
Exat and Approximation Algorithms for Minimum-WidthCylindrial Shells�Pankaj K. Agarwaly Boris Aronovz Miha SharirxAbstratLet S be a set of n points in R3 . Let !� = !�(S) be the width (i.e., thikness) ofa minimum-width in�nite ylindrial shell (the region between two o-axial ylinders)ontaining S. We �rst present an O(n5)-time algorithm for omputing !�, whih asfar as we know is the �rst nontrivial algorithm for this problem. We then present anO(n2+Æ)-time algorithm, for any Æ > 0, that omputes a ylindrial shell of width atmost 26(1 + 1=n4=9)!� ontaining S.

�Work by P.A. was supported by Army Researh OÆe MURI grant DAAH04-96-1-0013, by a Sloanfellowship, by NSF grants EIA{9870724, and CCR{9732787, by an NYI award, and by a grant from theU.S.-Israeli Binational Siene Foundation. Work by B.A. was supported by a Sloan Researh Fellowshipand by a grant from the U.S.-Israeli Binational Siene Foundation. Work by M.S. was supported by NSFGrants CCR-97-32101, CCR-94-24398, by grants from the U.S.-Israeli Binational Siene Foundation, theG.I.F., the German-Israeli Foundation for Sienti� Researh and Development, and the ESPRIT IV LTRprojet No. 21957 (CGAL), and by the Hermann Minkowski{MINERVA Center for Geometry at Tel AvivUniversity. Part of the work by P.A. and B.A. on the paper was done when they visited Tel Aviv Universityin May 1999.yCenter for Geometri Computing, Department of Computer Siene, Box 90129, Duke University,Durham, NC 27708-0129, USA. E-mail: pankaj�s.duke.eduzDepartment of Computer and Information Siene, Polytehni University, Brooklyn, NY 11201-3840,USA. E-mail: aronov�ziggy.poly.eduxShool of Mathematial Sienes, Tel Aviv University, Tel Aviv 69978, Israel; and Courant Institute ofMathematial Sienes, New York University, New York, NY 10012, USA. E-mail: sharir�math.tau.a.il



Introdution 11 IntrodutionGiven a line ` in R3 and two real numbers 0 � r � R, the ylindrial shell �(`; r; R) is thelosed region lying between the two o-axial ylinders of radii r and R with ` as their axis,i.e., �(`; r; R) = fp 2 R3 j r � d(p; `) � Rg;where d(p; `) is the Eulidean distane between point p and line `. The width of �(`; r; R)is R � r. Let S be a set of n points in R3 . How well S �ts a ylindrial surfae anbe measured by omputing a ylindrial surfae C = C(S) so that the maximum distanebetween any point of S and C is minimized. If ` and � are the axis and the radius of C and Æis the maximum distane between C and S, then S � �(`; �� Æ; �+ Æ). Hene, the problemof approximating S by a ylindrial surfae is equivalent to omputing a ylindrial shell,��(S), of the minimum width that ontains S.The main motivation for omputing a minimum-width ylindrial shell omes from om-putational metrology. In order to measure the quality of a manufatured ylinder �, wesample a set S of points on the surfae of � using oordinate measuring mahines and then�t a ylindrial surfae through S so that the maximum distane between the points of Sand the ylinder is minimized. For example, this is one of the riteria suggested in thereent ASME Y14.5M standard to determine how losely � resembles a ylinder [15, 16℄.In the last few years muh work has been done on measuring the irularity of a planarpoint set, whih is de�ned as the width of the thinnest annulus that ontains the pointset [2, 5, 10, 11, 12℄. The best known algorithm runs inO(n3=2+Æ), for any Æ > 0 [5℄, and near-linear approximation algorithms are proposed in [2, 10℄. In three dimensions, the minimum-width spherial shell (a region enlosed between two onentri spheres) ontaining an n-element point set S an be omputed in time O(n3� 119+Æ), for any Æ > 0 [2℄. The same paperalso presents near-linear algorithms that ompute an approximation to the minimum-widthenlosing spherial shell in any dimension. There has also been some work on omputing thesmallest ylinder enlosing a point set in R3 [1, 14℄. Agarwal et al. [1℄ developed an O(n3+Æ)-time algorithm, for any Æ > 0, for omputing the smallest enlosing ylinder. They alsoproposed a (1 + ")-approximation algorithm (i.e., an algorithm that produes an enlosingylinder whose radius is at most (1 + ") times the minimum radius) that runs in O(n="2)time.Finding the minimum-width ylindrial shell that ontains a given set of points is harderthan omputing a minimum-width enlosing spherial shell, omputing a smallest enlosingylinder, or omputing a thinnest annulus ontaining a planar point set. Atually, theseond and third problems are speial ases of omputing a thinnest ylindrial shell |�nding a smallest enlosing ylinder is the same as �nding a minimum-width ylindrialshell whose inner radius is 0; and �nding a thinnest ylindrial shell with axis parallel toa given diretion n is the same as �nding a thinnest annulus ontaining the projetion ofS in diretion n onto a plane orthogonal to n. Sine a ylindrial shell is spei�ed by sixparameters | four parameters de�ne the axis of the shell, and the remaining two de�nethe inner and outer radii of the shell, ��(S) is \de�ned" by a subset A � S of six points, in1



Computing ��(S) 2the sense that ��(S) is one of the O(1) ylindrial shells that ontain A on their inner andouter boundaries. This suggests the following naive proedure for omputing ��(S): Foreah subset A � S of size six, ompute the O(1) ylindrial shells ontaining A on their innerand outer boundary. For eah suh shell �, hek in O(n) time whether S � �. Return thethinnest among them that ontains S. This naive approah leads to an O(n7) algorithm foromputing ��(S). As the �rst result of this paper, we desribe, in Setion 2, an improvedO(n5)-time algorithm for omputing ��(S). We are not aware of any faster algorithm forthe exat problem. Reently, Devillers and Preparata [9℄, proposed a linear-time onstant-fator approximation algorithm for the minimum-width ylindrial shell problem under theassumption that the points are \almost" ylindrial [9℄.Sine omputing ��(S) is so expensive, we develop an eÆient approximation algorithmfor omputing a ylindrial shell that ontains S and has width at most !�, where !� =!�(S) is the width of ��(S) and  is a onstant. We �rst prove in Setion 3 a Helly-typetheorem for ��(S), whih we believe to be of independent interest, and whih, roughlyspeaking, says the following: Let A � S be a subset of four points so that the volume ofthe tetrahedron spanned by A is lose to the largest volume of a simplex spanned by anyfour points of S. Then !�(S) �  �maxp2S !�(A [ fpg), for a onstant  > 1. The onstantthat our analysis yields is about 26, but we believe that the theorem also holds with amuh smaller onstant. Using this observation, we develop in Setion 4 an O(n2+Æ)-timealgorithm, for any Æ > 0, to ompute a ylindrial shell of width at most about 26!� thatontains S. We believe that our approah an be strengthened to ompute in near-lineartime a ylindrial shell of width O(!�) that ontains S, but at present there are sometehnial diÆulties that we have not overome yet (see Remark 4.4 for more details). Wealso believe that our tehnique an be enhaned to yield a near-quadrati algorithm thatapproximates the minimum width of an enlosing ylindrial shell by a fator of at most1 + ", for any " > 0.2 Computing ��(S)In this setion we desribe an O(n5)-time algorithm for omputing ��(S). Without lossof generality assume that the axis of ��(S) is not parallel to the xy-plane; the ase of ahorizontal axis an be handled by a simpler algorithm, whose details are omitted. A ylinderC with a nonhorizontal axis a an be parameterized by a �ve-tuple (a1; a2; a3; a4; r), wherer is the radius of C and where the axis of C is the line a = fp+ tq j t 2 Rg, p = (a1; a2; 0) isthe intersetion point of a with the xy-plane, and q = (a3; a4; 1) is the diretion vetor of a.Let x be a point in R3 . Changing the oordinate system so that p maps to the origin, weobserve that the projetion of x on the axis a is ((x� p) � q=kqk)q=kqk = ((x� p) � q=kqk2)q.Hene, distane between x and the line a isd(x; a) = (p� x)� (p� x) � qkqk2 q :2



Computing ��(S) 3Sine x lies in the ylinder C if and only if d(x; a) � r, after some algebrai manipulation,we obtain that x = (x1; x2; x3) lies inside C if and only iff(x1; x2; x3; a1; a2; a3; a4) � (a23 + a24 + 1)r2;where f(x1; x2; x3; a1; a2; a3; a4) =[(a24 + 1)a21 + (a23 + 1)a22 � 2a1a2a3a4℄ + 2[a2a3a4 � a1(a24 + 1)℄x1 +2[a1a3a4 � a2(a23 + 1)℄x2 + 2[a1a3 + a2a4℄x3 � 2[a3a4℄x1x2 �2[a3℄x1x3 � 2[a4℄x2x3 + [1℄(x21 + x22) + [a23℄(x22 + x23) + [a24℄(x21 + x23) : (1)Hene, a point x lies in a ylindrial shell � = (a1; a2; a3; a4; r; R) with axis a =(a1; a2; a3; a4), parametrized as above, inner radius r, and outer radius R if and only ifr2(a23 + a24 + 1) � f(x1; x2; x3; a1; a2; a3; a4) � R2(a23 + a24 + 1): (2)Let us set '1(�) = a2a3a4 � a1(a24 + 1);'2(�) = a1a3a4 � a2(a23 + 1);'3(�) = a1a3 + a2a4;'4(�) = a3a4; '5(�) = a3;'6(�) = a4; '7(�) = a23; '8(�) = a24;'9(�) = r2(a23 + a24 + 1)� (a24 + 1)a21 � (a23 + 1)a22 + 2a1a2a3a4;'10(�) = R2(a23 + a24 + 1)� (a24 + 1)a21 � (a23 + 1)a22 + 2a1a2a3a4; 0(x) = (x21 + x22);  1(x) = 2x1; 2(x) = 2x2;  3(x) = 2x3; 4(x) = �2x1x2;  5(x) = �2x1x3; 6(x) = �2x2x3;  7(x) = x22 + x23; 8(x) = x21 + x23:Then the onstraint (2) an be rewritten as a linear onstraintHx(�) : '9(�) �  0(x) + 8Xi=1 'i(�) i(x) � '10(�):For any point p 2 R3 , de�ne the wedge Hp � R10 , formed by the intersetion of twohalfspaes, as Hp = ((y1; : : : ; y10) j y9 �  0(p) + 8Xi=1 yi i(p) � y10) :3



A Helly-Like Property of Cylindrial Shells 4Set '(�) = h'1(�); : : : ; '10(�)i 2 R10 . Let P = Tp2SHp be the onvex polyhedron de�nedby the intersetion of the 2n orresponding halfspaes. P has O(n5) faes and an beomputed in O(n5) time [8℄. A ylindrial shell (with nonhorizontal axis) � ontains S ifand only '(�) 2 P .Let 	 � R4 � (R+)2 denote the 6-dimensional set of all ylindrial shells (with nonhor-izontal axis) that ontain S. Then '(	) is the intersetion of P with the 6-dimensionalsurfae � = f'(�) j � 2 R4 � (R+)2g. After having omputed P , 	 an be omputed inO(n5) time, e.g., by triangulating P into O(n5) simplies and then, for every simplex � inthe triangulation, omputing � \ �. Finally, for eah simplex � , we ompute in O(1) timethe minimum-width ylindrial shell � suh that '(�) 2 � \ '(	). Hene, we an onludethe following.Theorem 2.1 Given a set S of n points in R3 , a minimum-width ylindrial shell ontain-ing S an be omputed in O(n5) time.3 A Helly-Like Property of Cylindrial ShellsLet S be a set of n points in R3 , and let t > 1 be a onstant. For any �nite point setX � R3 of at least four points, let �(X) denote the volume of the largest volume simplexspanned by four points of X. Let � be a tetrahedron spanned by points of S so that itsvolume is �(S)=t. Let A = fa1; : : : ; a4g � S denote the set of verties of �. The simplex �has the following useful property.Lemma 3.1 Let f be any k-at, for k = 0; 1; 2. Then for any p 2 S we haved(p; f) � (4t� 1) � max1�i�4 d(ai; f): (1)
ab K

Figure 1: A two dimensional version of the region K, for t slightly larger than 1Proof: Let K � R3 be the lous of all points q so that eah of the simplies a1a2a3q,a1a2a4q, a1a3a4q, and a2a3a4q has volume at most t �Vol(�); see Figure 1. By assumption,4



A Helly-Like Property of Cylindrial Shells 5we have S � K. Let hi be the plane ontaining A n faig, and let �i be the slab boundedby two planes parallel to hi and at distane t � d(ai; hi) from it. K = T4i=1 �i; see Figure 1.Using baryentri oordinates, we an represent any point q 2 K as q =P4i=1 �iai, whereP4i=1 �i = 1 and j�ij � t, for i = 1; : : : ; 4. Let bi, for i = 1; : : : ; 4, be the point in f nearestto ai, and put q� :=P4i=1 �ibi 2 f . We then haved(q; f) � d(q; q�)= d 4Xi=1 �iai; 4Xi=1 �ibi!=  4Xi=1 �i(ai � bi)� 4Xi=1 j�ijd(ai; f)� (4t� 1) � max1�i�4 d(ai; f);for eah q 2 K, where the last inequality follows by observing that maxP4i=1 j�ij, subjetto P4i=1 �i = 1 and j�ij � t for i = 1; : : : ; 4, is 4t � 1. This implies the assertion of thelemma. 2Fix a diretion n 2 S2, and let � = �(n) be the plane normal to n and passing throughthe origin. For a point x 2 R3 , let x� denote its orthogonal projetion onto �. Set S� =fp� j p 2 Sg. Similarly, de�ne A� to be the projetion of A onto �.Corollary 3.2 (i) Let o and � be the enter and radius of the smallest disk enlosingA�. Then S� is ontained in the disk of radius (4t� 1)� entered at o.(ii) For any line ` lying in �,maxp2S d(p�; `) � (4t� 1)maxa2A d(a�; `):Proof: Part (i) follows by applying Lemma 3.1 to the line in diretion n and passingthrough o. The seond part is proved by applying Lemma 3.1 to the plane orthogonal to �and passing through `. 2The next theorem is the main result of this setion.Theorem 3.3 Suppose there exists ! > 0 suh that for eah p 2 S� there exists an annulusof width ! that enloses A� [ fpg. Then there exists an annulus of width at most 26t! thatenloses S�.We need the following geometri lemma to prove the above theorem. Let D(x; Æ) denotethe disk of diameter Æ entered at a point x. 5



A Helly-Like Property of Cylindrial Shells 6Lemma 3.4 Let ab be a triangle in the plane, and let � � 1 and 0 < ! <Width(4ab)=3:25be two parameters. De�ne � = �(�) to be the lous of all points x suh that the area ofeah of the triangles 4abx, 4ax, 4bx is at most � times the area of 4ab. Let C and C 0be two irles, eah of whih meets all three disks D(a; !), D(b; !), D(; !). Then for anyz 2 C \� we have d(z; C 0) � (6:5� + 3:6)!(see Figure 2(i)).Remark 3.5 Informally, the lemma asserts that if two irles are lose to eah othernear three points a; b;  then they remain lose to eah other within �. Without suh aon�nement, the assertion may fail, as is easily heked.Proof: We parametrize points on C using inversion, as follows. Pik points u 2 C\D(a; !),v 2 C \D(b; !), w 2 C \D(; !). Without loss of generality, we may assume that the orderof u; v; w and z along C in the lokwise diretion is u; v; z; w. Write v = u+ p, w = u+ q,and z = u+ �. Apply an inversion to the plane that takes u to in�nity. For example, usingomplex numbers, we may use the transformation � 7! 1=(��u). This transformation mapsC to a straight line ontaining the images 1=p, 1=q, and 1=� of v; w, and z, respetively, sothat 1=� lies between 1=p and 1=q. Hene there is a real parameter � 2 [0; 1℄, suh that1� = �p + 1� �q ; (2)or � = pq�q + (1� �)p:The following geometri interpretation will be useful in the subsequent analysis. Put s =�q+(1��)p and x = u+ s. The point x lies on the edge vw of the triangle uvw and splitsit in the ratio � : (1 � �); that is jx � vj = �jw � vj and jx � wj = (1 � �)jw � vj. Sinepq = �s (or p=s = �=q), the triangles 4vux and 4zuw are similar. Analogously, we anprove that the triangles 4wux and 4zuv are similar. See Figure 2(ii).This implies that�jw � vjjsj = jw � zjjqj and (1� �)jw � vjjsj = jv � zjjpj : (3)Sine u; v; z; w are oirular, ℄vuw = � � ℄vzw, therefore sin(℄vuw) = sin(℄vzw). Mul-tiplying the two equalities in (3), we obtain�(1� �)jw � vj2 = jsj2 � jv � zjjw � zjjpjjqj= jsj2 � jv � zj � jw � zj sin(℄vzw)jpj � jqj sin(℄vuw)= jsj2 � Area (4vwz)Area (4uvw) ;6



A Helly-Like Property of Cylindrial Shells 7

(i) (ii)

C 0
a b

C �
uv w

zp qsx
Figure 2: (i) Setup of the lemma; (ii) geometri interpretation of the inversionWe will prove below in Corollary 3.7 thatArea (4vwz) � 28981 � �Area (4uvw): (4)Intuitively, this is true beause the area of the triangle uvw (resp. vwz) is a good approxi-mation of the area of ab (resp. bz); a rigorous proof is given in Lemma 3.6 below.We thus have �(1� �)jw � vj2 � 28981 � jsj2: (5)Let � = ℄uvw. Using the law of osines, we havejsj2 = jpj2 + �2jw � vj2 � 2�jpjjw � vj os �and jqj2 = jpj2 + jw � vj2 � 2jpjjw � vj os �:Subtrating � times the seond equality from the �rst, we obtainjsj2 � �jqj2 = jpj2 + �2jw � vj2 � �jpj2 � �jw � vj2;or jsj2 = �jqj2 + (1� �)jpj2 � �(1� �)jw � vj2: (6)Combining (5) and (6), we obtain�jqj2 + (1� �)jpj2 � �28981 � + 1� jsj2: (7)7



A Helly-Like Property of Cylindrial Shells 8Apply a symmetri transformation to parametrize C 0: Pik points u0 2 C 0 \ D(a; !), v0 2C 0 \ D(b; !), w0 2 C 0 \ D(; !). Write v0 = u0 + p0, w0 = u0 + q0, and putz0 = u0 + p0q0�q0 + (1� �)p0 2 C 0:Set Æ = pq�q + (1� �)p � p0q0�q0 + (1� �)p0 :Put � = p0 � p and � = q0 � q. Observe that j�j, j�j � !. We havejÆj = ���� pq�q + (1� �)p � (p+ �)(q + �)�(q + �) + (1� �)(p+ �) ����� j�q + (1� �)pj � j�j � j�j + �jqj2j�j+ (1� �)jpj2j�jj�q + (1� �)pj � j�(q + �) + (1� �)(p+ �)j :Hene the denominator in the expression for Æ is at least jsj(jsj �!). Moreover, jsj is largerthan the height to vw in the triangle uvw. As we will show below in Lemma 3.6, thisheight is at least Width (4ab) � ! � 2:25! (again, this holds beause 4uvw is a goodapproximation of 4ab). ThereforejÆj � jsj!2 + !(�jqj2 + (1� �)jpj2)jsj(jsj � !) :Using (7) and the fat that jsj � 2:25!, we obtainjÆj � � 1(jsj=!)� 1 + (289=81)� + 11� (!=jsj) �!� �45 + 9 ((289=81)� + 1)5 �!� �28945 � + 2:6�!:Therefore, d(z; C 0) � d(z; z0) � d(u; u0) + jÆj� �28945 � + 3:6�!� (6:5� + 3:6)!:This ompletes the proof of the lemma. 2We still need to establish the following lemma.8



A Helly-Like Property of Cylindrial Shells 9
!au

v b> 3:25! z
wFigure 3: Illustration to Lemma 3.6.Lemma 3.6 (a) Area (4uvw) � 81169Area (4ab).(b) Area (4vwz) � 289�169 Area (4ab).() jWidth (4uvw)�Width (4ab)j � !.Proof: For a segment e, let `e be the line supporting e. To prove (a), without loss ofgenerality, let uv be the longest edge in 4uvw. Then the orthogonal projetion w� of w onthe line `uv lies on the segment uv itself, so that w� = �u+ (1� �)v for some �, 0 � � � 1.Let w0 = �a+ (1� �)b. Thend(w; `ab) � jww0j � jww�j+ jw�w0j= jww�j+ j�(a� u) + (1� �)(b� v)j:Sine juaj; jvbj � !=2, d(w; `ab) � d(w; uv) + !=2: (8)Let h be the distane between  and the line supporting ab. Thenh = d(; `ab) � d(w; `ab) + jwj � d(w; uv) + !:Therefore Area (4uvw) = 12 juvj � d(w; uv)� 12(jabj � !)(h� !)= h � jabj2 �1� !h��1� !jabj�� 81169Area (4ab):The last inequality follows from the fat thath; jabj �Width (4ab) � 3:25!:9



A Helly-Like Property of Cylindrial Shells 10Next, we prove (b). Obviously, Area (4vwz) is maximum when z lies on a vertex of theregion K. Sine Width (4ab) � 3:25! and v; w lie inside the disks of radius !=2 entertedat b and , respetively (i.e., the slope of vw is roughly the same as that of b), Area(4vwz) ismaximum when z lies at a vertex of K that is inident upon the edge parallel to b and lyingon the opposite side of a; see Figure 4. In this ase d(z; `b) = � d(a; `b). If the projetion ofz on `vw lies on the segment vw itself, then, as in (8), d(z; `vw) � d(z; `b)+!=2. Therefore,Area (4vwz) = 12 jvwjd(z; `vw)� 12(jbj+ !)(d(z; `b) + !=2)� Area (4bz)�1 + !jbj��1 + !d(z; `b)� :Sine jbj � 3:25! and d(z; `b) = � d(a; `b) � 3:25!,Area (4uvw) � 289169Area (4bz) = 289169�Area (4ab):If the projetion of z on `vw does not lie on the segment vw, then either \vwz or \wvz isobtuse. Assume that ℄vwz > �=2, so z is the vertex inident upon the edges parallel to band a. Sine v; u; w; and z lie on the irle C in that order in ounterlokwise diretion,all of them lie on a semiirle of C. Therefore, \vuw > �=2, whih implies that vw is thelongest edge of 4uvw. Thereforejaj � juwj + ! � jvwj+ ! � jbj+ 2!:Similarly, we an show that jabj � jbj + 2!. In other words, the length of eah edge (andthus also its height to b) in 4ab is at most b+ 2!.Let 0 be the intersetion point of the ray �!a with the line parallel to a and ontainingz (see Figure 4). By onstrution, j0j = � jaj, jz0j = jabj, and z and ab are parallel,therefore jbzj = j0j = � jaj � �(jbj + 2!):Sine Area (4bz) = �Area (4ab), we obtain� � jbjd(a; `b) = jbzj � d(; `bz)or d(; `bz) = � jbjd(a; `b)jbzj :On the other hand,Area (4vwz) = 12 jvzjd(w; vz)� 12 �jbzj+ !2 � d(w; vz)� Area (4bz)d(w; vz)d(; `bz) �1 + !2jbzj� :10



A Helly-Like Property of Cylindrial Shells 11
mn� mnz

mnmnu mnwmnvmnamnb mn0
Figure 4: Illustration to Lemma 3.6(b).Using the fat that jbzj � d(z; `b) � 3:25! and d(w; vz) � d(; `bz) + !, and substitutingthe value of d(; `bz), we obtaind(w; vz)d(; `bz) �1 + !2jbzj� � �1 + !d(; `bz)��1 + !2jbzj�� �1 + !jbzj� jbjd(a; `b)��1 + !2jbzj�� 1 + !2jbzj + !d(a; `b) jbj+ 2!jbj + !2jbj !d(a; `b)� 1 + !2 � 3:25! + 413 �1 + 2!jbj�+ 8169� 203169 + 413 �1 + 813� = 287169 :Hene, Area (4vwz) � 287169Area (4bz) < 289�169 Area (4ab):Finally, to prove (), suppose that the width of 4uvw is the height to edge uv (whih isthen the longest edge). Arguing as above, we haveWidth (4ab) � d(; ab) � d(w; uv) + != Width (4uvw) + !:The reverse inequality is proved in exatly the same manner. 2The �rst two parts of the above lemma imply the following.Corollary 3.7 Area (4vwz) < 28981 � � Area (4uvw).11



Approximating the Minimum-Width Cylindrial Shell 12Proof of Theorem 3.3. If Width (A�) � 6:5!, then Lemma 3.1 implies that the width ofS� is at most 6:5(4t � 1)!. Sine a slab an be regarded as a degenerate annulus, S� anbe enlosed by an annulus of width at most 26t!. So assume that Width (A�) � 6:5!.Suppose, without loss of generality, that 4a�1a�2a�3 is the largest-area triangle spannedby three points of A�. We haveWidth (4a�1a�2a�3) �Width (A�)=2 � 3:25!:Fix a point q 2 S�. By Corollary 3.2(ii), the area of eah of the triangles 4a�1a�2q,4a�1a�3q, 4a�2a�3q is at most (4t� 1) �Area (4a�1a�2a�3). Let A be an annulus of width ! thatontains A� [ fqg, and let C be the mid-irle of A. Let A� be the annulus of width 26t!that has C as its mid-irle. We laim that A� ontains S�. Indeed, let q0 be any point ofS�, and let A0 be an annulus of width ! that ontains A� [ fq0g. Let C 0 be the mid-irleof A0. Clearly, C, C 0, and 4a�1a�2a�3 satisfy the onditions in Lemma 3.4 (with � = 4t� 1),whih implies d(q; C) � (6:5(4t � 1) + 3:6)! � 26t!;implying that q 2 A�, as laimed. 24 Approximating the Minimum-Width Cylindrial ShellIn this setion we apply the results of the preeding setion to obtain an algorithm foromputing a ylindrial shell of width at most O(!�(S)) that enloses an n-element pointset S � R3 . We �rst desribe an algorithm for omputing a subset A � S of four points sothat �(A) � (1� ")�(S), for some onstant " > 0; reall that �(X) is the maximum volumeof a simplex spanned by the points of X.Lemma 4.1 Given a set of n points in R3 and a parameter " > 0, we an ompute inO(n log(1=") + (1=")4:5 log(1=")) time a subset A of four points so that �(A) � (1� ")�(S).Proof (Sketh): We �rst ompute a box B enlosing S whose volume is at most 1 + "times the minimum volume of any box ontaining S. This an be done in O(n+1="4:5) timeusing the algorithm by Barequet and Har-Peled [7℄. Suppose, with no loss of generality,that B is axis-aligned and the oordinates of the endpoints of its main diagonal are (0; 0; 0)and (lx; ly; lz). Choose a suÆiently large onstant  > 1 and set Æ = "=. Draw a three-dimensional gridf[iÆlx; (i + 1)Ælx℄� [jÆly ; (j + 1)Æly ℄� [kÆlz ; (k + 1)Ælz ℄ j 0 � i; j; k � d1=Æegof size O(1=Æ3). Let Q be the set of grid verties adjaent to the grid ells that ontain atleast one point of S. Q an be omputed in O(n log(1=") + 1="3) time. We then ompute,in O((1=Æ2) log(1=Æ)) time, the set V � Q of verties of the onvex hull of Q. By a resultof Andrews [6℄, jV j = O(1=Æ3=2). Next, we ompute in O(jV j3 log jV j) time the largestvolume tetrahedron q1q2q3q4 spanned by V (we omit details of the rather straightforward12



Approximating the Minimum-Width Cylindrial Shell 13algorithm for doing so). Let ai 2 S be a nearest neighbor of qi, for i = 1; : : : ; 4. We returnA = fa1; a2; a3; a4g. Using a somewhat tedious analysis, similar to the one in [7℄, it an beshown that �(A) � (1� ")�(S). 2Set " = (1=n)4=9 and ompute in O(n2 log n) time a set A � S of four points suh that�(A) � (1� "=2)�(S), using the above lemma. Let S2 denote the unit sphere of diretionsin R3 . For eah q 2 S we de�ne a real-valued funtion Fq on S2, so that, for n 2 S2,Fq(n) is the width of a thinnest annulus within the plane �(n) that ontains the orthogonalprojetions of A [ fqg on the plane �(n). Clearly, Fq is a pieewise-algebrai funtion of\onstant desription omplexity" (in the terminology of [13℄). Let E denote the pointwisemaximum of fFqgq2S , let n 2 S2 be a diretion that minimizes E, and let ! = E(n).Lemma 4.2 ! � !�(S) � 26(1 + 1=n4=9)!.Proof: The fat that ! = minv2S2maxq2S Fq(v) implies that for eah v 2 S2 there existsq 2 S suh that any ylindrial shell that ontains A [ fqg and has axis-diretion v musthave width at least !. Hene the minimum width of a ylindrial shell that enloses S is atleast !.On the other hand, sine �(A) � (1 � "=2)�(S), whih orresponds to setting t =1=(1�"=2) � (1+1=n4=9) in Lemma 3.4, Theorem 3.3 implies that there exists a ylindrialshell with axis-diretion n and width at most 26(1 + 1=n4=9)! that ontains S. 2The algorithm is now straightforward. We ompute E in O(n2+Æ) time, for any Æ > 0,using, e.g., the algorithm of [4℄, and then examine eah vertex, edge, and fae of (the graphof) E to �nd the global minimum of E. Suppose the minimum is attained at some diretionn. We projet S orthogonally onto �(n), and ompute the minimum-width annulusA within�(n) that ontains the projeted set S�. This an be done in time O(n2) [11℄. (Alternatively,we an ompute the radius � and the mid irle C� of the minimumwidth annulus ontainingA(n) and set A to be the annulus of width 26(1+1=n4=9)� and with mid irle C�.) We then\lift" A in the diretion n to obtain a ylindrial shell, of the same width, that enloses S.By the preeding analysis, we obtain the following.Theorem 4.3 Given a set S of n points in R3 , one an ompute, in O(n2+Æ) time, for anyÆ > 0, a ylindrial shell that ontains S, whose width is at most 26(1 + 1=n4=9)!�(S).Remark 4.4 We believe that our approah an be strengthened to give a near-linear-timealgorithm. Intuitively, we need to show that one does not have to searh over all diretionsn 2 S2. Instead, we onjeture that it suÆes to searh over the 1-dimensional lous ofaxis diretions of ylinders that pass through four points of S that span the largest-, ornearly largest-volume simplex spanned by S. However, at present we have some tehnialdiÆulties in proving this laim.
13
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