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Abstract

Let P be a set of n points in R
d. A point p ∈ P is k-shallow if it lies in a halfspace

which contains at most k points of P (including p). We show that if all points of P
are k-shallow, then P can be partitioned into Θ(n/k) subsets, so that any hyperplane

crosses at most O((n/k)1−1/(d−1) log2/(d−1)(n/k)) subsets. Given such a partition, we
can apply the standard construction of a spanning tree with small crossing number
within each subset, to obtain a spanning tree for the point set P , with crossing number
O(n1−1/(d−1)k1/d(d−1) log2/(d−1)(n/k)). This allows us to extend the construction of
Har-Peled and Sharir [HS11] to three and higher dimensions, to obtain, for any set of
n points in R

d (without the shallowness assumption), a spanning tree T with small
relative crossing number. That is, any hyperplane which contains w ≤ n/2 points of P

on one side, crosses O(n1−1/(d−1)w1/d(d−1) log2/(d−1)(n/w)) edges of T . Using a similar
mechanism, we also obtain a data structure for halfspace range counting, which uses
O(n log log n) space (and somewhat higher preprocessing cost), and answers a query in
time O(n1−1/(d−1)k1/d(d−1)(log(n/k))O(1)), where k is the output size.

1 Introduction

1.1 Background

One of the central themes in computational geometry is the design of efficient range search-
ing algorithms. Typically, in such a problem one is given an input set P of n points in d
dimensions, and the goal is to preprocess P into a data structure, so that for any query range
of some type (say, a halfspace H), one can efficiently count, report, or test for emptiness
the set P ∩H. A significant component of most of these algorithms involves space decom-
position techniques, which partition the input set into subsets with some useful structure.
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Apart from range searching, partitions are also used in constructions of spanning trees
with small crossing number, approximations, ε-nets, and in several other computational
geometry problems.

In a typical approach (see, e.g., [Mat92a]), given a point set P in R
d, one partitions P

into subsets of approximately equal sizes, so that each of them is contained within some
region of constant description complexity (e.g., simplices). We remark that the subsets are
pairwise disjoint, while the containing regions might have nonempty intersections. We seek
partitions with small crossing number, meaning that the maximum number of enclosing
regions crossed by the boundary of a range (typically, a hyperplane) is small.

In this paper, we consider a variant of the partition paradigm, referred to as a partition
of a shallow point set, which is applied to a set P of shallow points in R

d, where a point p ∈ P
is k-shallow if there exists a hyperplane h that contains at most k points of P , including
p, on one of its sides. We will construct a partition whose crossing number, namely, the
maximum number of its simplices that can be crossed by a hyperplane, depends, in addition
to n, also on the shallowness of P , i.e., on the maximum shallowness k of its points.

As is typical in computational geometry, we consider the dimension d as a fixed (small)
constant, thus factors depending only on d will be regarded as constants.

Cuttings. One of the major ingredients of our partitioning technique is cuttings of ar-
rangements of hyperplanes. A cutting is a collection of (possibly unbounded) d-dimensional
closed cells with constant description complexity (e.g., simplices) with pairwise disjoint in-
teriors, which cover the entire Rd (or some specified portion thereof). Let H be a collection
of n hyperplanes in R

d and let Ξ be a cutting of the arrangement A(H). For each simplex
∆ ∈ Ξ, let H∆ denote the collection of hyperplanes intersecting the interior of ∆. The
cutting Ξ is called a (1/r)-cutting for H if |H∆| ≤ n/r for every simplex ∆ ∈ Ξ.

It will sometimes be convenient to work with weighted collections of hyperplanes, where
such a collection is a pair (H,w), where H is a collection of hyperplanes, and w : H → R

+

is a weight function on H. For each L ⊆ H, we write w(L) for
∑

h∈Lw(h). The notions
introduced for unweighted collections of hyperplanes can usually be generalized for weighted
collections in an obvious way. For example, a cutting Ξ is a (1/r)-cutting for (H,w) if for
every simplex ∆ ∈ Ξ, the collection H∆ has total weight at most w(H)/r.

Partitions: related work. Our study extends to higher dimensions the planar construc-
tion of a partition of a set of shallow points, recently developed by Har-Peled and Sharir
[HS11]. This technique partitions P into O(n/k) subsets, each containing O(k) points and
enclosed in a (possible unbounded) triangle, so that the triangles are pairwise disjoint, and
the crossing number of this partition (by any line) is only O(log(n/k)).

Har-Peled and Sharir also constructed a set P of n k-shallow points in R
3 (in fact, P

is a set in convex position, so all its points are 1-shallow), so that the (maximum) crossing
number of any partition of P into subsets of size Θ(k) is Ω(

√

n/k). See below for a further
discussion of this phenomenon, which was the starting point and the motivation for the
study presented in this paper.

We next review the more standard partitioning techniques of Matoušek [Mat92a, Mat92b].
There P is a set of n points in R

d, d ≥ 2, which do not have to be shallow. Again, we par-
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tition P into Θ(n/k) pairwise disjoint subsets, each having between k and 2k points (here
1 < k < n is an arbitrary parameter), enclosed by some simplex, where these simplices
might have a nonempty intersection 1. The partition, referred to as a simplicial partition,
has the property, that any hyperplane h crosses at most O((n/k)1−1/d) simplices.

Let P , n and k be as above. Matoušek [Mat92b] has also developed a variant of the
partitioning scheme described above, yielding a partition of Θ(n/k) subsets of size between
k and 2k, such that any k-shallow hyperplane h (that is, a hyperplane which contains at
most k points of P on one side) crosses at most O((n/k)1−1/⌊d/2⌋) simplices of the partition.

(In contrast, the construction in [HS11], and the one presented in this paper, deal with
sets whose points are shallow, but we seek a small crossing number with respect to every
hyperplane.)

Applications: related work. Let us now review some applications based on the various
kinds of partitions mentioned above.

Halfspace range searching. Matoušek [Mat92a] uses the standard partition recursively
to construct an efficient partition tree, whose root stores the entire input set P and a
simplicial partition thereof. Each node v of the tree stores a subset Pv of P , and a simplicial
partition of Pv, and each subset of the partition corresponds to a distinct child of v. Overall,
the resulting partition tree has linear size, can be constructed in O(n logn) deterministic
time, such that, given a query halfspace γ, one can count the number of points in P ∩ γ in
O(n1−1/d logO(1) n) time.

In a variant of this approach, Matoušek [Mat92b] exploits the partition machinery with
respect to shallow hyperplanes to efficiently solve the halfspace range reporting (or empti-
ness) problem. More specifically, one can construct a data structure of size O(n log logn),
in O(n logn) time, such that, given a query halfspace γ, one can report the points in P ∩ γ
in O(n1−1/⌊d/2⌋ logO(1) n+ k) time, where k = |P ∩ γ|.

Another useful application of partitions of sets of shallow points, as described above,
is the construction of spanning trees with small relative crossing number. We recall the
standard result, due to Chazelle and Welzl [CW89] (see also [Wel92]), on the existence of
spanning trees with small crossing number. That is, given a set P of n points in R

d, there
exists a straight-edge spanning tree T on P , such any hyperplane crosses at most O(n1−1/d)
edges of T. Har-Peled and Sharir have refined this construction in the plane, to obtain a
spanning tree T that has the following property. Define the weight wl ≤ n/2 of a line l to
be the smaller of the two numbers of points of P on each side of l. Then l crosses only
O(

√
wl log(n/wl)) edges of T; see [HS11] for more details. In this paper, we follow the same

machinery to extend the above construction to higher dimensions.

Relative (p, ε)-approximations. The existence of a spanning tree with small relative
crossing number, for a point set P in the plane, as just reviewed, facilitates the construction
of relative (p, ε)-approximations for P , with respect to halfplane ranges, whose size is smaller
than the one guaranteed by the general theory of Li et al. [LLS01] (see [HS11]). For given
0 < p, ε < 1, a relative (p, ε)-approximation for P is a subset A ⊆ P with the property that,

1A recent refined construction by Chan[XX] constructs simplices with pairwise disjoint simplices.
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for each halfspace γ,

(1− ε)
|A ∩ γ|
|A| ≤ |P ∩ γ|

|P | ≤ (1 + ε)
|A ∩ γ|
|A| ,

provided that |P ∩ γ|/|P | ≥ p. Given such a spanning tree, we convert it into a spanning
path with the same asymptotic crossing number, and generate a matching out of this path
by selecting every other edge along it, and apply a “halving technique” on the resulting
matching, in which one point of each pair of the matching is drawn independently at ran-
dom, thus getting rid of half of the points. By the standard theory of discrepancy (see
[Cha01]), the small crossing number of the matching implies a correspondingly low discrep-
ancy of the halving. We repeat this halving procedure until the combined discrepancy first
exceeds a given prescribed parameter, and then return the remaining points as the desired
approximation. Har-Peled and Sharir [HS11] apply this construction to a planar point set
P , and obtain a relative (p, ε)-approximation for P , of size

O

(

1

ε4/3p
log4/3

1

εp

)

.

For most values of ε and p, this is better than the general bound O( 1
ε2p

log 1
p) given in

[LLS01]. See Section 1.2 below for more details. In this paper, we extend this construction
to higher dimensions, using the extension of spanning trees with small relative crossing
number to higher dimensions, as mentioned above.

Our results. We introduce a new variant of the partitioning machinery, based on the
general approach that was introduced in [Mat92a] and [Mat92b], and obtain a partition of
a set P of n k-shallow points in R

d into Θ(n/k) subsets, each of size between k and 2k,
so that each subset is contained within a d-dimensional simplex and so that the crossing
number of the partition (the maximum number of simplices crossed by a hyperplane) is at
most O((n/k)1−1/(d−1) log2/(d−1)(n/k)) for d ≥ 3 and O(α(n/k) log2(n/k)) for d = 2, where
α(·) is the near-constant inverse Ackermann function. Note that the size of the sets in the
partition is roughly the same as the shallowness parameter k, and that the exponent in the
bound on the crossing number is smaller than the one provided for the general setup in
[Mat92a].

We use this partition, as in [HS11], to construct a spanning tree with small relative,
output-sensitive, crossing number. Specifically, any hyperplane h of weight wh (the number

of input points on its “lighter” side) crosses at most O(n1−1/(d−1)w
1/d(d−1)
h log2/(d−1)(n/wh))

edges of the resulting spanning tree for d ≥ 3, and O(
√
whα(n/wh) log

2(n/wh)+α(n) log4 n)
edges for d = 2.

We then extend the planar construction of relative (p, ε)-approximations for points and
halfplanes introduced in [HS11] to higher dimensions. We again follow a similar machinery
as the one in [HS11], based on the classical halving technique, to convert a spanning tree
with small relative crossing number to a relative (p, ε)-approximation. The properties of
the relative (p, ε)-approximation and the exact result are detailed in Section 1.2 below.

Another application of the shallow-points partition is an exact output-sensitive range
counting algorithm for point sets and halfspace ranges in R

d. We combine the range re-
porting algorithm of Matoušek [Mat92b] with our shallow-points partition and the standard
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simplex range counting algorithm of Matoušek [Mat92a], to obtain an improved, output-
sensitive range counting algorithm, whose running time is O(n1−1/(d−1)k1/d(d−1)(log n)O(1)),
for d ≥ 3, where k is the output size. This is an improvement over the previous bound
O(n1−1/d(log n)O(1)) of [Mat92a] when k ≪ n (although when k is very small, the range
reporting of [Mat92b] will be faster). See Section 5.2 for a more precise statement of this
result. (One weak aspect of our structure is that, for d ≥ 4 we do not know how to construct
it in near-linear time. The current bound on the preprocessing cost is roughly ncd for some
exponent cd that depends on d and satisfies 1 < cd < 3/2. See Theorem 5.7 for the precise
statement.)

1.2 Known notions of approximations

We recall the result of Li et al. [LLS01], and two useful extensions of ε-approximations and
ε-nets derived from it, which we will exploit later in this paper.

Let (X,R) be a range space, where X is a set of n objects and R is a collection of
subsets of X, called ranges. The measure of a range r ∈ R in X is the quantity

X(r) =
|X ∩ r|
|X| .

Assume that (X,R) has finite VC-dimension δ, which is a constant independent of n; see
[Mat02] for more details.

Let 0 < α, ν < 1 be two given parameters. Consider the distance function

dν(r, s) =
|r − s|

r + s+ ν
, for r, s ≥ 0.

A subset N ⊆ X is called a (ν, α)-sample for (X,R), if for each r ∈ R we have

dν
(

X(r), N(r)
)

< α.

Theorem 1.1 (Li et al. [LLS01]) A random sample of X of size

O

(

1

α2ν

(

δ log
1

ν
+ log

1

q

))

is a (ν, α)-sample for (X,R) with probability at least 1 − q, with an appropriate choice of
an absolute constant of proportionality.

Har-Peled and Sharir [HS11] show that, by appropriately choosing α and ν, various stan-
dard constructs, such as ε-nets and ε-approximations, are special cases of (ν, α)-samples;
thus bounds on the sample sizes that guarantee that the sample will be one of these con-
structs with high probability are immediately obtained from Theorem 1.1. Two other,
less standard special cases of (ν, α)-samples are relative (p, ε)-approximations [HS11] and
shallow ε-nets [ShSh11]; we review them next.

Relative (p, ε)-approximations.
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Definition 1.2 (Relative (p, ε)-Approximation). Let (X,R) be a range space of finite VC-
dimension δ. For given parameters 0 < p, ε < 1, a subset N ⊆ X is a relative (p, ε)-
approximation for (X,R) if, for each r ∈ R, we have

(i) (1− ε)X(r) ≤ N(r) ≤ (1 + ε)X(r), if X(r) ≥ p.

(ii) X(r)− εp ≤ N(r) ≤ X(r) + εp, if X(r) ≤ p.

The following result shows that a relative (p, ε)-approximation is a special case of a
(ν, α)-sample.

Theorem 1.3 (Har-Peled and Sharir [HS11]) A random sample N of

c1
ε2p

(

δ log
1

p
+ log

1

q

)

elements of X, for an appropriate absolute constant c1, is a relative (p, ε)-approximation
for (X,R) with probability at least 1− q.

Shallow ε-nets. Let (X,R) be a range space of finite VC-dimension δ, and let 0 < ε < 1
be a given parameter. A subset N ⊆ X is a shallow ε-net if it satisfies the following two
properties, for some constant c that depends on δ.

(i) For each r ∈ R and for any parameter t ≥ 0, if |N∩r| ≤ t log 1
ε then |X∩r| ≤ c(t+1)ε|X|.

(ii) For each r ∈ R and for any parameter t ≥ 0, if |X∩r| ≤ tε|X| then |N∩r| ≤ c(t+1) log 1
ε .

Note the difference between shallow and standard ε-nets: Property (i) (with t = 0)
implies that a shallow ε-net is also a standard ε-net (possibly with a re-calibration of ε).
Property (ii) has no parallel in the case of standard ε-nets — there is no guarantee how a
standard ε-net interacts with small ranges.

Theorem 1.4 (Sharir and Shaul [ShSh11]) A random sample N of

c′1
ε

(

δ log
1

ε
+ log

1

q

)

elements of X, for an appropriate absolute constant c′1, is a shallow ε-net with probability
at least 1− q.

A brief overview of the analysis. The paper is structured as follows. In Section 2
we derive a technical result that shows that, informally, a random sample Z of Θ(n/k)
points from a k-shallow n-point set in R

d has, with some constant positive probability,
the property that at least some fixed fraction of its points are vertices of its convex hull.
(Curiously, this fraction cannot exceed 1/e ≈ 0.368 in the worst case.) We plug this result
into the analysis in Section 3, which presents a construction of a (1/r)-cutting of the zone
of the boundary of a convex set in an arrangement of hyperplanes in R

d. This construction
is an easy adaption of standard constructions of cuttings, but seems not to have been
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presented so far in the literature. Armed with this construct, we present in Section 4 the
main technical contribution of the paper, which is a construction of a simplicial partition
of a set of shallow points in R

d that has a small crossing number (with respect to any
hyperplane). The construction is not general, in the sense that the size of the subsets in
the partition has to be equal to (or proportional to) the shallowness parameter k. Still, this
provides the key tool for the applications in Section 5, which, as mentioned above, are (i)
a construction of a spanning tree with small relative crossing number, (ii) a construction
of relative (p, ε)-approximations for halfspace ranges in R

d, whose size (in many cases) is
smaller than the halfspace general bound in [LLS01, HS11], and (iii) an output-sensitive
halfspace range searching data structure.

2 Sampling from a k-shallow set

Let P be a set of n points in R
d, for d ≥ 2, so that all its points are k-shallow, for some

fixed parameter 1 ≤ k ≤ n.

Let Z be a random sample of P where each point of P is chosen in Z independently
with probability p = 1/k. Let Y ⊆ Z be the set of 1-shallow points of Z (with respect to
Z), i.e., Y is the set of vertices of the convex hull Conv(Z). Let us assume from now on
that k ≥ 2, unless explicitly noted otherwise.

In what follows, we assume that P is in general position. In particular, no d+1 points of
P lie in a common hyperplane, and no d lie in a common vertical hyperplane (i.e., parallel
to the xd-axis). Consequently, considering the dual set of hyperplanes H = D(P ) (using
the duality that preserves the above/below relationship; see, e.g., [Ed87]), we get that H
is in general position too, which means that every d hyperplanes of H intersect in a single
point, and no d+ 1 have a common point.

The following proposition, although its proof is technical and somewhat involved, asserts
a fairly intuitive property of k-shallow sets. That is, if we take a random sample of about
n/k points of such a set, at least some fixed fraction of the points of the sample are vertices
of its convex hull. As a partial explanation of why the proof is complicated, we observe,
after the proof, that the fraction of convex hull vertices of the sample cannot in general be
made arbitrarily close to 1.

Proposition 2.1 Let P , Z, and Y be as above, and assume that k ≤ n
256 . Then, with

probability > 0.22,

|Y | ≥ n

8k
, and

n

2k
≤ |Z| ≤ 2n

k
.

Before getting into the proof, let us recall Chernoff’s bound (see, e.g., [AS92], Appendix
A, Theorems A.12 and A.13) for a binomial random variable X with parameters n, p, which
we denote by X ∼ B(n, p). That is, X =

∑n
i=1Xi, where X1, X2, . . . , Xn are independent

random indicator variables, and Pr {Xi = 1} = p for each i. Put E[X] = µ = np. Then,
for any δ > 0, we have

Pr {X > (1 + δ)µ} <

(

eδ

(1 + δ)(1+δ)

)µ

≡ ε(µ, 1 + δ). (1)
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Alternatively, we can write it as

Pr {X > t} <

(

e1−
µ
t µ

t

)t

= ε(µ, t/µ), (2)

for any t > µ. Another variant of Chernoff’s bound, for large deviations below the mean, is

Pr {X < (1− δ)µ} < e−
µδ2

2 , (3)

for any δ > 0. Using (1) and (2), we get the following proposition:

Proposition 2.2 Let X ∼ B(n, 1k ), and let 1 < β ≤ k be a parameter. For y ∈ R, define

S>y =
∑

t>y | t∈N
t ·Pr {X = t} , S≥y =

∑

t≥y | t∈N
t ·Pr {X = t} .

Then

S
>βn

k
≤ ε(n/k, β) ·

(

βn

k
+ 1 +

β

β − e1−1/β

)

.

Proof. We have, for t0 ∈ N,

S≥t0 =
∑

t≥t0

t ·Pr {X = t} =
∑

t≥t0

t (Pr {X ≥ t} −Pr {X ≥ t+ 1}) =

t0 ·Pr {X ≥ t0}+
n
∑

t=t0+1

Pr {X ≥ t} = t0 ·Pr {X ≥ t0}+
n−1
∑

t=t0

Pr {X > t} .

We note, that for any y ∈ R, S>y = S≥⌊y+1⌋. Hence, substituting t0 = ⌊βnk + 1⌋ into the
equality above, and using the bound (1), with µ = n

k and 1 + δ = β, we get

S
>βn

k
= S≥⌊βn

k
+1⌋ =

⌊

βn

k
+ 1

⌋

·Pr

{

X ≥
⌊

βn

k
+ 1

⌋}

+
n−1
∑

t=⌊βn
k
+1⌋

Pr {X > t} ≤

(

βn

k
+ 1

)

Pr

{

X >
βn

k

}

+
n−1
∑

t=⌊βn
k
+1⌋

Pr {X > t} ≤

(

βn

k
+ 1

)

· ε(n/k, β) +
n−1
∑

t=⌊βn
k
+1⌋

Pr {X > t} .

It remains to estimate the second expression. We note that (e1−a/x)/x is monotonically
decreasing in x for 0 < a ≤ x. Hence, using (2), we obtain, for any y > µ,

∑

t≥y

Pr {X > t} ≤
∑

t≥y

(

e1−
µ
t µ

t

)t

≤
∑

t≥y

(

e
1−µ

y µ

y

)t

<

(

e
1−µ

y µ

y

)y (

y

y − e
1−µ

y µ

)

= ε(µ, y/µ) ·
(

y

y − e
1−µ

y µ

)

.
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Putting y = βn
k , and noting that y > µ (since β > 1 and µ = n

k ), we obtain

n−1
∑

t=⌊βn
k
+1⌋

Pr {X > t} ≤
∑

t≥βn
k

Pr {X > t} ≤ ε(n/k, β) ·
(

β

β − e1−1/β

)

,

which completes the proof. ✷

Proof of Proposition 2.1. We separately bound from below the probabilities that (i)
|Y | ≥ αn

k , and (ii) n
νk ≤ |Z| ≤ γn

k , in terms of α, ν, γ, n and k; the concrete values of α,
ν and γ, as given in the proposition, will be substituted later. The probability for both
conditions to hold is then estimated using the union bound (on the complementary events).

(i) Bounding from below the probability that |Y | ≥ αn
k . Put q = Pr

{

|Y | < αn
k

}

,
and let 1 < β ≤ k be a parameter. We need to bound from below the value of 1− q.

Since Y ⊆ Z and |Z| ∼ B(n, 1k ), (1) implies that

Pr

{

|Y | > βn

k

}

≤ Pr

{

|Z| > βn

k

}

< ε(n/k, β). (4)

Recalling that Y is the subset of 1-shallow points within Z, and that all the points in the
ground set P are k-shallow, we have, for each point a ∈ P ,

Pr {a ∈ Y } ≥ 1

k

(

1− 1

k

)k−1

≥ 1

ke
.

Indeed, as a is a k-shallow point, there exists a hyperplane through a which bounds a
halfspace h containing at most k − 1 points of P , excluding a. The lower bound above is
the probability that a is chosen in Z and none of the other points in h is chosen. Using
linearity of expectation, we thus have

E{|Y |} ≥ |P |
ke

=
n

ke
. (5)

We now proceed to estimate q. Note that we cannot apply Chernoff’s bound directly,
because the events a ∈ Y , for a ∈ P , are not independent. Instead we proceed as follows.
Put ε = ε(n/k, β), and s = S

>βn
k
. We then have (assuming that β > α, which will hold for

specific values that we will later use)

n

ke
≤ E{|Y |} =

n
∑

t=0

t ·Pr {|Y | = t} =

∑

t<αn
k

t ·Pr {|Y | = t}+
∑

αn
k
≤t≤βn

k

t ·Pr {|Y | = t}+

∑

t>βn
k

t ·Pr {|Y | = t} ≤ q
αn

k
+ (1− q − ε)

βn

k
+ s.

Hence, by applying Proposition 2.2, we have

q ≤ β(1− ε)− e−1 + s k
n

β − α
≤

β − e−1 + ε k
n

(

1 + β
β−e1−1/β

)

β − α
,
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or

1− q ≥ 1−
β − e−1 + ε k

n

(

1 + β
β−e1−1/β

)

β − α
. (6)

By choosing (somewhat arbitrarily) α = 1
8 , β = 1.2, recalling that we have required that k ≤

n
256 , and using Chernoff’s bound (1) to bound ε = ε(n/k, β), we get that Pr

{

|Y | ≥ n
8k

}

>
0.221.

(ii) Bounding from below the probability that n
νk ≤ |Z| ≤ γn

k . Since |Z| ∼ B(n, 1k ),
estimating this probability can be done by a direct application of Chernoff’s bounds. As in
(4),

Pr
{

|Z| > γn

k

}

< ε(n/k, γ),

and by applying (3), we have

Pr
{

|Z| < n

νk

}

< e−
n
k

(1−1/ν)2

2 .

Choosing γ = 2, ν = 2, and using the assumption that k ≤ n
256 , we get that

Pr

{

n

2k
≤ |Z| ≤ 2n

k

}

> 0.999.

From (i) and (ii) we obtain that

Pr

{

(

|Y | ≥ n

8k

)

∧
(

n

2k
≤ |Z| ≤ 2n

k

)}

> 0.22,

as asserted. ✷

Upper bounds on the probability of a sample with many hull vertices. We can
increase the lower bound given in (6), on the probability 1− q of getting a sample with at
least αn

k hull vertices, by choosing β close enough to 1 and α close to 0. We then have

1− q ≥ 1−
β − e−1 + ε k

n

(

1 + β
β−e1−1/β

)

β − α
≈ 1−

(

1− e−1 + ε
k

n

(

1 +
β

β − e1−1/β

))

.

By requiring that n/k is at least some sufficiently large constant (which depends on the
choice of β; we need it to ”neutralize” the denominator β − e1−1/β , which tends to 0 as
β → 1), we can make this probability arbitrarily close to

1− (1− e−1) = e−1 ≈ 0.368.

The following construction shows that the bound 1/e is fairly close to being worst-case
tight. This construction was provided by Adam Sheffer, and we are grateful to him for this
observation.

The construction is depicted in Figure 1. It consists of a set A of n points on the unit
circle C, sufficiently closely clustered together near the top point of C, and of 2c + 1 sets
T , L1, . . . , Lc, and R1, . . . , Rc, so that (i) each of these sets consists of points lying on a ray
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emanating from the center of C, outside C and sufficiently close to it, (ii) each of these sets
consists of k points, except for T which consists of k− 1 points, and (iii) the ray containing
T points upwards, the rays containing L1, . . . , Lc point into the third quadrant, and the rays
containing R1, . . . , Rc point into the fourth quadrant. Here c is an additional parameter that
we will fix later. (The points are not in convex position but a sufficiently small perturbation
of them will place them in general position without affecting the analysis.)

Altogether, the resulting set P has n′ = n + (2c + 1)k − 1 points. It is easily verified
that the points can be arranged in such a way that each of them is k-shallow. Moreover,
with an appropriate layout, the convex hull of a sample Z will have at most 2c+ 1 vertices
if we choose at least one point of T , at least one point of L1 ∪ · · · ∪ Lc, and at least one
point of R1 ∪ · · · ∪Rc. The probability of this latter event is

q′ =

(

1−
(

1− 1

k

)k−1
)(

1−
(

1− 1

k

)ck
)2

≈
(

1− e−1
) (

1− e−c
)2

.

Assuming that n ≫ (2c + 1)k, so that 2c + 1 ≪ n′/k, the probability of getting a sample
with Θ(n′/k) hull vertices, with an appropriate constant of proportionality ensuring that
this bound is larger than 2c+ 1, is

1− q′ = 1−
(

1− e−1
) (

1− e−c
)2

,

which we can make arbitrarily close to

1−
(

1− e−1
)

= e−1,

by choosing c sufficiently large. This shows that e−1 is an upper bound on the probability
that we can guarantee for getting a sample with Θ(n/k) hull vertices from a set of n k-
shallow points (when n is sufficiently large). As noted above, we can get arbitrarily close
to this bound by requiring k/n to be sufficiently small.

k − 1

k
k

k

n

k

· · ·
· · ·

Figure 1: Construction of a k-shallow point set with large probability for a sample with a
constant number of hull vertices.

Z is also a relative approximation set. Consider next the range space (P,R), where
R is the collection of all simplices in R

d. As is well known, (P,R) has finite VC-dimension,
which we denote by δ. As a matter of fact, we have δ = O(d2 log d); see, e.g., [SA95??].

Proposition 2.1 establishes a property of a random sample of size roughly n/k from a
set of n k-shallow points in R

d. Of course, such a sample is also a (ν, α)-sample with high

11



probability, for appropriate choices of ν and α. The following proposition combines both
properties.

Remark: The standard sampling method, under which Theorem 1.3 was originally proved,
is to choose each subset of the prescribed size s with equal probability. However, the
theorem also holds if the subset is obtained by choosing each point x ∈ X independently
with probability s/|X|, similar to the way Z was chosen. In this case s is only the expected
size of the sample.

Proposition 2.3 Let P , Z, n, k be as above, and let c1 be the constant in Theorem 1.3.
Then, with probability at least q = 0.999, Z is a relative ( c2kn log n

c2k
, 1/2)-approximation for

(P,R), for c2 ≥ 8c1(δ + log(1/q)), and for n ≥ 2c2k.

Proof. As already noted, the sample Z satisfies |Z| ≥ n
2k , it suffices to show that

c1
ε2p

(

δ log
1

p
+ log

1

q

)

≤ n

2k
,

for the specific values p = c2k
n log n

c2k
, ε = 1/2, q = 0.999, and c2 as set above. Indeed, we

have
c1
ε2p

(

δ log
1

p
+ log

1

q

)

≤ 4c1δ

c2

(

1−
log log n

c2k

log n
c2k

)

· n
k
+

4c1
c2

·
log 1

q

log n
c2k

· n
k
≤

4c1(δ + log 1
q )

c2
· n
k
≤ n

2k
,

as asserted, provided that n ≥ 2c2k (which implies that log n
c2k

≥ 1). ✷

3 Cutting lemma for the zone of a convex set

Let H be a collection of n hyperplanes in R
d. We denote the arrangement of H by

A(H). For a simplex ∆, let H∆ denote the collection of hyperplanes of H that cross ∆ (i.e.,
intersect its interior). A (1/r)-cutting for A(H) is a collection Ξ of (possibly unbounded)
closed d-dimensional simplices with pairwise disjoint interiors, which cover R

d, such that
|H∆| ≤ n/r, for every ∆ ∈ Ξ. The size of a (1/r)-cutting is the number of its simplices.
The so-called Cutting Lemma (see, e.g., [Mat02]) asserts that for every H and r ≤ n there
exists a (1/r)-cutting of size O(rd) for H (which is asymptotically the best possible size).

Here we will need a modified version of the Cutting Lemma, where the cutting is not
required to cover the entire R

d, but only the zone in A(H) of the boundary ∂C of some
fixed convex region C, where the zone of ∂C is the collection of all cells of A(H) whose
interiors are crossed by ∂C. The simplices of our cutting might also contain points outside
this zone, but they are required to cover all the cells of the zone. (In a sense, this can be
regarded as a variant of the shallow cutting lemma of Matoušek [Mat92b].)

Theorem 3.1 (Cutting Lemma for the zone of a convex set). Let H be a collection
of n hyperplanes in R

d, let r ≤ n be a parameter, and let σ be the boundary of a convex
set in R

d. Then there exists a (1/r)-cutting Ξ for the zone of σ in the arrangement A(H),
consisting of O(rd−1 log r) simplices, for d ≥ 3, and of O(rα(r)) simplices, for d = 2.
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We will need a variant of this result for weighted collections of hyperplanes, where such
a collection is a pair (H,w), where H is a collection of hyperplanes, and w : H → R

+ is a
nonnegative weight function on H. For a subset X ⊆ H, we write w(X) for

∑

h∈X w(h).
The notions introduced for unweighted collections of hyperplanes can usually be generalized
for weighted collections in an obvious way. In particular, given the boundary σ of a convex
set in R

d, we say that Ξ is a (1/r)-cutting for the zone of σ in A(H,w), if the simplices of
Ξ cover all points in the zone, and for every simplex ∆ of Ξ, the collection H∆ has total
weight w(H∆) ≤ w(H)/r. A simple reduction from cuttings for weighted collections of
hyperplanes to unweighted cuttings is discussed in [Mat91a], and can be applied here for a
(1/r)-cutting for the zone of σ in A(H) without any change. Hence, Theorem 3.1 implies
the following.

Corollary 3.2 Let (H,w) be a weighted collection of n hyperplanes in R
d, let r ≤ n be a

parameter, and let σ be the boundary of a convex set. There exists a (1/r)-cutting Ξ for the
zone of σ in A(H,w) of size O(rd−1 log r), for d ≥ 3, and O(rα(r)), for d = 2.

Before proving Theorem 3.1, we need the following technical lemma.

Lemma 3.3 Let X ∼ B(n, p) and put µ = E{X} = np. Then

(i) E{Xk log(X + 1)} = O(µk log µ), for any k ≥ 1.

(ii) E{Xα(X + 1)} = O(µα(µ)).

Proof. This follows from the fact that binomial variables are concentrated near their means,
and we omit the routine and technical details. ✷

The proof of Theorem 3.1 uses a triangulation of the cells of an arrangement of hyper-
planes, called canonical triangulation (or bottom-vertex triangulation). The definition and
some properties of this triangulation can be found in [Mat02]. For a subcollection L ⊆ H of
hyperplanes, let CT (L) denote the set of simplices in the canonical triangulation of A(L).
Let σ be the boundary of a convex set in R

d. We denote by CTσ(L) ⊆ CT (L) the minimal
set of simplices of CT (L) which cover the zone of σ in A(L). We recall the following results
about the canonical triangulation:

Lemma 3.4 Let H be a collection of n hyperplanes in R
d.

(i) [CF90] For every simplex ∆ ∈ CT (H), there exists a unique inclusion-minimal collec-
tion S∆ ⊆ H, such that ∆ ∈ CT (S∆). This collection S∆, called the defining set of ∆,
consists of at most D = d(d+ 3)/2 hyperplanes.

(ii) [CF90] If L ⊆ H and ∆ ∈ CT (L) then ∆ ∈ CT (H) if and only if its interior is
intersected by no hyperplane of H.

(iii) [Mat02] Assuming H is in general position, each cell in A(H) is a simple polytope,
in which the number of simplices in its canonical triangulation is at most proportional to
the number of its vertices (with the constant of proportionality depending on d).
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Let H, n, r and σ be as in Theorem 3.1. For a simplex ∆, define the excess of ∆ to be
max{1, |H∆| rn}. Let R be a random sample of hyperplanes of H, where each hyperplane is
drawn independently with probability p = r/n. Let nσ(p, t) denote the expected number of
simplices with excess at least t in CTσ(R).

Lemma 3.5 (Exponential Decay Lemma). For t > 1 and r ≤ n/2,

nσ(p, t) = O(2−tnσ(p/t, 1)),

where nσ(p/t, 1) is the expected size of CTσ(R
′), for another random sample R′, in which

each hyperplane is chosen independently with probability p/t.

We omit the proof of the lemma, which is essentially the same as in [Mat92a] and
[Mat92b], and it can be viewed as a special instance of the general setup considered in
[AMS98].

As a final step before the proof of Theorem 3.1, we recall the bound established in [APS93]
on the complexity of the zone of the boundary of a convex set in a hyperplane arrangement.

Theorem 3.6 (Extended Zone Theorem). The complexity of the zone of the boundary
of an arbitrary convex set in an arrangement of n hyperplanes in R

d is O(nd−1 log n) for
d ≥ 3, where the constant of proportionality depends on d, and O(nα(n)) for d = 2.

Proof of Theorem 3.1. First, we may assume that r ≤ n/2, since otherwise, the bottom-
vertex triangulation CTσ(H) can serve as the desired cutting. By Lemma 3.4 (iii), the
number of simplices in CTσ(R) is at most proportional to the number of vertices in the
zone of σ in A(R). Hence, by Theorem 3.6, we have

|CTσ(R)| =
{

O(|R|d−1 log(|R|+ 1)), for d ≥ 3

O(|R|α(|R|+ 1)), for d = 2.

Since |R| ∼ B(n, p), Lemma 3.3 (i) implies that the expected number nσ(p, 1) of simplices
in CTσ(R) is, for d ≥ 3,

nσ(p, 1) = E{|CTσ(R)|} = E
{

O
(

|R|d−1 log(|R|+ 1)
)}

=

O((E{|R|})d−1 log(E{|R|})) = O((np)d−1 log(np)). (7)

For d = 2, a similar argument shows, by Lemma 3.3 (ii), that nσ(p, 1) = O(npα(np)). Note
that these bounds hold for any 0 < p ≤ 1.

To obtain the desired cutting, we start with Ξ0 = CTσ(R). For each simplex ∆ ∈ Ξ0,
let t = t(∆) be the excess of ∆. Each simplex ∆ with t(∆) = 1 is left as is. For those
simplices ∆ with t(∆) > 1, let Ξ∆ be a (1/t)-cutting for A(H∆) of size O(td). Such a
cutting exists by the Cutting Lemma [Mat02]. We take the intersection of every simplex
∆′ ∈ Ξ∆ with ∆, and triangulate it if necessary into O(1) sub-simplices. The collection of
simplices appearing in these triangulations, over all simplices ∆ ∈ Ξ0, with t(∆) > 1, plus
the simplices of Ξ0 which were not triangulated further, form our cutting Ξ, which, as is
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easily verified, is indeed a (1/r)-cutting for the zone of σ in A(H). We bound the size of Ξ
by bounding the expected value S of the sum

∑

∆∈Ξ0
t(∆)d. We have

S ≤
∞
∑

t=1

tdnσ(p, t).

Using Lemma 3.5 and the bound (7), and recalling that p = r/n, we have, for d ≥ 3, and
for appropriate constants c and c′, depending on d,

S ≤
∞
∑

t=1

td · c2−tnσ(p/t, 1) ≤ c′
∞
∑

t=1

td2−t
(r

t

)d−1
log
(r

t

)

≤

c′
( ∞
∑

t=1

t2−t

)

rd−1 log r = O(rd−1 log r).

For d = 2, arguing similarly, we have S = O(rα(r)). This completes the proof of Theorem
3.1. ✷

4 Partition theorem for shallow points in R
d

Let P be a set of n points in R
d. A simplicial partition for P is a collection

Π =

{

(P1,∆1), . . . , (Pm,∆m)

}

,

where the Pi’s are pairwise disjoint subsets (called the classes of Π) forming a partition of
P , and each ∆i is a relatively open simplex containing Pi. We also require that the Pi’s
be roughly of the same size, that is, k ≤ |Pi| ≤ 2k for each i, for some parameter k < n
(so m = Θ(n/k)). Assuming that the points of P are in general position, and k ≥ d + 1,
the simplices ∆i are full-dimensional. We also note that the simplices ∆i are not required
to be pairwise disjoint, so a simplex ∆i may also contain other points of P , in addition to
those of Pi. (See however the recent work of Chan [Ch12] where the simplices can be made
pairwise disjoint.)

For a hyperplane h, and a simplex ∆, we say that h crosses ∆ if h ∩∆ 6= ∅ and ∆ 6⊂ h
(thus a hyperplane does not cross a lower-dimensional simplex contained in it). We define
the crossing number of a hyperplane h (with respect to Π) as the number of simplices ∆i

crossed by h, and define the crossing number of Π as the maximum crossing number of any
hyperplane with respect to Π.

We recall two previous versions of the partition theorems, both developed by Matoušek.
The first one, used for obtaining an efficient simplex range counting algorithm, is the stan-
dard, general partition method. The second one, used for improved range reporting algo-
rithms, is a partition method for shallow hyperplanes only, that is, the improved crossing
number (relative to the first result), is guaranteed only for hyperplanes that contain up to
a prescribed number of points on one side.

Theorem 4.1 (Partition Theorem [Mat92a]). Let P be an n-point set in R
d and let

1 < k < n be a parameter. There exists a simplicial partition Π for P of size O(n/k), whose
classes satisfy k ≤ |Pi| ≤ 2k, with crossing number O((n/k)1−1/d).
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Theorem 4.2 (Partition Theorem for shallow hyperplanes [Mat92b]). Let P be
an n-point set in R

d and let 1 < k < n be a parameter. There exists a simplicial partition
Π for P of size O(n/k), whose classes satisfy k ≤ |Pi| ≤ 2k, and such that the crossing
number of any k-shallow hyperplane with respect to Π is O((n/k)1−1/⌊d/2⌋) for d ≥ 4, and
O(log(n/k)) for d = 2, 3.

Here is our version of the Partition Theorem, which caters to sets of shallow points and
for any hyperplane.

Theorem 4.3 (Partition Theorem for shallow points). Let P be a set of n k-shallow
points in R

d, where d ≥ 2 and 2 ≤ k ≤ n/2. There exists a simplicial partition Π for P ,
whose classes Pi satisfy k ≤ |Pi| ≤ 2k (so their number m is Θ(n/k)), and such that the

crossing number of any hyperplane with respect to Π is O
(

(n/k)1−1/(d−1) log2/(d−1)(n/k)
)

for d ≥ 3, and O
(

α(n/k) log2(n/k)
)

for d = 2.

Such a simplicial partition can be constructed in time O(n1+δ), for any fixed δ > 0
(where the constants in this bound and in the bound on the crossing number depend on δ).
The construction time can be improved to O(n log(n/k)), provided that k ≥ nγ for any fixed
γ > 0 (again with the constants in this bound and in the bound on the crossing number
depending on γ).

Remarks: (i) Note that, in contrast with Theorem 4.1 and 4.2, which hold for any 1 <
k < n, Theorem 4.3 only holds for the shallowness parameter k of the set P . (ii) We may
assume that n/k is larger than some suitable constant, since otherwise we can partition P
into a constant number (≤ ⌊n/k⌋) of arbitrary classes, and the theorem then holds trivially.

The proof of Theorem 4.3 is based on the following lemma, adapted from similar lemmas
in [Mat92a, Mat92b].

Lemma 4.4 Let P , n and k be as above, and let Q be a given set of hyperplanes. Then
there exists a simplicial partition Π for P , each of whose classes Pi satisfies k ≤ |Pi| ≤ 2k,
such that the crossing number of every hyperplane h ∈ Q with respect to Π is

O
(

(n/k)1−1/(d−1) log2/(d−1)(n/k) + log |Q|
)

, for d ≥ 3, and

O
(

α(n/k) log2(n/k) + log |Q|
)

, for d = 2.

Proof. We first present the proof for the case d ≥ 3, and then consider the case d = 2,
whose simpler proof uses the same machinery. We will inductively construct pairwise disjoint
subsets P1, P2, . . . of P , and simplices ∆1,∆2, . . ., so that Pj ⊆ ∆j for each j. Suppose that
P1, . . . , Pi have already been constructed, and set P ′

i = P \(P1∪· · ·∪Pi) and ni = |P ′
i |, where

we start with P ′
0 = P . We iterate the construction as long as ni > Bk, for an appropriate

constant B that will be set below. Let Zi be a random sample of P ′
i , where each point is

chosen independently with probability 1/k, and let Yi be the set of vertices of Conv(Zi),
as in Section 2. By Proposition 2.1, with constant probability, Yi and Zi satisfy |Yi| ≥ ni

8k
and ni

2k ≤ |Zi| ≤ 2ni
k (here we use the assumption that ni/k is sufficiently large; see below).

Assume that the sample Zi does satisfy these properties. Then, by Proposition 2.3, with
probability at least 1−q, Zi is also a relative (

c2k
ni

log ni
c2k

, 12)-approximation for (P ′
i ,R), where
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R is, as above, the set of all simplices in R
d, c2 ≥ 8c1(δ+1/q), c1 is taken from Theorem 1.3,

and δ = O(d2) is the VC-dimension of (P,R). Let us set c2 = max{(d+1)/k, 8c1(δ+1/q)},
and assume that c2 ≥ 2.

We distinguish between two cases. First suppose that ni > Bk. For a hyperplane
h ∈ Q, let κi(h) denote the number of simplices among ∆1, . . . ,∆i crossed by h. We define
a weighted collection (Q,wi) by setting wi(h) = 2κi(h) for each h ∈ Q.

We use a variant of the Cutting Lemma for weighted collections of hyperplanes. We fix
a parameter ti (again, its value will be set shortly), and construct a (1/ti)-cutting Ξi for the
zone of the boundary σ of the convex hull of Yi in the arrangement A(Q,wi). By Corollary
3.2, Ξi consists of at most c3t

d−1
i log ti simplices, for a suitable constant c3. We set

ti = c4

(

ni/k

log2(ni/k)

)1/(d−1)

,

for an appropriate constant parameter c4 ≤ 1, whose concrete value will be set later. Let
F be the solution of F/ log2 F = (1/c4)

d−1. We put B = max{F, 2c2, 256} and note that
(i) ti > 1, (ii) ni ≥ 256k (as required by Proposition 2.1), and (iii) ni ≥ 2c2k (as required
by Proposition 2.3). We estimate the size of Ξi by

|Ξi| ≤ c3t
d−1
i log ti ≤ c3c

d−1
4 · ni

k
· (d− 1) log c4 + log ni

k − 2 log log ni
k

(d− 1) log2 ni
k

≤ c3c
d−1
4

d− 1
· ni

k
· 1

log ni
k

.

(The final inequality holds when log c4 ≤ 0 and log log(ni/k) > 0, which is indeed the case
since c4 ≤ 1 and ni > 4k.) Using this bound, we argue that there exists a (relatively open)
simplex τ ∈ Ξi containing at least k points of P ′

i . To see this, we first observe that each
point of Yi is contained in some simplex of Ξi. Hence there exists a relatively open simplex
τ ∈ Ξi, such that |Yi ∩ τ | ≥ |Yi|/|Ξi|. Since |Yi| ≥ ni/8k, the measure of τ in Zi satisfies

Zi(τ) =
|Zi ∩ τ |
|Zi|

≥ |Yi ∩ τ |
|Zi|

≥ |Yi|
|Ξi|

· 1

|Zi|
≥ ni

8k
· k

2ni
· 1

|Ξi|
≥ k

ni
· (d− 1)

16c3c
d−1
4

· log ni

k
= A

k

ni
,

where

A =
d− 1

16c3c
d−1
4

log
ni

k
. (8)

We can now bound from below the number of points of P ′
i in τ . Put D = max{2, (d+1)/k}.

Since Zi has the relative (p, ε)-approximation property with respect to P ′
i , with the values

of p and ε = 1/2 as specified in Proposition 2.3, we have, by Definition 1.2,

(i) If P ′
i (τ) ≥ p = c2k

ni
log ni

c2k
, then, by the choice of c2,

|P ′
i ∩ τ | ≥ pni = c2k log

ni

c2k
≥ c2k ≥ max{d+ 1, 2k}.

(ii) If P ′
i (τ) ≤ p, then

P ′
i (τ) ≥ Zi(τ)− εp ≥ k

ni

(

A− c2
2
log

ni

c2k

)

,
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and thus we have

|P ′
i ∩ τ | ≥ k

(

A− c2
2
log

ni

c2k

)

.

By requiring that A− c2
2 log ni

c2k
≥ D, we get that |P ′

i ∩ τ | ≥ max{d+ 1, 2k}. Substituting
the value of A in (8), this requirement becomes

d− 1

16c3c
d−1
4

log
ni

k
≥ D +

c2
2
log

ni

c2k
,

or
(

d− 1

16c3c
d−1
4

− c2
2

)

log
ni

k
≥ D − c2

2
log c2.

Since we assume that ni ≥ 256k, this inequality will be satisfied if

d− 1

2c3c
d−1
4

≥ 4c2 +D − c2
2
log c2. (9)

This inequality in turn can be enforced by choosing c4 to be a sufficiently small constant
which depends only in d (note that the dependence of D on k does not prevent us from
choosing c4 to be a constant).

To recap, with this choice of c4 (and thus of ti), we can ensure, with probability at least
1− q, that |P ′

i ∩ τ | ≥ max{d+ 1, 2k}, that is, τ is a full-dimensional simplex and contains
at least 2k points of P ′

i . We now set Pi+1 to be an arbitrary k-point subset of P ′
i ∩ τ , and

put ∆i+1 = τ , so Pi+1 ⊆ ∆i+1. See Figure 2 for an illustration.
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P ′
i

Zi ⊆ P ′
i

Q

R ⊆ Q

σ = ∂Conv(Yi)

∆

≥ 2k

Ξi = (1/ti)-cutting

Yi ⊆ Zi

Figure 2: ∆ is a simplex of the (1/ti)-cutting Ξi of (Q,wi) which contains ≥ 2k points of
P ′
i .

Proceeding with this construction, we reach an index i = q, for which nq ≤ Bk.
We then partition the set P ′

q of the remaining points into at most B arbitrary subsets
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Pq+1, Pq+2, . . . , Pm of size k each, except for Pm, whose size is between k and 2k − 1. We
define the simplices ∆q+1 = ∆q+2 = · · · = ∆m = R

d, and set Π = {(P1,∆1), . . . , (Pm,∆m)},
thereby completing the construction. Since the last phase adds at most a constant number
of (i.e., at most ⌊B⌋) classes and simplices, it only increases the crossing number of any
hyperplane by an additive constant. Hence it suffices to bound the crossing number of any
hyperplane relative to Π′ = {(P1,∆1), . . . , (Pq,∆q)}.

To do so, we estimate the final total weight wq(Q) of the hyperplanes of Q in two
different ways.

On one hand, the weight wq(h) of a hyperplane h ∈ Q with crossing number κ is equal
to 2κ. Therefore, κ ≤ logwq(h) ≤ logwq(Q).

On the other hand, let us consider how wi+1(Q) increases compared to wi(Q). Note
that, since Ξi is a (1/ti)-cutting of the weighted collection (Q,wi), it follows that ∆i+1 is
crossed by a collection of hyperplanes, denoted by Q∗, whose total weight at step i is at
most wi(Q)/ti. When passing to step i+1, the weight of every hyperplane of Q∗ is doubled,
whereas the weight of any other hyperplane remains unchanged. Thus, the total weight of
Q increases by at most wi(Q)/ti. That is,

wi+1(Q) ≤ wi(Q) +
wi(Q)

ti
= wi(Q)

(

1 +
1

ti

)

≤ wi(Q)

(

1 +
1

c4

(

log2(ni/k)

ni/k

)1/(d−1)
)

.

Let us put r = n/k, and recall that w0(Q) = |Q|, ni = n− ik, and q ≤ r. Hence

wq(Q) ≤ |Q|
q−1
∏

i=0

(

1 +
1

ti

)

≤ |Q|
q−1
∏

i=0

(

1 +
1

c4

(

log2(r − i)

r − i

)1/(d−1)
)

.

Taking logarithms and using the inequality ln(1 + x) ≤ x, we get

logwq(Q) ≤ log |Q|+ 1

c4 ln 2

q−1
∑

i=0

(

log2(r − i)

r − i

)1/(d−1)

≤ log |Q|+ 1

c
′

4

r
∑

j=1

(

log2 j

j

)1/(d−1)

, (10)

where c
′

4 = c4 ln 2. That is, we have

κ ≤ logwq(Q) ≤ log |Q|+ 1

c
′

4

log2/(d−1) r
r
∑

j=1

(

1

j

)1/(d−1)

= O
(

log |Q|+ r1−1/(d−1) log2/(d−1) r
)

= O
(

log |Q|+ (n/k)1−1/(d−1) log2/(d−1)(n/k)
)

,

for d ≥ 3. This completes the proof for d ≥ 3.
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Consider next the case d = 2, and follow the same reasoning as in higher dimensions.
At step i of the construction, we put

ti = c4 ·
ni/k

α(ni/k) log(ni/k)
,

and construct a (1/ti)-cutting Ξi of the zone of Conv(Yi) in A(Q,wi), where wi is defined
as above. By Corollary 3.2 we have

|Ξi| ≤ c3tiα(ti) ≤ c3c4 ·
ni

k
· 1

log ni
k

,

for an appropriate constant c3. Hence, (8) and (9), with d = 2, are valid for this case as
well. Let F be the solution of F/(α(F ) log(F )) = 1/c4, and put B = max{F, 2c2, 256} as in
higher dimensions. Using the relative (p, ε)-approximation property of Zi (which we may
assume to hold), we obtain that there exists an open cell τ of Ξi, for which |P ′

i ∩ τ | ≥ 2k,
provided that c4 is chosen to be a sufficiently small constant, satisfying inequality (9). We
take Pi+1 to be an arbitrary subset of k points of P ′

i ∩ τ , and put ∆i+1 = τ . We repeat this
step until ni ≤ Bk, and then complete the construction as in the higher-dimensional case.

The analysis of the crossing number proceeds as above, except for the different value of
the parameters ti. Plugging this value into the appropriate variant of inequality (10), yields
the following bound

κ ≤ logwq(Q) ≤ log |Q|+ 1

c
′

4

r
∑

j=1

α(j) log j

j
≤ log |Q|+ 1

c
′

4

α(r) log r
r
∑

j=1

1

j
=

O
(

log |Q|+ α(r) log2 r
)

= O
(

log |Q|+ α(n/k) log2(n/k)
)

,

where c
′

4 = c4 ln 2, as above. This concludes the proof of the lemma. ✷

The next step in the proof of Theorem 4.3 is to choose a small ‘test-set’ Q of hyperplanes,
with the property that the crossing number of any hyperplane is at most proportional to
the maximum crossing number of a hyperplane in Q.

Lemma 4.5 (Test-set lemma). Let P , n, and k be as above. Then there exists a set Q of
O((n/k)d/(d−1)) hyperplanes, such that, for any simplicial partition Π = {(P1,∆1), . . . , (Pm,∆m)}
satisfying |Pi| ≥ k for every i, the following holds: If κ0 is the maximum crossing number
of a hyperplanes of Q with respect to Π, then the crossing number of any hyperplane with
respect to Π is at most

(d+ 1)κ0 +O
(

(n/k)1−1/(d−1)
)

,

for d ≥ 3, and (d+ 1)κ0 + 1 for d = 2.

Proof. Let H = D(P ) be the collection of hyperplanes dual to the points of P . Put
t = Θ((n/k)1/(d−1)). Construct a (1/t)-cutting Ξ of size O(td) for A(H), and let Q be the
set of all hyperplanes dual to the vertices of Ξ. Clearly |Q| = O((n/k)d/(d−1)).

Fix a simplicial partition Π = {(P1,∆1), . . . , (Pm,∆m)} as above. Let h be any hyper-
plane in the primal space. The point D(h) dual to h is contained in a simplex σ ∈ Ξ. Let
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G be the set of hyperplanes in the primal space dual to the vertices of σ. Clearly G ⊆ Q,
so each of the d+ 1 hyperplanes of G crosses at most κ0 simplices of Π.

It remains to bound the number of simplices of Π which are crossed by the hyperplane
h but by no hyperplane of G. Such simplices ∆i must be completely contained in the zone
of h in the arrangement A(G), and hence this zone must also contain the points of their
corresponding classes Pi in its interior. It is elementary to verify (also see [Mat92a] and
[Mat92b]), that any point of P lying in the interior of the zone of h in A(G) dualizes to
a hyperplane of H intersecting the interior of the simplex σ, and there are at most n/t
such hyperplanes in H. Hence, the zone of h may contain at most these many points of
P , implying that there are at most n/(tk) = O((n/k)1−1/(d−1)) simplices of Π completely
contained in the zone of h in A(G), since |Pi| ≥ k for every i. In the plane, there is at most
n/(tk) = 1 such simplex. ✷

Proof of Theorem 4.3. The proof of the Partition Theorem now follows easily. Consider
first the case d ≥ 3. Given the set P of n k-shallow points, we first construct a test-set Q
of O((n/k)d/(d−1)) hyperplanes, as in Lemma 4.5. Then we apply Lemma 4.4, obtaining a
simplicial partition Π such that any hyperplane h ∈ Q has crossing number

O
(

log |Q|+ (n/k)1−1/(d−1) log2/(d−1)(n/k)
)

= O
(

(n/k)1−1/(d−1) log2/(d−1)(n/k)
)

relative to Π. (Here we use the face that, when n/k is at least some sufficiently large
constant, log |Q| is dominated by the other term in the bound.) By the ‘test-set’ property
of Q, the crossing number of any hyperplane h relative to Π is at most

(d+ 1) ·O
(

(n/k)1−1/(d−1) log2/(d−1)(n/k)
)

+O
(

(n/k)1−1/(d−1)
)

= O
(

(n/k)1−1/(d−1) log2/(d−1)(n/k)
)

,

as claimed. The case d = 2 is argued similarly and the resulting crossing numbers, of the
lines of Q, and thus also of any line, are O(α(n/k) log2(n/k)). This completes the proof of
the existence and main properties of the partition.

It remains to analyze the preprocessing time of this partition. We actually carry out the
standard algorithm of [Mat92a], which constructs a (1/ti)-cutting of the entire arrangement
of A(Q,wi), and use the preceding analysis to argue that one of the simplices in the cutting
will contain (with high probability) 2k points of P ′

i . There is no need to explicitly construct
Z, Y , and the zone of the convex hull of Z, they are needed only to guarantee the existence
of such a simplex. With this approach, we can thus conclude that the preprocessing time
of our simplicial partition for a set of k-shallow points is at most O(n1+δ) for any value
of k and for any fixed δ > 0 (where the constants in this bound and in the bound on the
crossing number both depend on δ). If k ≥ nα, for any fixed α > 0, the preprocessing time
can be reduced to O(n log(n/k)), as in [Mat92a] (where the constants in both bounds now
depend on α). We note that, in the output-sensitive range counting algorithm below, we
use the latter bound, since we deal there only with large values of k.

This concludes the proof of the Partition Theorem. ✷

Let us note the following special case of Theorem 4.3, where the points of P are 1-
shallow.

21



Corollary 4.6 Let P be a set of n 1-shallow points in R
d, where d ≥ 2. There exists

a simplicial partition Π for P , whose classes Pi satisfy |Pi| = 2 (except, possibly, for
one class of size 3), such that the crossing number of any hyperplane with respect to Π
is O(n1−1/(d−1) log2/(d−1) n) for d ≥ 3, and O(α(n) log2 n) for d = 2.

5 Applications

Overview. In this section we derive two major applications of the Partition Theorem for
shallow sets (Theorem 4.3) presented in the previous section. The first application is the
construction of a spanning tree with small relative crossing number, which depends on the
shallowness of the crossing hyperplane. We then turn this construction into a construction
of a relative (p, ε)-approximation, using the same machinery of Har-Peled and Sharir [HS11],
thus extending their planar construction to higher dimensions. The second application is
an output-sensitive halfspace range counting data structure, where the query time is better
than that of the standard algorithm of Matoušek [Mat92a], when the hyperplane bounding
the query halfspace is shallow.

5.1 Spanning trees with small relative crossing number in R
d

In our first application, we extend the “weight-sensitive” version of spanning trees with small
relative crossing number in the plane, studied by Har-Peled and Sharir [HS11], to higher
dimensions. Both our extension and the construct in [HS11] refine the following classical
construct of spanning trees with small crossing number, as obtained by Chazelle and Welzl
[CW89], with a simplified construction given later in [Wel92].

Theorem 5.1 [CW89, Wel92] Let P be a set of n points in R
d, d ≥ 2. Then there

exists a straight-edge spanning tree T of P such that each hyperplane in R
d crosses at most

O(n1−1/d) edges of T.

We begin by refining this result for a set of k-shallow points.

Lemma 5.2 Let P be a set of n k-shallow points in R
d. One can construct a spanning tree

T for P , such that any hyperplane crosses at most O
(

n1−1/(d−1)k1/d(d−1) log2/(d−1)(n/k)
)

edges of T, for d ≥ 3, and O
(

α(n/k) log2(n/k)
(√

k + log(n/k)
))

edges, for d = 2.

Proof. We first consider the case d ≥ 3. Given a set P of n k-shallow points, we construct a
simplicial partition Π = {(P1,∆1), . . . , (Pm,∆m)} of P , by applying the Partition Theorem
(Theorem 4.3), for sets of 2k-shallow points (clearly, the points of P are also (2k)-shallow).
(We note that replacing k by 2k does not affect asymptotically the crossing number of Π.)
Each class Pi of the partition now satisfies 2k ≤ Pi ≤ 4k.

Given Π, we first ignore its “tail”, namely the pairs (Pq+1,∆q+1), . . . , (Pm,∆m), where
q, as in the proof of Lemma 4.4, is the first index for which nq < B · (2k) = B′k. Let
Π′ ⊆ Π denote the collection {(P1,∆1), . . . , (Pq,∆q)}. For each i = 1, . . . , q, we construct
a spanning tree Ti for Pi with crossing number O(k1−1/d) using Theorem 5.1. Then we
connect those trees by segments, called bridges, into a single tree, whose construction will
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be detailed below. Finally, we construct another spanning tree, denoted by Tq+1, of the at
most B′k points in Pq+1 ∪ · · · ∪ Pm, with crossing number O((B′k)1−1/d) = O(k1−1/d). We
connect Tq+1 by a single edge to an arbitrary point in the other tree. The union of the trees
T1, . . . ,Tq+1 together with the connecting bridges forms our spanning tree T.

The connecting bridges are constructed as follows. We pick a point pi from Pi, uniformly
at random, for each i = 1, . . . , q. Let R denote the resulting set of m = Θ(n/k) points. The
probability of any single point to belong to R is at most 1/(2k). (It is here that we use the
larger size of the classes; see below.) Suppose that some point a ∈ P has been chosen in
R. By assumption, a is k-shallow, so there is a halfspace H which contains a and at most
k− 1 other points of P . Since each of these points appears in R with probability ≤ 1/(2k),
the expected number of points in R ∩ H (conditioned on a being chosen in R) is < 1/2.
Hence, using Markov’s inequality, with (conditional) probability at least 1/2, there is no
other point apart from a in R∩H, that is, a is a vertex of the convex hull of R. Hence, the
expected number of vertices of Conv(R) is at least |R|/2. We may assume that R satisfies
this property, and denote by R0 the subset of hull vertices of Conv(R); Thus, |R0| ≥ m/2.

Apply Corollary 4.6 to the set R0, to obtain a partition of it into 1
2 |R0| ≥ m

4 − 1 disjoint
pairs. Let E denote the collection of the segments connecting the points in each pair. By
construction, each hyperplane crosses at most O(|R0|1−1/(d−1) log2/(d−1) |R0|) segments of
E.

The segments of E merge together some subsets of trees Ti into larger trees. Since we
created at least m

4 − 1 bridges, the number of disconnected trees is now m′ ≤ m− ((m/4)−
1) = 3m/4 + 1. We now repeat the above construction to the new trees, or, rather, to the
subsets of P that they span. That is, we choose a random point from each subset, take
the subset of hull vertices of the resulting sample, and apply Corollary 4.6 to it, to create
new bridges. The situation has actually improved, because these vertex sets of the current
collection of trees are now larger (while the points are still k-shallow), so the probability of
choosing any specific point is smaller; hence the probability of a sampled point to become
a hull vertex can only grow. In any case, we create at least m′

4 − 1 new bridges, and keep
iterating in this manner until all trees have been merged into a single tree.

As is easily checked, the number of bridges crossed by a hyperplane h is at most

O





∑

j≥0

(

(

3
4

)j n
k

)1−1/(d−1)
log2/(d−1)

(

(

3
4

)j n
k

)



 = O
(

(n/k)1−1/(d−1) log2/(d−1)(n/k)
)

.

In addition, h crosses O
(

(n/k)1−1/(d−1) log2/(d−1)(n/k)
)

of the simplices ∆i, and, within

each such simplex ∆i, it crosses O(k1−1/d) edges of the corresponding tree Ti. Also, it
crosses O(k1−1/d) edges of the tree Tq+1. Since the bound within the simplices dominates
the other two bounds, we conclude that h crosses at most

O
(

(n/k)1−1/(d−1) log2/(d−1)(n/k) · k1−1/d
)

= O
(

n1−1/(d−1)k1/d(d−1) log2/(d−1)(n/k)
)

edges of T. This completes the proof for d ≥ 3.

For d = 2, follow the same construction as described above, and re-estimate the crossing
number of a hyperplane h relative to our tree T. We observe that h crosses edges from
O
(

α(n/k) log2(n/k)
)

trees of Ti, and within each of them it crosses O(
√
k) edges. In
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addition, h crosses O(
√
k) edges of Tq+1. Following the same mechanism of the bridge

construction and its analysis, the number of bridges crossed by h is at most

O





∑

j≥0

α
(

(

3
4

)j n
k

)

log2
(

(

3
4

)j n
k

)



 = O



α(n/k)
∑

j≥0

(log(n/k)− j)2





= O
(

α(n/k) log3(n/k)
)

.

Thus, altogether, the crossing number of T is bounded by

O
(

α(n/k) log2(n/k)(
√
k + log(n/k))

)

,

as asserted. ✷

Let now P be a set of n points in R
d (without the shallowness assumption). For a (non

vertical) hyperplane h, let w+
h (resp., w−

h ) be the number of points of P lying above (resp.,
below or on) h, and define the weight of h, denoted by wh, to be min{w+

h , w
−
h }.

Theorem 5.3 Let P be a set of n points in R
d. Then one can construct a spanning tree T

for P , such that any hyperplane h crosses at most O
(

n1−1/(d−1)w
1/d(d−1)
h log2/(d−1)(n/wh)

)

edges of T, for d ≥ 3, or O
(√

whα(n/wh) log
2(n/wh) + α(n) log4 n

)

edges, for d = 2.

Proof. We construct a sequence of subsets of P , as follows. Put P ′
0 = P . At the ith

step, i ≥ 1, let Pi denote the set of (at most) 2i-shallow points of P ′
i−1, and put P ′

i =
P \ (P1 ∪ · · · ∪Pi). We stop when P ′

i becomes empty. By construction, the ith step removes
at least 2i points from P ′

i−1, because any (exactly) 2i-shallow halfspace H contains 2i points
of P ′

i , all of which are (at most) 2i-shallow. Hence, |P ′
i | ≤ |P ′

i−1| − 2i, and so the process
terminates after O(logn) steps. At the ith step, we construct a spanning tree Ti for Pi,
using Lemma 5.2, with k = 2i. Connect the resulting trees by O(log n) additional straight
segments (in an arbitrary manner) into a single spanning tree T of P .

We claim that T is the desired spanning tree. Indeed, consider an arbitrary hyperplane
h of weight wh = k. We observe that h cannot cross any of the trees Ti, for i > U = ⌈log2 k⌉.
To see this, assume to the contrary that h crosses Tj for some j > U . That is, there exist
two points p1, p2 ∈ Pj which are separated by h. Without loss of generality, assume that
p1 lies in the halfspace bounded by h which contains k points. In particular, p1 must be
k-shallow in P (and thus also in any subset P ′

i containing it), so it must have been removed
at some step i ≤ U and thus cannot belong to Pj .

Thus, h crosses only the first U trees of our construction. Hence, for d ≥ 3, the number
of edges of T that h crosses, excluding the O(logn) connecting edges, is at most

U
∑

i=1

O
(

n1−1/(d−1)(2i)1/d(d−1) log2/(d−1)(n/2i)
)

= O

(

n1−1/(d−1)
U
∑

i=1

(

21/d(d−1)
)i

(log n− i)2/(d−1)

)

= O



n1−1/d
logn−1
∑

j=logn−U

j2/(d−1)

(

21/d(d−1)
)j



 .
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We have a = logn − U = log n
k − δ, for some 0 ≤ δ ≤ 1, and we can estimate the sum by

the integral
∫ ∞

a

x2/(d−1)

(21/d(d−1))x
dx.

By integrating in parts, it easily follows that, for a ≥ 1, 0 < u ≤ 1, and w > 1,

∫ ∞

a

xu

wx
dx ≤ 1

lnw
· a

u

wa
+

u

ln2w
· 1

wa
= O

(

au

wa

)

, (11)

where the O(·) notation is with respect to the growth of a. This allows us to bound the
sum above by

O
(

n1−1/d(k/n)1/d(d−1) log2/(d−1)(n/k)
)

= O
(

n1−1/(d−1)k1/d(d−1) log2/(d−1)(n/k)
)

,

which is the asserted bound on the crossing number of h, for d ≥ 3.

Let us consider the case d = 2. The crossing number of a line l relative to T is bounded
by

U
∑

i=1

O
(

α(n/2i) log2(n/2i)
(√

2i + log(n/2i)
))

,

which we separate into the two sums:

I1 =
U
∑

i=1

O
(√

2iα(n/2i) log2(n/2i)
)

, and I2 =
U
∑

i=1

O
(

α(n/2i) log3(n/2i)
)

.

I1 is bounded by

U
∑

i=1

O
(√

2i(log n− i)2α(n/2i)
)

= O





√
n

logn−1
∑

j=logn−U

j2α(2j)√
2j



 . (12)

α(·) is very slowly increasing; in particular, it satisfies α(2x) ≤ α(x) + 1 for any x, and so,
for α(x) ≥ 3, we have

α(2x)

α(x)
≤ 1 +

1

α(x)
≤ 4

3
.

We can therefore bound the sum in (12), denoted by S, by

S ≤ α(n/k)

logn−1
∑

j=log n−U

j2
(

4
3

)j−logn+U

√
2j

≤ α(n/k)
(

3
4

)logn−U
logn−1
∑

j=logn−U

j2
(

4
3
√
2

)j
.

Using again the integral bound in (11), we obtain, for an appropriate constant c1,

S ≤ c1 · α(n/k)
(

3
4

)logn−U
log2(n/k)

(

4
3
√
2

)logn−U
= O

(
√

k

n
α(n/k) log2(n/k)

)

,

from which we obtain
I1 = O

(√
kα(n/k) log2(n/k)

)

.
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For I2, we use the trivial bound

I2 =
U
∑

i=1

O
(

α(n/2i) log3(n/2i)
)

= O
(

α(n) log4 n
)

.

Altogether, the crossing number of l is at most

O
(√

kα(n/k) log2(n/k) + α(n) log4 n
)

.

This establishes the bound on the crossing number for d = 2. ✷

Remark: Note that the bound in Theorem 5.3 for the planar case is slightly worse than
the bound derived in [HS11]. Note also that we have worked harder on the estimation of I1
to ensure that when k = Θ(n) the bound coincides with the standard bound O(

√
n).

5.1.1 Relative (p, ε)-approximations for halfspaces

We next turn the above construction of a spanning tree with small relative crossing number
into a construction of a relative (p, ε)-approximation for a set of points in R

d and for
halfspace ranges. We base our construction on the machinery of Har-Peled and Sharir
[HS11], thus extending their planar construction to higher dimensions.

Let P be a set of n points in R
d, d ≥ 3, and let T be a spanning tree of P as provided

in Theorem 5.3. We replace T by a perfect matching M of P , with the same asymptotic
relative crossing number, i.e., the number of pairs of M that are separated by a hyperplane

of weight k is at most O
(

n1−1/(d−1)k1/d(d−1) log2/(d−1)(n/k)
)

. This is done in a standard

manner — we first convert T to a spanning path whose relative crossing number by any
hyperplane is at most twice the crossing number of the same hyperplane with T, and then
pick every other edge of the path. To simplify the presentation, and to ensure that the
resulting collection of edges is indeed a perfect matching, we assume that n is even.

We now construct a coloring of P with low discrepancy, by randomly coloring the points
in each pair of M . Specifically, each pair is randomly and independently colored either
as −1,+1 or as +1,−1, with equal probabilities. The standard theory of discrepancy (see
[Cha01] and [Mat99]) yields the following variant.

Lemma 5.4 Given a set P of n points in R
d, d ≥ 3, one can construct a coloring χ : P 7→

{−1, 1}, such that, for any halfspace H,

χ(P ∩H) =
∑

p∈P∩H
χ(p) = O

(

n(d−2)/2(d−1)|P ∩H|1/2d(d−1) log(d+1)/2(d−1) n
)

.

The coloring is balanced — each color class consists of exactly n/2 points of P .

Proof. Indeed (see [Cha01, Mat99]), if the maximum crossing number is X then the above
discrepancy can be bounded by O(

√
X log n), and the asserted bound is then immediate by

Theorem 5.3. ✷

We also need the following technical lemma, taken from [HS11].

Lemma 5.5 For any x ≥ 0, y > 0, and 0 < p < 1, we have xp < (x+ y)/y1−p.
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As we next show, the improved discrepancy bound of Lemma 5.4 leads to an improved
bound of the size of (ν, α)-samples for our range space, and, consequently, for the size of
relative (p, ε)-approximations (with some constraints on the relationship between ε and p,
as noted below). Let us introduce the following parameters:

γ =
2d(d− 1)− 1

(d− 1)(d+ 1)
, µ =

2d

d+ 1
, and η =

d

d− 1
.

Theorem 5.6 Given a set P of n points in R
d, d ≥ 3, and parameters 0 < p < 1 and

0 < ε < 1, one can construct a relative (p, ε)-approximation Z ⊆ P of size

O

(

1

εµpγ
logη

1

εp

)

.

We observe that, ignoring the power η > 1 of the logarithmic factor, this bound is an
improvement of the bound in Theorem 1.3, as long as ε and p satisfy

1

εµpγ
<

1

ε2p
, or ε < p

γ−1
2−µ .

Substituting the values of γ and µ, we have

ε < p
d(d−2)
2(d−1) ,

which is the required constraint on the relationship between ε and p, for which Theorem 5.6
does indeed yield an improvement (modulo the small ”penalty” in the logarithmic factor) .
We also note that for d = 2 the bound in the theorem coincides with the bound in [HS11]
(except for the power of the logarithmic factor).

Proof. Following one of the classical constructions of ε-approximations (see [Cha01]), we
repeatedly halve P , until we obtain a subset of size as asserted in the theorem, and then
argue that the resulting set has the desired approximation property. Formally, we set
P0 = P , and, at the ith step, partition Pi−1 into two equal halves, using Lemma 5.4; let Pi

and P ′
i denote the two halves (consisting of the points that are colored +1, −1, respectively).

We keep Pi, remove P ′
i , and continue with the halving process. Let ni = |P |/2i denote the

size of Pi. For any halfspace H, we have

∣

∣|Pi ∩H| − |P ′
i ∩H|

∣

∣ ≤ c1 · n(d−2)/2(d−1)
i−1 · |Pi−1 ∩H|1/2d(d−1) · log

d+1
2(d−1) ni−1

≤ c2 · n(d−2)/2(d−1)
i · |Pi−1 ∩H|1/2d(d−1) · log

d+1
2(d−1) ni,

for appropriate constants c1 and c2. Recalling out notation

Pi(H) =
|Pi ∩H|

|Pi|
and P ′

i (H) =
|P ′

i ∩H|
|P ′

i |
,

this can be rewritten as

|Pi(H)− P ′
i (H)| ≤ c2

|Pi−1 ∩H|1/2d(d−1)

n
1−(d−2)/2(d−1)
i

log
d+1

2(d−1) ni = c3
Pi−1(H)1/2d(d−1)

n
(d+1)/2d
i

log
d+1

2(d−1) ni,
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for an appropriate constant c3. Since |Pi| = |P ′
i | and Pi−1 = Pi ∪ P ′

i , we have

Pi−1(H) =
|Pi−1 ∩H|

|Pi−1|
=

|Pi ∩H|
2|Pi|

+
|P ′

i ∩H|
2|P ′

i |
=

1

2

(

Pi(H) + P ′
i (H)

)

.

Combining together the last two relations, we have

|Pi−1(H)− Pi(H)| = |Pi(H)− P ′
i (H)|

2
≤ c4

Pi−1(H)1/2d(d−1)

n
(d+1)/2d
i

log
d+1

2(d−1) ni,

where c4 = c3/2. Applying Lemma 5.5, with p = 1/2d(d− 1), x = Pi−1(h), and y = p, the
last expression is bounded by

c4 · log
d+1

2(d−1) ni

n
(d+1)/2d
i

· Pi−1(H) + p

p1−1/2d(d−1)
≤ c4 · log

d+1
2(d−1) ni

n
(d+1)/2d
i p1−1/2d(d−1)

(

Pi−1(H) + Pi(H) + p
)

.

This implies that, in the notation of Section 1.2,

dp(Pi−1(H), Pi(H)) ≤ c4 · log
d+1

2(d−1) ni

n
(d+1)/2d
i p1−1/2d(d−1)

.

Since dp is a metric, the triangle inequality implies that

dp(P (H), Pi(H)) ≤
i
∑

k=1

dp(Pk−1(H), Pk(H)) ≤ c4

p1−1/2d(d−1)

i
∑

k=1

log
d+1

2(d−1) nk

n
(d+1)/2d
k

= O

(

log
d+1

2(d−1) ni

p1−1/2d(d−1)n
(d+1)/2d
i

)

.

We can therefore ensure that dp(P (H), Pi(H)) < ε, for every halfspace H, provided that

ni = Ω
(

1
εµpγ logη 1

εp

)

. Taking Z to be the smallest Pi which still satisfies this size constraint,

i.e., of size Θ
(

1
εµpγ logη 1

εp

)

, we have thus shown that Z is a (p, ε)-sample. As follows from

the equivalence between (p, ε)-samples and relative (p, ε)-approximations (see [HS11] and
Theorem 1.3), Z is also a relative (p, ε)-approximation, which completes the proof. ✷

Remark. Very recent work by Ezra [Ez14] obtains improved bounds for the size of relative
approximations in a more general setting, which also includes the case of halfspace ranges
in higher dimensions. For this latter setup, the bound obtained in [Ez14] is

max







O
(

log
3d+1
d+1 n

)

, O





log
3d+1
d+1 1

εp

p
d+⌊d/2⌋

d+1 ε
2d
d+1











,

where the power of 1/p is smaller than the one that we have obtained.

5.2 Output-sensitive halfspace range counting in R
d

Our second main application is an improved, output-sensitive algorithm for halfspace range
counting in R

d, for any d ≥ 3. That is, we are given a set P of n points in R
d, and want
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to preprocess it into a data structure that can answer efficiently queries, in which we are
given a halfspace H, and we wish to count |P ∩H| (exactly). We will only consider the case
where we seek a data structure with near-linear storage. Our goal is an algorithm whose
query performance is sensitive to the output size wH = |P ∩H|.

Before describing our solution, we recall that when the output size wH is reasonably
small, we can trivially turn the halfspace range reporting algorithm of Matoušek [Mat92b]
into a range counting algorithm. This algorithm uses a data structure with O(n log log n)
storage, which can be constructed inO(n logn) time, and a halfspace range reporting (count-
ing) query with a halfspace H can be answered in time O(n1−1/⌊d/2⌋ logO(1) n + wH). 2

However, when wH is large, this becomes quite inefficient. Our solution will use Matoušek’s
algorithm as one of its components, but its novel contribution is for the case where wH is
large; see below for details.

Here is an informal overview of the algorithm. We partition P into a logarithmic number
of subsets P1, . . . , Pl, so that, for each i, Pi consists of points which are O(ki)-shallow in
P \ (P1 ∪ · · · ∪ Pi−1), where k1 is specified below, and ki+1 = 2ki, for i ≥ 1. This partition,
as we show later, has the property that a halfspace H of weight wH will miss the convex
hulls of all the sets Pi, for which ki ≥ 2wH . Handling sets Pi with ki < 2wH is done using
the partition data structure for shallow sets, as provided in Theorem 4.3. This will result
in a query time bound which depends on wH in roughly the same manner as the bounds in
Theorem 5.3. Specifically, we show:

Theorem 5.7 Given a set P of n points in R
d, d ≥ 3, one can construct a data structure

for the halfspace range counting problem for P , so that, for any query halfspace H, the
number wH = |P ∩H| of points of P in H can be counted, for d ≥ 4, in time

Q(n) =







O
(

n1−⌊d/2⌋ logO(1) n+ wH

)

, for wH ≤ c1n
1−(d−1)/(d(d−1)−1),

O
(

n1−1/(d−1)w
1/d(d−1)
H logO(1) n

)

, otherwise,
(13)

for an appropriate constant c1. For d = 3, the first bound for the query time is O(logn+wH),
and the second bound remains the same.

The data structure uses O(n log logn) storage, and preprocessing time

T (n) =















O

(

n
1+

(d−2)(d−1)
2(d(d−1)−1) logO(1) n

)

, for d even,

O

(

n
1+

(d−3)(d−1)
2(d(d−1)−1) logO(1) n

)

, for d odd,

Remarks: (i) To get some feeling for these bounds, we note that for d = 3 the query

time is O(logn + wH) for wH ≤ c1n
3/5 and O(n1/2w

1/6
H logO(1) n) otherwise; ignoring the

logarithmic factors, both bounds balance out for wH = Θ(n3/5). For d = 4, the query time

is O(n1/2 logO(1) n + wH) for wH ≤ c1n
8/11 and O(n2/3w

1/12
H logO(1) n) otherwise. These

bounds should be compared with the respective standard bounds O(n2/3 logO(1) n) and
O(n3/4 logO(1) n) for d = 3 and d = 4 of [Mat92a]; our bounds coincide with these “insensi-
tive” bounds when wH = Θ(n). A graphical illustration that shows this improvement for

2Note that, if we allow subtraction, we can achieve the same query cost when the query halfspace is the
complementary one, which contains n− wH points.
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d = 4 is given in Figure 3.
(ii) If wH > n/2, denoting H as the complementary halfspace of H, we obtain the count
by counting n − |P ∩H| (see also a preceding footnote). In this case the upper bound on
the query time is obtained by replacing wH with n− wH in the above bounds.
(iii) Clearly, a weak feature of the theorem is that the bound on the preprocessing cost is
not near-linear. It approaches O(n3/2) when d is very large. For small values of d, it is near
linear for d = 3 and is roughly O(n14/11) for d = 4.

Proof. We first describe the data structure, then the procedure for answering range count-
ing queries and its analysis, then we analyze the storage used by the structure, and finally
present and analyze the (somewhat involved) construction of the data structure.

Data structure. We first construct an auxiliary data structure, based on Matoušek’s
range reporting mechanism [Mat92b], which allows us to report the points of P in a query
halfspace H in time O(n1−1/⌊d/2⌋ logO(1) n+wH), where wH = |P ∩H|. This structure uses
O(n log log n) storage and can be constructed in O(n logn) time.

We next partition P into a logarithmic number of subsets P1, . . . , Pl. For each i, Pi

consists of points which are (c′iki)-shallow in P ′
i−1, where P ′

0 = P , P ′
i = P \ (P1 ∪ · · · ∪ Pi),

for 1 ≤ i ≤ l − 1, and the values of the constant parameters c′1, . . . , c
′
l will be set later. We

set ki+1 = 2ki, for i ≥ 1, and set

k1 = c1n
1− d−1

d(d−1)−1 , (14)

for an appropriate constant c1. With each Pi we associate an auxiliary halfspace emptiness
data structure, due to Matoušek [Mat92b]. Putting mi = |Pi|, the structure uses linear
storage, requires O(m1+δ

i ) preprocessing time, where δ > 0 is arbitrarily small but fixed, and

can test whether a query halfspace contains any point of Pi, in time O(m
1−1/⌊d/2⌋
i 2O(log∗ mi)).

Next, as in the spanning tree construction (Theorem 5.3), for each set Pi, we construct
a simplicial partition Πi, using Theorem 4.3, with k = c′iki, in overall time O(n logn).
With each class of each Πi, consisting of a simplex ∆ and a subset P∆ of the corresponding
Pi, we associate another auxiliary data structure, based on the standard simplex range
counting technique of Matoušek [Mat92a]. Putting m∆ = |P∆|, this structure uses O(m∆)
storage and O(m∆ logm∆) preprocessing time, and can count the number of points of Pi

in a query halfspace in time O(m
1−1/d
∆ logO(1)m∆). This completes the description of our

data structure.

Answering a counting query. Given a query halfspace H ′, our range counting algorithm
proceeds as follows. We first run an emptiness test on each of the sets Pi, in ascending
order of their indices, with respect to both H ′ and its complementary halfspace H ′, using
the auxiliary emptiness data structures associated with those sets. Assume that the test
first returns true at iteration m, for some m ≥ 1. We then set H to be the halfspace for
which the emptiness test returned true, and we refer to it as the query halfspace from now
on. (If the original halfspace was the complement of H, we return the desired count by
subtracting 3 |P ∩ H| from n, as above.) Having a logarithmic number of sets, this step
takes at most O(n1−1/⌊d/2⌋ logO(1) n) time.

3If for some reason substraction is not allowed in the model of computation, we apply the querying
procedure only to the input halfspace H

′. We will then miss the opportunity to answer the query more
efficiently when n− wH is small.
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Our analysis is based on Lemma 5.9, given below, from which it follows that H is disjoint
from the convex hulls of all the sets Pj , for j > U = ⌈log(wH/k1)⌉+1, and so it is guaranteed
that m ≤ U + 1. We distinguish between two cases. First suppose that m ≤ 2. If m = 1,
we have P ∩H = ∅, and thus we are done. If m = 2, we have |P ∩H| ≤ c′1k1, and we use
the reporting data structure associated with the full set P , to count the points in P ∩H in
time

O
(

n1−1/⌊d/2⌋ logO(1) n+ |P ∩H|
)

,

which establishes the first bound in (13). Assume then that m > 2. It suffices to proceed
only with the sets P1, . . . , Pm−1. For each such set Pi, with an associated simplicial partition
Πi, we check, for each class (P∆,∆) ∈ Πi, whether the simplex ∆ is fully contained in H
or is crossed by its bounding hyperplane h. For a simplex ∆ that is fully contained in H,
we add |P∆| to the output count, whereas for ∆ that is crossed by h, we use the auxiliary
range counting data structure of [Mat92a], associated with that node, to count |P∆ ∩ H|.
Repeating this procedure for P1, . . . , Pm−1, and adding up the resulting counts, we obtain
the desired count |P ∩H|.

We now examine the value of k1, as set in (14), and note that, for any halfspace H with
wH = Θ(k1), the upper bound on the cost of answering the query with H using the range
reporting data structure is roughly the same, up to polylogarithmic factor, as the cost of
answering the query using the range counting procedure at each of the simplices crossed by
h. Indeed, the former cost is O(n1−1/⌊d/2⌋ logO(1) n+ k1), for d ≥ 4, and the latter cost is

O
(

(n/k1)
1−1/(d−1) · k1−1/d

1 logO(1) n
)

= O
(

n1−1/(d−1)k
1/d(d−1)
1 logO(1) n

)

.

This follows because (i) for such values of wh we only need to query in P1, (ii) the number of
simplices of Π1 crossed by the plane h bounding H is O((n/k1)

1−1/(d−1) logO(1) n) by Theo-

rem 4.3, and (iii) the cost of a query within each of the crossed classes is O(k
1−1/d
1 logO(1) k1).

As is easily checked, our k1 does indeed satisfy

n1−1/⌊d/2⌋ logO(1) n < k1 = Θ
(

n1−1/(d−1)k
1/d(d−1)
1

)

,

which makes the two bounds roughly the same, up to a polylogarithmic factor. For d = 3,
the first bound is O(logn+ k1), and the same relationship holds. For larger values of wH ,
i.e., for wH > k1, recalling that U = ⌈log(wH/k1)⌉+ 1, we use the second part of the data
structure, recalling that, as above, h crosses only O((n/ki)

1−1/(d−1) logO(1)(n/ki)) simplices
of Πi (see Theorem 4.3), to obtain an overall cost of

O

(

U
∑

i=1

(n/ki)
1−1/(d−1)k

1−1/d
i logO(1) n

)

= O

(

U
∑

i=1

n1−1/(d−1)k
1/d(d−1)
i logO(1) n

)

= O
(

n1−1/(d−1)w
1/d(d−1)
H logO(1) n

)

.

This establishes the second bound on the query time, as given in (13).

Comparing these bounds with the preceding techniques [Mat92a, Mat92b], we note
that for k ≤ k1 we do not obtain any improvement — we use in fact the same algorithm
of [Mat92b]. However, for k > k1, the bound on Q(n) is smaller than the “insensitive”
bound O(n1−1/d logO(1) n of [Mat92a]. Again, see Figure 3 for graphical illustrations of our
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Figure 3: Graphical illustration of the output-sensitive improvement for d = 4.

improvement. (Note that when k = Θ(n) our algorithm has the same asymptotic bound as
Matoušek’s counting algorithm [Mat92a].)

Storage. The auxiliary reporting data structure stored for the entire P uses O(n log log n)
storage; see [Mat92b]. The emptiness data structures for each of the subsets Pi are of
size linear in the sizes of the respective subsets [Mat92a], and so the total space that they
consume is O(n). The simplicial partitions constructed for the sets P1, . . . , Pl consume a
total of O(n) storage, including the storage used by Matoušek’s standard range counting
structure [Mat92a] within each simplex. Hence, the overall storage is O(n log logn), as
asserted.

Preprocessing time. One of the main steps in the preprocessing (which is not required
for the standard data structures of [Mat92a, Mat92b]) is the construction of the subset of
k-shallow points of a set P of n points in R

d, a step that we perform iteratively, to construct
the sequence of sets P1, . . . , Pl. This step is involved (and costly) in higher dimensions, but
we note that we only need to handle values of k satisfying

k > k1 = c1n
1−(d−1)/(d(d−1)−1),

because for smaller values of k we use instead the alternative range reporting machinery of
[Mat92b]. For such values of k we have

n

k
= O

(

n(d−1)/(d(d−1)−1)
)

, (15)

a property that will be crucial in guaranteeing the (relative) efficiency of the preprocessing.

So let P , n and k be fixed. The construction proceeds as follows. Put r = n/k and
choose a random sample R of c2r log r points of P , for an appropriate sufficiently large
constant c2. Let K denote the interior of the intersection of all halfspaces that contain at
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least |R| − c3 log r points of R, for an appropriate constant c3. By the centerpoint theorem
(see [Mat02]), K is nonempty for c3 log r < |R|/(d+1), which always hold for c2 sufficiently
large.

Before we describe and analyze the construction of K, we establish the following prop-
erties.

Lemma 5.8 Let P , R, K and k be as above, and put t = c3 log(n/k) = c3 log r. Then
an appropriate choice of the constants c2 and c3 guarantees that, with high probability, the
following properties hold.

(i) Every k-shallow hyperplane in P is t-shallow in R.

(ii) Every hyperplane which is (t+ d)-shallow in R is O(k)-shallow in P .

(iii) Every point in P \K is O(k)-shallow in P .

(iv) Every point of P which is k-shallow in P lies in the complement K of K.

Proof. (i) For c2 sufficiently large, R is a shallow (1/r)-net with high probability (see
Section 1.2 for the definition and properties of shallow nets). Since r = 1/ε = n/k, the
claim follows from Property (ii) of shallow (1/r)-nets, for an appropriate constant c3.

(ii) This follows from Property (i) of shallow (1/r)-nets.

(iii) Let p ∈ P \ K, and let H be a closed halfspace containing p, disjoint from K, and
parallel to a closed halfspace H0, which supports one of the open facets of K (H0 might
coincide with H). By the definition of K, H0 contains at least |R| − t points of R. Since
at most d points lie on its bounding hyperplane, its complementary closed halfspace H0

contains at most t + d points of R, and thus, by Property (ii), it is O(k)-shallow in P ,
implying that p is O(k)-shallow in P , as claimed.

(iv) We argue that no point p ∈ P ∩K can be k-shallow in P . Indeed, let p be such a point
and let H be a closed halfspace, whose bounding hyperplane h contains p. By construction,
since h intersects K, it follows that |H ∩ R| > t. By Property (i), we have |H ∩ P | > k.
Since this holds for every halfspace H containing p, p is not k-shallow in P , a contradiction
which implies the claim. ✷

We next derive the following lemma, promised earlier, which is crucial for the efficiency
of the query mechanism, and whose proof is based on the properties established in Lemma
5.8.

We define the depth of a point p ∈ R
d as the minimum number of points of P contained

in a closed halfspace whose bounding hyperplane passes through p.

Lemma 5.9 Let P , its partition into P1, . . . , Pl, and the parameters k1, . . . , kl be as above.
Let H be a halfspace in R

d of weight wH . Then H misses the convex hulls of the sets
P2, . . . , Pl, if wH ≤ k1, and of the sets Pj, for j > U = ⌈log(wH/k1)⌉+ 1, otherwise.

Proof. First assume that wH ≤ k1. Since the points in P \P1 are at least (k1+1)-deep, H
cannot contain any of them, and it therefore misses the convex hulls of the sets P2, . . . , Pl,
as claimed. We may thus assume that wH > k1, and so U ≥ 2. Assume that H crosses the
convex hull of a set Pj , for j > U . Thus, necessarily, there exists a point q ∈ Pj which is
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wH -shallow. On the other hand, by Lemma 5.8 (iv), Pj consists of points which are at least
(kj−1 + 1)-deep in P ′

j−1, and clearly so they are in P . Thus the depth of q is at least

kj−1 + 1 > 2j−2k1 ≥ 2(⌈log(wH/k1)⌉+2)−2 · k1 ≥ wH .

That is, q is at least (wH + 1)-deep in P , in contradiction to its being wH -shallow. ✷

Suppose that we have a procedure for constructing K. Then the construction of the
sets Pi proceeds as follows. Starting with the initial set P , put P̃ = P \K. Lemma 5.8 (iii)
implies that all the points of P̃ are O(k)-shallow in P and thus also in P̃ . We now iterate this
process, as follows. At step i we apply this construction to the subset P ′

i−1 of the remaining

points of P (with P ′
0 = P ), and take the resulting set P̃ as the next set Pi in the sequence,

setting P ′
i = P ′

i−1 \ Pi; that is, P ′
i is the portion of P ′

i−1 inside the corresponding convex
region K. We stop the process when P ′

i = ∅ or when |P ′
i |/ki drops below a sufficiently

large constant, according to the Partition Theorem (Theorem 4.3), which happens after
O(log(n/k1)) steps. If P

′
i 6= ∅ upon termination, we put Pi+1 = P ′

i .

We finally describe the construction of K, thus concluding the description of the new
aspects of our data structure construction. We pass to the dual space, where each point
p ∈ P is mapped to a hyperplane p∗, using the standard duality which also preserves the
above/below relationships (see, e.g., [Ed87]). Consider the arrangement A = A(R∗) of the
hyperplanes dual to the points of the sample R. A t-shallow hyperplane q in the primal
space is mapped to a point q∗ which lies at level ≤ t in A; more precisely, its level is either
among the t lowest levels of A or among its t highest levels. We denote the former (resp.,
latter) collection of levels as A−

≤t(R
∗) (resp., A+

≤t(R
∗)), but we use just A−

≤t (resp., A+
≤t)

to simplify the notation. As is well known [Mat91b] (and easy to verify), K is mapped in
the dual space to the (open) region K∗ enclosed between the upper convex hull of A−

≤t,

and the lower convex hull of A+
≤t, in the sense that a point v is in K if and only if its dual

hyperplane v∗ is contained in K∗.

We note that, by Clarkson and Shor [CS89], the combinatorial complexity of A−
≤t and

A+
≤t is at most

u = O
(

|R|⌊d/2⌋t⌈d/2⌉
)

= O
(

|R|⌊d/2⌋ logO(1) n
)

= O
(

(r log r)⌊d/2⌋ logO(1) n
)

= O
(

(n/k)⌊d/2⌋ logO(1) n
)

.

Using (15) we have

(n/k)⌊d/2⌋ = O

(

n
(d−1)⌊d/2⌋
d(d−1)−1

)

,

and the exponent in the right-hand side is smaller than 1/2 when d is odd, and only slightly
larger than 1/2 when d is even, for d ≥ 3. More precisely, u satisfies

u =















O

(

n
1
2

(

1+ 1
d(d−1)−1

)

logO(1) n

)

, for d even,

O

(

n
1
2

(

1− d−2
d(d−1)−1

)

logO(1) n

)

, for d odd,
(16)

for any d ≥ 3.

Agarwal et al. present in [AdBMS98] a randomized algorithm for computing the (≤ t)-
level of an arrangement of n hyperplanes in R

d within expected time Θ(u).
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Let V − (resp., V +) denote the set of vertices of A−
≤t (resp., A+

≤t). We preprocess each
of V −, V + for halfspace emptiness queries, using the algorithm of [Mat92b]. Then, for each
p ∈ P , we test whether p ∈ K by testing whether the upper halfspace bounded by p∗ does
not contain any point of V −, and the complementary lower halfspace does not contain any
point of V +. All the points that fail the test are placed in P̃ , and those that pass it are
passed to the next iteration. In this way, we report the points in P̃ in expected time

O
(

n · u1−1/⌊d/2⌋ logO(1) u
)

.

Recalling the bound (16) for u, for d even we report those points in

O

(

n
1+

(d−2)(d−1)
2(d(d−1)−1) logO(1) n

)

expected time, and for d odd in

O

(

n
1+

(d−3)(d−1)
2(d(d−1)−1) logO(1) n

)

expected time. Having a logarithmic number of steps, we construct all the sets Pi within
the same asymptotic expected bound. We note that the overall time consumed by the
construction of the other data structure components in each step is smaller than the bound
above. We omit the description of these other steps of the construction, as they are identical
to those given in [Mat92a, Mat92b]. This completes the proof of Theorem 5.7. ✷
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