall combinatorial complexity are
both O(r3βq(r)), for an appropriate parameter q that depends on the algebraic complexity
of the curves of C and the surfaces of S.

(b)
∑

τ∈A1
|Cτ | = O(mrβq(r)).

Proof: Let γ be a fixed curve, which is either a curve in C, or an intersection curve of two
surfaces in R, or the silhouette of a surface in R. Let Vγ denote the vertical 2-manifold (wall)
spanned by γ. Let V +

γ (resp., V −
γ ) denote the portion of Vγ that lies above (resp., below) γ.

Let A+ (resp., A−) denote the cross section of A(R) with V +
γ (resp., V −

γ ). By construction,
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any point at which γ crosses the boundary of some cell of A1 must either be the vertical
projection on γ of a vertex of the lower envelope of A+, or a vertex of the upper envelope of
A− (or of both, if the vertex lies on γ itself), or a point that lies vertically above or below
a point on another curve of R′ (so that the two points are vertically visible in A(R)). The
complexity of each envelope is O(λq(r)) = O(rβq(r)), for an appropriate constant q [18],
and the number of times γ passes above or below any curve of R′ is O(r) (over all curves of
R′). This readily implies the lemma: Part (b) is an immediate consequence, while part (a)
follows by applying this bound to each of the O(r2) intersection and O(r) silhouette curves
arising in the sample. 2

f1

f2

f3

(a) (b)

Figure 2: Stage 2 of the decomposition. (a) The curves of Q ⊆ C∗
τ0 (solid) and ∂τ∗ (dotted).

(b) The external faces of A(Q); note that f2 contains two components of ∂τ∗.

2.2 Second Stage of the Decomposition

After constructing the decomposition A1, we perform a second decomposition step, which
decomposes each cell τ of A1 as follows. Let ∂τ∗ denote the boundary of τ∗ and let hτ denote
the number of internal boundary components (“holes”) of τ∗. Note that hτ ≤ ξτ . Since
τ∗ need not be simply connected, ∂τ∗ may consist of more than one connected component.
(I.e., hτ may be strictly positive.) The potential existence of many components of ∂τ∗ is
the main source of technical difficulty in the analysis of our decomposition.

Put mτ = |Cτ |. Let C∗
τ denote the set of the xy-projections of the arcs of Cτ . Let

Xτ denote the number of intersections between the curves of C∗
τ . This is also equal to the

number of vertical visibility segments between pairs of curves of Cτ , where such a segment
is parallel to the z-axis and connects a point on one curve to a point on the other (and is
thus fully contained in τ). We clearly have

∑

τ∈A1

Xτ = O(m2). (1)

In what follows, through the bulk of this section, we assume that Xτ ≥ mτ . The
alternative case Xτ < mτ is considerably simpler to handle and will be described later in
the analysis.

If Xτ = o(m2
τ ), we carry out a preliminary decomposition stage that covers τ∗ by

the union of simpler-shaped subcells, so that, within each such subcell τ0, the number of
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intersections between the curves of C∗
τ that cross τ0 is roughly the square of the number of

such curves. We employ a standard approach that proceeds as follows. (See, e.g., [5].) Put
s = sτ = dm2

τ/Xτ e. We distinguish between the following two cases.

(a) Suppose first that s ≤ ξτ . We sample each curve of C∗
τ with probability s/mτ . This

produces a random sample R′′ of expected size s. The expected complexity of A(R′′) is
O(s+(s/mτ )

2Xτ ) = O(s), since each intersection counted in Xτ becomes a vertex of A(R′′)
with probability (s/mτ )

2. We construct the vertical decomposition of A(R′′), and argue
that, with high probability, it consists of O(s) trapezoids, each of which is crossed by at
most O((mτ/s) log s) curves of C∗

τ . We next apply a modified version of the analysis of
Chazelle and Friedman [7] to refine the decomposition, so that each of its cells is crossed
by at most mτ/s curves of C∗

τ , while the number of cells remain O(s).

Since the setup here is somewhat different from that in [7], we present details of the
construction and of its analysis. This is done as follows. We take each cell ∆ of the vertical
decomposition that is crossed by tmτ/s curves of C∗

τ , for any t > 1, draw a random sample
R′′

∆ of ct log t of these curves, for an appropriate sufficiently large constant c, construct the
vertical decomposition of the arrangement A(R′′

∆), and clip each resulting cell to ∆. With
high probability, each cell in the resulting decomposition is crossed by at most mτ/s curves
of C∗

τ , provided c is chosen sufficiently large. To estimate the overall number of cells, we
apply Lemma 2.2 of Agarwal et al. [1] which, in our context, asserts that the expected
number of cells that are crossed by at least jmτ/s curves is O(2−j) times the expected
number of cells in a random sample of s/j curves of C∗

τ . The latter expected number of
cells is easily seen to be O(s/j), and thus the overall expected number of new cells is

O(s) +
∑

j≥1

O(2−js/j) = O(s),

as claimed.

As we do throughout the analysis, we assume that all those subsamples meet their ex-
pected values, so that this property holds with certainty. This assumption can be made
effective, e.g., by resampling at each stage of the construction until a good sample is ob-
tained. See a remark to that effect following Theorem 2.3.

These trapezoids are the cells τ0 of the cutting decomposition (or, rather, covering) of
τ∗. Each cell τ0 contains on average Xτ/s = O(X2

τ /m2
τ ) crossings between curves of C∗

τ ,
which is roughly the square of the number O(mτ/s) = O(Xτ/mτ ) of these curves that cross
τ0. It is important to note that this decomposition is defined only in terms of the curves
in C∗

τ , and is thus not necessarily confined to within τ∗. Thus our trapezoids constitute
a covering of τ∗. (Nevertheless, since all the curves of C∗

τ are fully contained in τ∗, the
portion of the covering outside τ∗ is uninteresting; it is constructed simply because we do
not want at this stage to let ∂τ∗ affect the construction.) We shall later, towards the end
of this section, take care to clip the new cells to within τ∗.

(b) Suppose next that s > ξτ . We then sample each curve of C∗
τ with probability ξτ/mτ .

Note that this quantity is indeed at most 1, because s ≤ mτ (which follows from the
assumption Xτ ≥ mτ ) and ξτ < s. This produces a random sample R′′ of expected size ξτ .
The expected complexity of A(R′′) is O(ξτ +(ξτ/mτ )

2Xτ ) = O(ξτ ), since ξτ < s. We apply
the same decomposition construction as in the preceding case, obtaining a new collection of
O(ξτ ) trapezoids, each of which is crossed by at most mτ/ξτ curves of C∗

τ . These trapezoids
are the cells τ0 of the cutting-cover of τ∗.
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This concludes the description of the preliminary covering of τ∗ that is constructed only
if Xτ = o(m2

τ ). If Xτ = Θ(m2
τ ), we have s = O(1) and the first case applies; we cover τ by

a single τ0, which we take to be the entire xy-plane.

We now apply an additional decomposition step to each cell τ0 of this preliminary
cutting. This decomposition consists of a recursively constructed hierarchical sequence of
cuttings of the subset C∗

τ0 of those curves of C∗
τ that cross τ0, clipped to within τ0. This

decomposition is somewhat reminiscent of the hierarchical cutting construction of Chazelle
[6]. We begin by choosing a sufficiently large constant ρ, to be used throughout the con-
struction. Put mτ0 = |C∗

τ0 |.

First level in the hierarchy. We draw a random sample Q of ρ arcs of C∗
τ0 and consider

all the faces of the planar arrangement A(Q) that contain components of ∂τ∗. By the defi-
nition of Cτ , the arcs of C∗

τ0 are contained within τ∗, and thus each component of ∂τ∗ lives
in a single (not necessarily distinct) face of A(Q). We refer to such faces as the external
faces of A(Q). Note also that, as defined, those faces are not confined to within τ0 nor
within τ∗. That is, ∂τ∗ is not part of A(Q) and does not delimit any face of it. However,
each component γ of ∂τ∗ bounds a connected component of the complement of τ∗ which is
fully disjoint from all the arcs of Q (or of C∗

τ0 for that matter). See Figure 2.

For each external face f of A(Q), we compute the 2-dimensional vertical decomposition
of f into vertical pseudo-trapezoids (see, e.g., [18]), which we refer to as trapezoids or subcells.
With high probability (greater than, say, 1 − 1/ρ), each resulting subcell σ is crossed by
at most

amτ0

ρ log ρ curves of C∗
τ0 , for an appropriate absolute constant a [9, 14]. As above,

we assume that Q is a sample that satisfies this property. For each connected component γ
of ∂τ∗, the face fγ of A(Q) that contains γ consists of O(ρβq(ρ)) subcells [18], so the total
number of crossings between the arcs of C∗

τ0 and these subcells is O(mτ0βq(ρ) log ρ). Let κτ0

denote the number of distinct external faces of A(Q). Then we get a total of O(κτ0ρβq(ρ))
external trapezoids,1 and the total number of crossings between the arcs of C∗

τ0 and these
subcells is O(κτ0mτ0βq(ρ) log ρ).

An obvious upper bound on κτ0 is 1 + hτ0 , where hτ0 denotes the number of internal
connected components of ∂τ∗ that are fully contained in τ0 (boundary components that
cross ∂τ0 all lie in the single unbounded face of A(Q)), but we will use in the following
analysis a more refined bound. The need for a refined analysis comes from the observation
that, at this initial stage of the hierarchy, the total number of faces of A(Q) is only a
constant (at most O(ρ2)), whereas hτ0 can be much larger. Note that, trivially,

∑

τ0

hτ0 ≤ hτ ≤ ξτ . (2)

We also have hτ = O(r), because we can charge each internal component of ∂τ∗ either to a
complete connected component of an intersection curve between the surface of R forming
the floor of τ with another surface in R, or to a similar intersection component involving
the surface forming the ceiling of τ , or to a complete connected component of the silhouette
of some surface of R (which is completely contained in the interior of τ), and the overall
number of such components is clearly O(r). In fact, applying this analysis to all the cells τ

1The number of external trapezoids is proportional to the combined complexity of the external faces. In
general, better bounds are known for the complexity of κτ0

faces in an arrangement of ρ curves (see, e.g.,
[8]), but the cruder bound that we use suffices for our purposes.
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σ

∂τ∗

Figure 3: An external trapezoid σ (dashed), the portions of ∂τ∗ that meet σ (dotted), and
the arcs in C∗

σ (solid).

of A1 together, we obtain the following bound, which is crucial for our analysis.

∑

τ∈A1

hτ = O(r2). (3)

In addition to decomposing the external faces as described above, we also partition the
remainder of A(Q) (its internal portion) into vertical trapezoids. In doing so, we erase all
the edges of A(Q) that are contained in the interior of the internal portion, and retain only
the edges that also bound the external faces. Thus the number of trapezoids into which the
internal portion is partitioned is also O(κτ0ρβq(ρ)). The total number of crossings between
the arcs of C∗

τ0 and these internal subcells is O(κτ0mτ0ρβq(ρ)). (Here we can no longer claim
that each internal trapezoid is crossed by only a small number of curves, because it is not
necessarily disjoint from the sampled curves in Q, so this bound is larger than the bound
claimed for external trapezoids, by nearly a factor of ρ.)

Second level in the hierarchy. We now apply a second partitioning step2 within each
external trapezoid σ that has a nonempty intersection with ∂τ∗. (All other external and
internal trapezoids are not decomposed any further.) Let C∗

σ denote the set of connected
components of the intersections of the curves in C∗

τ0 with σ. As in the preceding step, σ is
not necessarily contained in τ∗; however, each arc in C∗

σ lies fully in σ ∩ τ∗. See Figure 3.

We draw a random sample Qσ of ρ curves of C∗
σ, and compute all the faces of the planar

arrangement A(Qσ) that contain components of ∂τ∗. As above, each component of ∂τ∗ lives
in a single (‘external’) face of A(Qσ). Again, those faces are not necessarily distinct. This
time, however, all external faces, with the exception of the unbounded one, are confined
to within σ. Boundary components γ of ∂τ∗ that intersect σ are of two types: those that
are fully contained in the interior of σ, and those that cross ∂σ. All components γ of the
second type lie in the same (unbounded) face of A(Qσ). Let hσ, κσ denote, respectively,

2To help the reader follow the construction, we present the second stage explicitly and separately, even
though it is a special case of the general recursive step, described later. As a matter of fact, it is also similar
to the first-level partitioning.

8



the number of components γ of the first type, and the number of distinct external faces of
A(Qσ). Clearly, κσ ≤ 1 + hσ, and

∑

σ hσ ≤ hτ (where the sum extends over all σ and all
τ0). Again, however, we will have to use a more refined bound for κσ in what follows.

For each external face f of A(Qσ), we compute the 2-dimensional vertical decomposition
of f . With high probability (larger than 1− 1/ρ), each resulting subcell σ′ is crossed by at
most

(

a log ρ

ρ

)2

mτ0

curves of C∗
σ, and, as above, we assume that Qσ is a sample that does satisfy this property.

For each connected component γ of ∂τ∗ that meets σ, the face fγ of A(Qσ) that contains
γ consists of O(ρβq(ρ)) subcells. Summing over all boundary components of ∂τ∗ that meet
σ, we get a total of O(κσρβq(ρ)) external trapezoids, and the total number of crossings
between the arcs of C∗

σ and these subcells is

O(κσmτ0βq(ρ) log2 ρ/ρ).

Summing these bounds over all external trapezoids σ, we obtain bounds for the overall num-
ber of external trapezoids in the second hierarchical partitioning step, and the total number
of crossings between arcs in C∗

τ0 and these trapezoids. These bounds are, respectively,

∑

σ

O(κσρβq(ρ)), (4)

and
∑

σ

O(κσmτ0βq(ρ) log2 ρ/ρ),

where these sums are over all external trapezoids σ in A(Q).

As above, we also partition the remainder internal portions of the arrangements A(Qσ),
over all trapezoids σ, into vertical trapezoids, using, as above, only the edges and vertices
of these internal portions that bound also the external portions. Thus, the overall number
of internal trapezoids is also bounded by (4), and the total number of crossings between
arcs in C∗

τ0 and these internal trapezoids is at most

∑

σ an external trapezoid in A(Q)

O(κσmτ0βq(ρ) log ρ).

Recursive construction of the hierarchy. The above process is repeated recursively,
each recursion stage refining the decomposition inside those “external” trapezoids con-
structed in the previous stage that are still crossed by (or contain) boundary components
of ∂τ∗. Let j = jτ0 be the smallest integer such that

ρj ≥ ξτ/s.

We stop the recursive decomposition process after j steps. In particular, if ξτ < s, there is
no recursion, and τ0 remains intact. Otherwise, we have ρj = Θ(ξτ/s). Let us for now only
consider the (much more involved) case ξτ ≥ s.

9



By an appropriate extension of the preceding arguments, the overall number of external
and internal trapezoids produced in the i-th step, for any i = 1, . . . , j, is at most

∑

σ an external trapezoid in some A(Q
σ
′ )

O(κσρβq(ρ)), (5)

where σ′ is an external trapezoid constructed in the preceding (i−1)-st step which intersects
∂τ∗. With high probability (which we turn into certainty by choosing “good” samples Qσ′),
each external trapezoid constructed at the i-th step is crossed by at most

O

(

(

a log ρ

ρ

)i

mτ0

)

curves of C∗
τ , and each such internal trapezoid is crossed by at most

O

(

(

a log ρ

ρ

)i−1

mτ0

)

curves. Hence, the number of crossings between the arcs of C∗
τ0 and the external trapezoids

is at most
∑

σ

O

(

κσmτ0βq(ρ)
ai logi ρ

ρi−1

)

,

and the number of crossings between the arcs of C∗
τ0 and the internal trapezoids is at most

∑

σ

O

(

κσmτ0βq(ρ)
ai−1 logi−1 ρ

ρi−2

)

, (6)

where these sums are over all external trapezoids σ in some A(Qσ′).

Bounding the number of trapezoids. We continue to assume in what follows that
ξτ ≥ s; otherwise τ0 remains a single trapezoid. Let us analyze the number of trapezoids
in more detail. Let γ be a boundary component of ∂τ∗. If at some step i, γ crosses the
boundary of some external trapezoid(s), it has no effect on the quantities κσ from this step
on (inclusive). If on the other hand γ remains confined to the interior of a single external
trapezoid σ, then it may add 1 to κσ , but it will not affect κσ′ , for any other external
trapezoid σ′ produced at this step.

Elaborating this observation, we consider the tree T of all external trapezoids as they are
generated during the recursive process. The root of the tree is τ0, and the children of each
external trapezoid σ are the external trapezoids that are constructed in the decomposition
of σ. We say that a trapezoid is pregnant if it completely contains a component of ∂τ∗

in its interior. Otherwise it is empty. An empty trapezoid can spawn at most cρβq(ρ)
sub-trapezoids (in a single decomposition step), for some constant c, whereas a pregnant
trapezoid containing t components of ∂τ∗ in its interior can spawn as many as (t+1)cρβq(ρ)
sub-trapezoids, but no more than cρ2, which is the maximum number of trapezoids that
can be generated in a single decomposition step (for simplicity, we use the same constant c
in both bounds). Moreover, the total number of pregnant trapezoids, over the entire tree,
is only O(hτ0).
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The empty trapezoids are organized in subtrees, each rooted at some pregnant trapezoid.
(If there are no pregnant trapezoids, the empty trapezoids comprise the entire tree T , and
the analysis becomes considerably simpler.) Consider such a subtree rooted at a pregnant
trapezoid at depth i (where the root of T is at depth 0). The degree of each node in the
subtree is at most cρβq(ρ), so the size (or, more precisely, the number of leaves) of the
subtree is at most (cρβq(ρ))j−i (recall that j is the depth of the entire recursion). We
choose a threshold depth k, and distinguish between the cases i ≤ k and i > k. In the
former case, the total number of trees whose roots are at depth i is at most ciρ2i, and their
total size (i.e., number of leaves) is thus at most

ciρ2i · (cρβq(ρ))j−i = cjρi+j(βq(ρ))j−i.

Summing these bounds over all depths i = 0, . . . , k, we obtain a total size of

O(cjρk+j(βq(ρ))j−k)

trapezoids.

In the latter case (i > k), we bound the total number of trees whose roots are at depth
greater than k simply by O(hτ0), and bound the size of any such subtree by (cρβq(ρ))j−k.
Hence, the total size of these subtrees is at most

O(hτ0) · (cρβq(ρ))j−k.

To fix the value of k, we first assume that (cρ2)j ≤ hτ0 , set k = j, and note that only the
case i ≤ k remains relevant. The overall number of external trapezoids produced within τ0

under this assumption is
O(cjρ2j) = O(hτ0).

Assuming now that (cρ2)j > hτ0 , we choose k so that (cρ2)k = Θ(hτ0), and assume that
ρ is a sufficiently large constant, as a function of a prescribed ε > 0, to conclude that the
overall number of external trapezoids in this setting is

O(h1/2
τ0 ρj(1+ε)) = O

(

h1/2
τ0

(

ξτ

s

)1+ε
)

.

By construction, the number of internal trapezoids has the same asymptotic upper bound.

Note that when hτ0 = 0, there is only one subtree, with (cρβq(ρ))j = O((ξτ/s)
1+ε)

trapezoids.

We sum the above two bounds over all cells τ0 (for the fixed first-stage cell τ), use
the Cauchy-Schwarz inequality, and the facts that

∑

τ0
hτ0 ≤ hτ and that the number of

trapezoids τ0 is O(s), and cater to both cases hτ0 > 0 and hτ0 = 0, to conclude that the
total number of trapezoids into which τ is partitioned is

O

(

∑

τ0

hτ0

)

+ O

(

(

ξτ

s

)1+ε
)

·
∑

τ0

max{1, hτ0}
1/2 =

O

(

∑

τ0

hτ0

)

+ O

(

(

ξτ

s

)1+ε

(hτ + s)1/2s1/2

)

=

O
(

hτ + (1 + h1/2
τ )ξ1+ε

τ

)

. (7)
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We now cater to the case ξτ < s. In this case, τ is covered by O(ξτ ) trapezoids τ0, and
each of them remains intact, so the total number of trapezoids is O(ξτ ), which is subsumed
in the bound (7).

Bounding the number of curve-cell crossings. Next consider the bounds (6) on the
number of curve-cell crossings, and analyze them in more detail, using our tree represen-
tation of the external trapezoids. We continue to assume that Xτ ≥ mτ , and that ξτ ≥ s.
For simplicity of exposition, we only consider crossings with external trapezoids, observing
that at each step of the construction, the number of internal trapezoids has the same upper
bound as the number of external trapezoids, and that, with high probability (which, as
usual, we take to hold with certainty), the bound on the number of curves of C∗

σ that cross
an internal trapezoid is at most ρ/(a log ρ) times larger than the same bound for external
trapezoids. Hence, up to this constant, the number of crossings with internal trapezoids
has the same upper bound as the number of crossings with external trapezoids, so we only
concentrate on bounding the latter quantity.

Consider our tree T of external trapezoids. As in the preceding analysis, we distinguish
between the cases hτ0 > 0 and hτ0 = 0. We only treat the case hτ0 > 0; the other case is
handled similarly, by replacing hτ0 by 1. With high probability (which, as usual, we take

to hold with certainty), an external trapezoid at depth i is crossed by at most
(

a log ρ
ρ

)i
mτ0

curves of C∗
τ0 . We fix a threshold value k as above, taking also into consideration the

case where (cρ2)j ≤ hτ0 . Suppose first that i ≤ k. The number of external trapezoids at
depth i is at most ciρ2i, so the overall number of curve-cell crossings with these trapezoids
is at most (acρ log ρ)imτ0. Summing this over all depths i = 0, . . . , k, we get a total of
O((acρ log ρ)kmτ0) crossings. For both possible values of k, by the choices of j and ρ, the
above bound can be written as

O
(

(ac1/2 log ρ)k(c1/2ρ)kmτ0

)

= O
(

h1/2
τ0 (ξτ/s)εmτ0

)

.

Consider next the case i > k (which only applies when (cρ2)j > hτ0). The number of
external trapezoids at depth i can be estimated as follows. All these trapezoids belong
to O(hτ0) subtrees rooted at the pregnant trapezoids, or, if hτ0 = 0, to the entire tree T .
To maximize the number of our trapezoids, the subtrees should be rooted as close to the
root of T as possible. By the choice of k, it is easily seen that this happens when all the
pregnant nodes lie roughly at level k of T . Assuming this “worst-case” scenario, the number
of external trapezoids at depth i is at most

O
(

(cρ2)k · (cρβq(ρ))i−k
)

= O
(

ciρi+kβi−k
q (ρ)

)

.

Since, with high probability (which we take to hold with certainty), each of these trapezoids

is crossed by at most
(

a log ρ
ρ

)i
mτ0 curves of C∗

τ0 , the total number of curve-cell crossings

with these trapezoids is at most

(acβq(ρ) log ρ)i (ρ/βq(ρ))k mτ0 .

As in the preceding subcase, for both possible values of k, summing over all depths i =
k + 1, . . . , j, and using the choices of j and ρ, this can be bounded by

O
(

(acβq(ρ) log ρ)jρkmτ0

)

= O
(

h1/2
τ0 (ξτ/s)

εmτ0

)

.
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Hence the total number of curve-cell crossings within τ0, taking also into account the case
hτ0 = 0, is O

(

max{1, hτ0}
1/2(ξτ/s)

εmτ0

)

.

We sum the bound just derived over all cells τ0 of A(R′′), calibrate the value of ε
appropriately, and use the facts that the number of cells τ0 is O(s), that mτ0 ≤ mτ/s, and
that s = dm2

τ/Xτ e. This yields the following overall bound:

O

((

ξτ

s

)ε)

·
∑

τ0

O(mτ0 max{1, hτ0}
1/2) =

O





mτξ
ε
τ

s1+ε
·

(

∑

τ0

(1 + hτ0)

)1/2

· s1/2



 =

O

(

mτξ
ε
τ

(hτ + s)1/2

s1/2+ε

)

=

O

(

ξε
τ

sε

(

mτ +
mτh

1/2
τ

s1/2

))

=

O
(

(X1/2
τ h1/2

τ + mτ )ξ
ε
τ

)

, (8)

for any ε > 0.

If ξτ < s then τ0 remains intact and the number of crossings between curves and trape-
zoids within τ0 is thus mτ0 . We sum this over all O(ξτ ) cells τ0 and use the fact that
mτ0 ≤ mτ/ξτ for each τ0 to obtain the bound O(mτ ), which is subsumed in (8).

The case Xτ < mτ . So far in the description of the second stage of the decomposition we
have assumed that Xτ ≥ mτ . We now address the case Xτ < mτ . By breaking each curve
of C∗

τ at the points where it crosses other curves, we obtain a collection of pairwise openly
disjoint curves, whose number is only O(mτ ). Assuming first that ξτ ≤ mτ , we now sample
each (new) curve in C∗

τ with probability ξτ/mτ , obtaining a random sample R∗ of expected
size ξτ . The expected complexity of the vertical decomposition of A(R∗) is thus also O(ξτ ).
By further refining the decomposition, we obtain a collection of O(ξτ ) trapezoids, each
crossed by at most O(mτ/ξτ ) curves, for a total of O(mτ ) crossings between curves and
cells. If mτ < ξτ , we “sample” all curves in C∗

τ , and construct the vertical decomposition of
their arrangement. This yields O(mτ ) = O(ξτ ) trapezoids, each of which crosses no curve
of C∗

τ .

Completion. We now form the final 2-dimensional decomposition, by taking ∂τ∗ into
account. In the description below we address the more involved construction of the case
Xτ ≥ mτ . The derived bounds can be shown to hold also when Xτ < mτ (with a signifi-
cantly simpler analysis).

The final decomposition in the case Xτ ≥ mτ is formed as follows. The hierarchy of
trapezoids constructed so far is induced by various samples of (pieces of) curves from C∗

τ .
Let Γτ denote the collection of all curve portions that constitute the floors and ceilings of
all these trapezoids. By construction, no two curve portions in Γτ intersect transversally.
(Some pairs, constituting, e.g., floors of trapezoids that are nested in the hierarchy, may
partially overlap; this has no effect on the analysis about to be presented.) Clearly, the
number of trapezoids is Θ(|Γτ |).

Consider now the union Γ′
τ of Γτ with the set of arcs forming ∂τ∗. The arcs of Γ′

τ are
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also pairwise openly disjoint (recalling that the arcs of Γτ have been clipped at their points
of intersection with ∂τ∗). Form the vertical trapezoidal decomposition of Γ′

τ . Using (7),
the number of trapezoids in this decomposition is

O(|Γ′
τ |) = O((1 + h1/2

τ )ξ1+ε
τ + ξτ + hτ ) = O((1 + h1/2

τ )ξ1+ε
τ + hτ ).

We retain only those trapezoids that are fully contained in τ∗ (the others are disjoint from
τ∗).

We next consider the number of crossings between the curves of C∗
τ and the new trape-

zoids. Each such crossing can be charged to a crossing of a curve γ ∈ C∗
τ with the boundary

of a new trapezoid σ (unless γ is fully contained in σ; the number of such latter pairs is
clearly at most mτ ). If such a crossing occurs on the floor or ceiling of σ, then either it is
also a crossing with the boundary of an old trapezoid, and is thus counted in (8), or it is
an endpoint of a curve in C∗

τ (lying on a boundary component of ∂τ∗), and the number of
such endpoints is at most 2mτ . If it occurs at a vertical wall erected from an endpoint (or
a locally x-extreme point) p of some arc in Γτ , then the new wall is equal to or is shorter
than the old wall erected from p. Hence the number of such crossings is also upper bounded
by (8). The only remaining case is a vertical wall erected from some vertex of ∂τ∗ or from
a locally x-extreme point on some arc of ∂τ∗. The number of such walls is O(ξτ ), and any
such wall is fully contained in an old external trapezoid, and is thus crossed by at most

O((a log ρ/ρ)jmτ0) = O((a log ρ/ρ)j(mτ/s))

curves of C∗
τ . Hence the total number of crossings of this kind is (recall that ρj = Θ(ξτ/s))

O(ξτ (a log ρ/ρ)j(mτ/s)) = O(mτξ
ε
τ ),

for any ε > 0. This bound also takes care of the case ξτ < s, and, as mentioned above, it
also trivially holds when Xτ < mτ .

The new decomposition is clearly a partition of τ∗ into subcells (trapezoids) of constant
description complexity. Each of these subcells is lifted vertically in the z-direction to within
τ , thereby obtaining a partition of τ itself. The collection of all these partitionings, over all
cells τ of A1, constitutes our final decomposition.

Since each resulting (3-dimensional) cell has constant description complexity, it follows
by the ε-net theory of Haussler and Welzl [14] that, with high probability, each of them is
crossed by at most a′n

r log r surfaces of S, for an appropriate absolute constant a′ > 0, so it
is an O((log r)/r)-cutting of S.

Lemma 2.2. (a) The total number of cells of the above decomposition is O(r3+ε), for any
ε > 0.

(b) The total number of crossings between the curves of C and these cells is O(mr1+ε), for
any ε > 0.

Proof: (a) By (7), the number of cells is

O





∑

τ∈A1

(

(1 + h1/2
τ )ξ1+ε

τ + hτ

)



 = O



r2 +
∑

τ∈A1

(1 + h1/2
τ )ξ1+ε

τ



 .

14



We analyze the quantity O
(

∑

τ∈A1
(1 + h

1/2
τ )ξ1+ε

τ

)

. By Lemma 2.1(a),
∑

τ ξ1+ε
τ = O(r3+ε),

for any ε > 0. This bound takes care of all cells for which hτ = 0. The number of cells with
hτ > 0 is only O(r2). Moreover, the complexity of a single cell τ of A1 is only O(rβq(r)).
Indeed, such a cell has a fixed floor and a fixed ceiling, contained in two respective surfaces
σ−, σ+ of R. We form a collection of curves, consisting of the xy-projections of (i) the
intersections of σ− and σ+ with all the remaining surfaces of R, (ii) the silhouettes of the
surfaces in R, and (iii) the curves in R′. We obtain a collection of O(r) curves in the plane,
and it is easily seen that τ∗ is a cell of their arrangement. Hence the complexity of τ∗, and
thus of τ , is O(rβq(r)), as claimed (see [18] for details). Hence

∑

τ∈A1

h1/2
τ ξ1+ε

τ = O











∑

τ∈A1

hτ





1/2

· (r2)1/2 · r1+ε






= O(r3+ε),

for any ε > 0, and this establishes (a).

(b) By (8) and the preceding discussion, the number of crossings is

∑

τ

O
(

(X1/2
τ h1/2

τ + mτ )ξ
ε
τ

)

,

for any ε > 0. Using (1) and (3), the Cauchy-Schwarz inequality, and Lemma 2.1(a,b), and
re-calibrating ε, this can be upper bounded by

O(rε) ·

[

∑

τ

O(X1/2
τ h1/2

τ ) +
∑

τ

O(mτ )

]

=

O(rε) ·

(

∑

τ

Xτ

)1/2

·

(

∑

τ

hτ

)1/2

+ O(mr1+ε) = O(mr1+ε),

for any ε > 0. 2

By replacing r by ar log r, for an appropriate absolute constant a, as discussed above,
we obtain the following main result:

Theorem 2.3. Let S be a set of n surfaces in R3 of constant description complexity, and let
C be a set of m curves in R3 of constant description complexity. Let 1 ≤ r ≤ min{m,n} be
a given parameter. Then there exists a (1/r)-cutting Ξ of S of size O(r3+ε), for any ε > 0,
such that the number of crossings between the curves of C and the cells of Ξ is O(mr1+ε).

Remarks. (1) We have ignored so far the algorithmic issue of constructing the cutting.
However, the proof is constructive. Moreover, since at each step of the second decomposition
stage, we deal with samples of only O(1) curves, the overall cost of the construction can
be shown to be O(nr2+ε + mr1+ε), for any ε > 0. Recall that in the proof we assume
that each random sample is a good sample. This can be algorithmically enforced by the
standard approach of repeatedly sampling until a good sample is found. Since we only use
constant-size samplings in the second decomposition stage, verifying that a sample is good
is inexpensive. This approach increases the running time of the algorithm by a constant
factor on expectation.
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(2) Theorem 2.3 only bounds the overall number of crossings between the curves and cells.
A stronger result would be to show that, in addition, each cell of the cutting is crossed
by O(m/r) curves of C. We have not carried out this extension, but we believe that this
stronger property can be achieved via a modified version of the preceding analysis.

3 The Complexity of a Multiple Zone

Let S and C be as above. Define the zone Z(C) of C in A(S) to be the collection of all
cells of A(S) that are crossed by at least one curve of C.

Theorem 3.1. The complexity of Z(C) is O(m1/2n2+ε), for any ε > 0.

Proof: Since the complexity of the entire arrangement is O(n3), the bound in the theorem is
nontrivial only when m = O(n2), which is what we assume in the proof. Fix a parameter r,
and construct a C-sensitive (1/r)-cutting of A(S), consisting of O(r3+ε) cells, each crossed
by at most n/r surfaces of S, so that the total number of crossings between these cells and
the curves of C is at most O(m1+εr).

Fix a cell τ of the cutting. Let Sτ (resp., Cτ ) denote the set of surfaces of S (resp., curves
of C) that cross τ , clipped to within τ . The complexity of Z(C)∩ τ can be upper bounded
as follows: First, the zone of a single curve in an arrangement of N surfaces of constant
description complexity is O(N2+ε), for any ε > 0 [13]. Hence, the overall complexity of
the |Cτ | separate zones of each of the curves in Cτ in A(Sτ ) is at most O(|Cτ ||Sτ |

2+ε). In
addition, portions of the boundary of the external cell of A(Sτ ) may also belong to Z(C),
because they may bound cells of A(S) that are crossed by curves of C that do not cross τ .
The complexity of this external cell is O(|Sτ |

2+ε). Hence, putting mτ = |Cτ |, the overall
complexity of Z(C) is (we use the same ε both in the bounds in Theorem 2.3 and for the
bound on the complexity of the zone of a curve)

O

(

∑

τ

(mτ + 1)
(n

r

)2+ε
)

= O

(

mn2+ε

r
+ n2+εr

)

,

where we use Theorem 2.3 to infer that
∑

τ mτ = O(mr1+ε). Choosing r = m1/2 completes
the proof of the theorem. 2

Remark: A lower bound for Z(C) is Ω(m2/3n5/3). To establish it, take a planar arrange-
ment of n/2 lines that has m distinct faces of overall complexity Θ(m2/3n2/3). Lift each of
these lines to a vertical plane in three dimensions, and add to the resulting arrangement
n/2 additional horizontal planes. The resulting collection of n planes is our set S. For
the set C of curves, take m vertical lines, each intersecting the xy-plane at a point inside
one of the m marked faces. The complexity of the multiple zone Z(C) is easily seen to be
Θ(m2/3n5/3).
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