Exact and Approximation Algorithms for Minimum-Width
Cylindrical Shells*

Pankaj K. Agarwalf Boris Aronov? Micha Sharir?

Abstract

Let S be a set of n points in R®. Let w* = w*(S) be the width (i.e., thickness) of
a minimum-width infinite cylindrical shell (the region between two co-axial cylinders)
containing S. We first present an O(n®)-time algorithm for computing w*, which as
far as we know is the first nontrivial algorithm for this problem. We then present an
O(n?*9)-time algorithm, for any & > 0, that computes a cylindrical shell of width at
most 26(1 + 1/n*/?)w* containing S.
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1 Introduction

Given a line £ in R? and two real numbers 0 < r < R, the cylindrical shell £(¢,r, R) is the
closed region lying between the two co-axial cylinders of radii 7 and R with £ as their axis,
ie.,

Y, rR)={p¢€ R3 | r <d(p,f) < R},

where d(p, ¢) is the Euclidean distance between point p and line ¢. The width of (4,7, R)
is R—r. Let S be a set of n points in R*. How well S fits a cylindrical surface can
be measured by computing a cylindrical surface C = C(S) so that the maximum distance
between any point of S and C is minimized. If £ and p are the axis and the radius of C and §
is the maximum distance between C and S, then S C X(4, p — d, p+ J). Hence, the problem
of approximating S by a cylindrical surface is equivalent to computing a cylindrical shell,
¥*(S), of the minimum width that contains S.

The main motivation for computing a minimum-width cylindrical shell comes from com-
putational metrology. In order to measure the quality of a manufactured cylinder T", we
sample a set S of points on the surface of I' using coordinate measuring machines and then
fit a cylindrical surface through S so that the maximum distance between the points of S
and the cylinder is minimized. For example, this is one of the criteria suggested in the
recent ASME Y14.5M standard to determine how closely I' resembles a cylinder [15, 16].

In the last few years much work has been done on measuring the circularity of a planar
point set, which is defined as the width of the thinnest annulus that contains the point
set [2,5, 10, 11, 12]. The best known algorithm runs in O(n3/219) for any § > 0 [5], and near-
linear approximation algorithms are proposed in [2, 10]. In three dimensions, the minimum-
width spherical shell (a region enclosed between two concentric spheres) containing an n-
element point set S can be computed in time O(n3*T19+5), for any d > 0 [2]. The same paper
also presents near-linear algorithms that compute an approximation to the minimum-width
enclosing spherical shell in any dimension. There has also been some work on computing the
smallest cylinder enclosing a point set in R3 [1, 14]. Agarwal et al. [1] developed an O(n319)-
time algorithm, for any § > 0, for computing the smallest enclosing cylinder. They also
proposed a (1 + ¢)-approximation algorithm (i.e., an algorithm that produces an enclosing
cylinder whose radius is at most (1 + ) times the minimum radius) that runs in O(n/e?)
time.

Finding the minimum-width cylindrical shell that contains a given set of points is harder
than computing a minimum-width enclosing spherical shell, computing a smallest enclosing
cylinder, or computing a thinnest annulus containing a planar point set. Actually, the
second and third problems are special cases of computing a thinnest cylindrical shell —
finding a smallest enclosing cylinder is the same as finding a minimum-width cylindrical
shell whose inner radius is 0; and finding a thinnest cylindrical shell with axis parallel to
a given direction n is the same as finding a thinnest annulus containing the projection of
S in direction n onto a plane orthogonal to n. Since a cylindrical shell is specified by six
parameters — four parameters define the axis of the shell, and the remaining two define
the inner and outer radii of the shell, ¥*(S) is “defined” by a subset A C S of six points, in
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the sense that ¥*(S) is one of the O(1) cylindrical shells that contain A on their inner and
outer boundaries. This suggests the following naive procedure for computing 3*(S): For
each subset A C S of size six, compute the O(1) cylindrical shells containing A on their inner
and outer boundary. For each such shell 3, check in O(n) time whether S C ¥. Return the
thinnest among them that contains S. This naive approach leads to an O(n") algorithm for
computing ¥*(S). As the first result of this paper, we describe, in Section 2, an improved
O(n®)-time algorithm for computing ¥*(S). We are not aware of any faster algorithm for
the exact problem. Recently, Devillers and Preparata [9], proposed a linear-time constant-
factor approximation algorithm for the minimum-width cylindrical shell problem under the
assumption that the points are “almost” cylindrical [9].

Since computing ¥*(S) is so expensive, we develop an efficient approximation algorithm
for computing a cylindrical shell that contains S and has width at most cw*, where w* =
w*(S) is the width of ¥*(S) and c is a constant. We first prove in Section 3 a Helly-type
theorem for ¥*(S), which we believe to be of independent interest, and which, roughly
speaking, says the following: Let A C S be a subset of four points so that the volume of
the tetrahedron spanned by A is close to the largest volume of a simplex spanned by any
four points of S. Then w*(S) < ¢ maxyesw*(A U {p}), for a constant ¢ > 1. The constant
that our analysis yields is about 26, but we believe that the theorem also holds with a
much smaller constant. Using this observation, we develop in Section 4 an O(n?*?)-time
algorithm, for any 0 > 0, to compute a cylindrical shell of width at most about 26w* that
contains S. We believe that our approach can be strengthened to compute in near-linear
time a cylindrical shell of width O(w*) that contains S, but at present there are some
technical difficulties that we have not overcome yet (see Remark 4.4 for more details). We
also believe that our technique can be enhanced to yield a near-quadratic algorithm that
approximates the minimum width of an enclosing cylindrical shell by a factor of at most
1+ ¢, for any € > 0.

2 Computing ¥*(5)

In this section we describe an O(n’)-time algorithm for computing ¥*(S). Without loss
of generality assume that the axis of ¥*(S) is not parallel to the zy-plane; the case of a
horizontal axis can be handled by a simpler algorithm, whose details are omitted. A cylinder
C with a nonhorizontal axis a can be parameterized by a five-tuple (a1, as, a3, a4, ), where
r is the radius of C' and where the axis of C' is the line a = {p+1tq | t € R}, p = (a1,a2,0) is
the intersection point of a with the zy-plane, and ¢ = (a3, a4, 1) is the direction vector of a.
Let = be a point in R3. Changing the coordinate system so that p maps to the origin, we
observe that the projection of z on the axis a is ((z — p) - ¢/llql)q/llqll = (= —p) - ¢/||ql|*)q.
Hence, distance between x and the line a is
o) = = - S|
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Since z lies in the cylinder C if and only if d(z,a) < r, after some algebraic manipulation,
we obtain that z = (x1, 9, z3) lies inside C' if and only if

f($17x27x37a17a27a370’4) S (a’g + a’?l + 1)7‘2,

where
f(xla x2,T3,0a1,0a2,0as, a‘4) =
[(ai + 1)a% + (a% + 1)a% — 2aqaza3a4] + 2[azazay — al(ai + )]z +
2[arazay — ag(ag + 1)]ze + 2[ara3 + agaq]|zs — 2[azaq]r1T20 —
2[ag)z1zs — 2las)zoxs + [1](z] + 75) + [a3] (25 + =3) + [af](2] + 23) . (1)
Hence, a point z lies in a cylindrical shell o = (a1, a9,a3,a4,7, R) with axis a =

(a1, as2,a3,a4), parametrized as above, inner radius r, and outer radius R if and only if

7"2(a§ + ai +1) < f(z1,22,3,01,a09,03,a4) < RQ(ag + ai +1). (2)
Let us set

o1(0) = asazas —ai(al +1),

p2(0) = ajazaq — ag(ag +1),

p3(0) = aiaz +asas,

pa(0) = asas, ¢s5(0) = as,

p6(0) = a1, r(0) =d3, ¢s(0) = af,

wo(a) = r%(a3 +aj+1) — (aF + 1)a} — (a3 + 1)a3 + 2a1aza30a4,

oi0(0) = R*(a3+a3+1)— (a? +1)a? — (a3 + 1)a3 + 2a1a2a3a4,

ho(x) = (27 +23), ti(e)=2m,

Po(zr) = 232, P3(z) =273,

Ya(z) = —2x120, Y5(T) = —27123,

Ye(z) = —2moxs, Yr(x) =3 + 23,

Yg(z) = 2+ a3

Then the constraint (2) can be rewritten as a linear constraint

8
Hy(0) : p9(0) < ¢ho(2) + Y wil0)ghi(z) < pi0(0).
i=1

For any point p € R?, define the wedge H, C R'9, formed by the intersection of two
halfspaces, as

8
Hy, = {(yla---aylo) | yo < %o(p) +Zyi¢z‘(l7) < ylo}-
i=1

3
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Set (o) = (p1(0),...,p10(0)) € RO, Let P = Npes Hp be the convex polyhedron defined
by the intersection of the 2n corresponding halfspaces. P has O(n®) faces and can be
computed in O(n®) time [8]. A cylindrical shell (with nonhorizontal axis) o contains S if
and only ¢(0) € P.

Let ¥ C R* x (R")? denote the 6-dimensional set of all cylindrical shells (with nonhor-
izontal axis) that contain S. Then ¢(¥) is the intersection of P with the 6-dimensional
surface @ = {p(0) | 0 € R* x (RT)2}. After having computed P, ¥ can be computed in
O(n®) time, e.g., by triangulating P into O(n°) simplices and then, for every simplex 7 in
the triangulation, computing 7 N ®. Finally, for each simplex 7, we compute in O(1) time
the minimum-width cylindrical shell o such that ¢(o) € 7N @(¥). Hence, we can conclude
the following.

Theorem 2.1 Given a set S of n points in R, a minimum-width cylindrical shell contain-
ing S can be computed in O(n®) time.

3 A Helly-Like Property of Cylindrical Shells

Let S be a set of n points in R3, and let ¢ > 1 be a constant. For any finite point set
X C R? of at least four points, let 4(X) denote the volume of the largest volume simplex
spanned by four points of X. Let A be a tetrahedron spanned by points of S so that its
volume is p(S)/t. Let A = {a1,...,a4} C S denote the set of vertices of A. The simplex A
has the following useful property.

Lemma 3.1 Let f be any k-flat, for k= 0,1,2. Then for any p € S we have
< (4t—1)- i\ f).
dlp, f) < (4t —1) - max d(a;, f) (1)

Figure 1: A two dimensional version of the region K, for ¢ slightly larger than 1

Proof: Let K C R? be the locus of all points ¢ so that each of the simplices a;asasq,
a1asa4q, ajasasq, and asazasq has volume at most ¢ - Vol(A); see Figure 1. By assumption,
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we have S C K. Let h; be the plane containing A \ {a;}, and let A; be the slab bounded
by two planes parallel to h; and at distance ¢ - d(a;, h;) from it. K = ﬂle A;; see Figure 1.
Using barycentric coordinates, we can represent any point ¢ € K as g = Z?Zl Aia;, where
2?21 Ai=1land || <t fori=1,...,4. Let b;, for i = 1,...,4, be the point in f nearest
to a;, and put ¢* := Z?Zl Aib; € f. We then have

d(g, f) < d(q,q")

4 4
= d (Z Nidi, Y Aibi)
=1 =1

4

N
i[~]
E
=

8
=

for each ¢ € K, where the last inequality follows by observing that max Zle |Ai], subject
to 23:1 Ai = 1land |N| <tfori=1,...,4,is 4 — 1. This implies the assertion of the
lemma. O

Fix a direction n € S2, and let 7 = (™ be the plane normal to n and passing through
the origin. For a point € R3, let 2* denote its orthogonal projection onto m. Set S$* =
{p* | p € S}. Similarly, define A* to be the projection of A onto .

Corollary 3.2 (i) Let o and p be the center and radius of the smallest disk enclosing
A*. Then S* is contained in the disk of radius (4t — 1)p centered at o.

(i) For any line £ lying in ,

d(p*,0) < (4t —1 d(a*,?).
max (™, €) < ( ) max d(a”, £)
Proof: Part (i) follows by applying Lemma 3.1 to the line in direction n and passing
through o. The second part is proved by applying Lemma 3.1 to the plane orthogonal to 7
and passing through /. O

The next theorem is the main result of this section.

Theorem 3.3 Suppose there exists w > 0 such that for each p € S* there exists an annulus
of width w that encloses A* U {p}. Then there exists an annulus of width at most 26tw that
encloses S*.

We need the following geometric lemma, to prove the above theorem. Let D(z,0) denote
the disk of diameter § centered at a point x.
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Lemma 3.4 Let abe be a triangle in the plane, and let 7 > 1 and 0 < w < Width(Aabe)/3.25
be two parameters. Define A = A(1) to be the locus of all points © such that the area of
each of the triangles Nabz, Nacz, Nbex is at most T times the area of Nabe. Let C and C'
be two circles, each of which meets all three disks D(a,w), D(b,w), D(c,w). Then for any
z € CNA we have

d(z,C") < (6.57 + 3.6)w

(see Figure 2(i)).

Remark 3.5 Informally, the lemma asserts that if two circles are close to each other
near three points a,b,c then they remain close to each other within A. Without such a
confinement, the assertion may fail, as is easily checked.

Proof: We parametrize points on C using inversion, as follows. Pick points u € CND(a,w),
v € CND(b,w), w € CND(c,w). Without loss of generality, we may assume that the order
of u,v,w and z along C' in the clockwise direction is u, v, z,w. Write v = u+p, w =u+gq,
and z = u+ (. Apply an inversion to the plane that takes u to infinity. For example, using
complex numbers, we may use the transformation £ — 1/(£ —w). This transformation maps
C to a straight line containing the images 1/p, 1/¢, and 1/¢ of v,w, and z, respectively, so
that 1/¢ lies between 1/p and 1/q. Hence there is a real parameter A € [0, 1], such that

1 A 1-=2X

ot (2)

or g
¢

S Ag+ (1= X)p’
The following geometric interpretation will be useful in the subsequent analysis. Put s =
A¢+ (1 —X)p and x = u+ s. The point z lies on the edge vw of the triangle uvw and splits
it in the ratio A : (1 — A); that is |z —v| = AMjw —v| and |z — w| = (1 — A)|]w — v|. Since
pq = (s (or p/s = (/q), the triangles Avux and Azuw are similar. Analogously, we can
prove that the triangles Awuz and Azuwv are similar. See Figure 2(ii).
This implies that

Alw — v _ |lw — 2| and (1 —=X)|w —v| _ lv — 2|

A q o 7l )

Since u, v, z,w are cocircular, Lvuw = ™ — Lvzw, therefore sin(Lvuw) = sin(Lvzw). Mul-
tiplying the two equalities in (3), we obtain
|v — z||w — 2|

pllg|
15[2 |v — 2| - |lw — z| sin(Lvzw)

A1 =N|w—0v]> = s

Ip| - lq| sin(£Lvuw)
15[2 Area (Avwz)
N Area (Auvw)’

6
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Figure 2: (i) Setup of the lemma,; (ii) geometric interpretation of the inversion

We will prove below in Corollary 3.7 that
289
Area (Avwz) < T Area (Auvw). (4)

Intuitively, this is true because the area of the triangle uvw (resp. vwz) is a good approxi-
mation of the area of abc (resp. bcz); a rigorous proof is given in Lemma 3.6 below.
We thus have

A1 =N |w— o> < ==7|s|% (5)
Let 6 = Luvw. Using the law of cosines, we have
|5 = Ipl* + X*|w — vf* = 2A|p||w — v| cos 0

and
lq1* = [pl® + |w — v|* — 2|p||w — v| cos b.

Subtracting A\ times the second equality from the first, we obtain
1s|? = Mgl = [p|* + X|w — o[> = A|p|* = Ajw — v|?,

or

|s1> = Al + (1 = M)p|* = A1 = A)|w — vf*. (6)
Combining (5) and (6), we obtain

289
N+ (1= 0 < (B2 1) P )
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Apply a symmetric transformation to parametrize C': Pick points v’ € C' N D(a,w), v' €
C'ND(,w), w € C"ND(c,w). Write v' =u' +p', w' =u' + ¢, and put

Set
pq b q

T (T=Np A+ (=N
Put £ =p' —p and n = ¢’ — ¢q. Observe that [£], || < w. We have

5 = Pq N (p+8(g+n)
A+ (1 =XNp  AMg+n)+ 1 =X{p+¢)

(
IAg+ (1= N)pl -] - Inl + Mal?l€] + (1 = N)p[?In]
A+ (L=Xp|-Ag+n)+ 1 =XN(p+E)]

Hence the denominator in the expression for § is at least |s|(|s| —w). Moreover, |s| is larger
than the height to vw in the triangle uvw. As we will show below in Lemma 3.6, this
height is at least Width (Aabc) — w > 2.25w (again, this holds because Auvw is a good
approximation of Aabc). Therefore

|slw? + wAlg” + (1 = N)Ipl*)
[s](ls| = w) '

6] <

Using (7) and the fact that |s| > 2.25w, we obtain
1 289/81 1
( )

(slfw) =1 " 1= (w/]s])
(g L 9((289/81)7 + 1)) y

9]

IN

5 5

289
— 2. .
( 5 T+ 6) w

IN

Therefore,

d(z,C")

IN

d(z,2') < d(u,u’) +19]
289
< (6.57 + 3.6)w.

IN

This completes the proof of the lemma. O

We still need to establish the following lemma.
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—~ecC
RS
w

Figure 3: Illustration to Lemma 3.6.
Lemma 3.6 (a) Area (Auvw) > SL-Area (Aabc).

(b) Area (Avwz) < 2T Area (Aabc).
(¢) |Width (Auvw) — Width (Aabe)| < w.

Proof: For a segment e, let £, be the line supporting e. To prove (a), without loss of
generality, let uv be the longest edge in Auvw. Then the orthogonal projection w* of w on
the line 4, lies on the segment uv itself, so that w* = Au+ (1 — A)v for some A\, 0 < XA < 1.
Let w' = Aa + (1 — \)b. Then

d(w, Lap)

IN

lww'| < Jww*| + |w*w'|

= Jww*|+ [Aa—u) + (1 = X)(b—v)|.

Since |ual, |vb| < w/2,
d(w, lep) < d(w,uv) + w/2. (8)

Let h be the distance between ¢ and the line supporting ab. Then

h =d(c,lap) < d(w,lgp) + |cw| < d(w,uv) + w.

Therefore
1
Area (Auvw) = §|uv| -~ d(w, uv)
1
> L (lab —w)(h )

- -9 (-5)

81
—A A .
169 rea (Aabc)

The last inequality follows from the fact that

Y

h,|ab] > Width (Aabe) > 3.25w.
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Next, we prove (b). Obviously, Area (Avwz) is maximum when z lies on a vertex of the
region K. Since Width (Aabc) > 3.25w and v, w lie inside the disks of radius w/2 centerted
at b and c, respectively (i.e., the slope of vw is roughly the same as that of bc), Area(Avwz) is
maximum when z lies at a vertex of K that is incident upon the edge parallel to bc and lying
on the opposite side of a; see Figure 4. In this case d(z, £,.) = 7 d(a, £y.). If the projection of
z on Ly, lies on the segment vw itself, then, as in (8), d(z, lyy) < d(z,lp.) +w/2. Therefore,

1
Area (Avwz) = §|Uw|d(2,€vw)

< %(|bc| + W) (d(2, bye) + w)2)

< Area (Abez) <1 + |;"—c|> <1 + m> .

Since |be| > 3.25w and d(z, ly.) = T d(a, lpe) > 3.25w,

Area (Auvw) < @Area (Abez) = @TAFGB, (Aabc).
169 169

If the projection of z on ¢, does not lie on the segment vw, then either Zvwz or Zwvz is
obtuse. Assume that Lvwz > 7/2, so z is the vertex incident upon the edges parallel to be
and ac. Since v, u,w, and z lie on the circle C' in that order in counterclockwise direction,
all of them lie on a semicircle of C. Therefore, Zvuw > 7/2, which implies that vw is the
longest edge of Auvw. Therefore

lac| < Juw| +w < Jvw| +w < |be| + 2w.

Similarly, we can show that |ab| < |bc| + 2w. In other words, the length of each edge (and
thus also its height to be) in Aabe is at most be + 2w.
Let ¢’ be the intersection point of the ray at with the line parallel to ac and containing
z (see Figure 4). By construction, |cc'| = Tlac|, |2¢/| = |ab|, and zc¢ and ab are parallel,
therefore
|bz| = |cc’| = Tlac] < 7(|be| + 2w).

Since Area (Abcz) = TArea (Aabc), we obtain
T - |beld(a, bye) = |bz| - d(c, Lyy)

. |beld(a, £ye)
T|0C|a(Q, Lpe
de,ly,) = ———F—.
(Ca bz) |bZ|
On the other hand,
1
Area (Avwz) = §|vz|d(w,vz)
1 w
< = hd
< 5 <|bz| + 2) d(w,vz)
<

d(w,vz) w
A Ab : 1 .
e o) g2 (14 557)

10
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Jm '
.mna \

Figure 4: Tllustration to Lemma 3.6(b).

Using the fact that |bz| > d(z,£p.) > 3.25w and d(w,vz) < d(c,¥p,) + w, and substituting
the value of d(c, ¢p,), we obtain

% (1 " 2|:z|> = (” ﬁ) (1 " 2|:z|>

< (14 w|bz| 14
- Tlbeld(a, Cye) 2|bz|

w w bl + 2w w w

S o Y dat) pd T 2lbd dla by
< 1+L+i<1+2—w> .
= 2.3.250 ' 13 be| ) T 169
BETTEVEANE
- 169 13 13 169
Hence,
Area (Avwz) < ﬁArea (Abez) < 2897 Area (Aabe).
169 169

Finally, to prove (c), suppose that the width of Auvw is the height to edge uv (which is
then the longest edge). Arguing as above, we have

Width (Aabc) < d(e,ab) < d(w,uv) + w
= Width (Avvw) + w.

The reverse inequality is proved in exactly the same manner. O

The first two parts of the above lemma imply the following.

289
Corollary 3.7 Area (Avwz) < ol Area (Auvw).

11



APPROXIMATING THE MINIMUM-WIDTH CYLINDRICAL SHELL 12

Proof of Theorem 3.3. If Width (A*) < 6.5w, then Lemma 3.1 implies that the width of
S* is at most 6.5(4¢t — 1)w. Since a slab can be regarded as a degenerate annulus, S* can
be enclosed by an annulus of width at most 26tw. So assume that Width (4*) > 6.5w.

Suppose, without loss of generality, that Aaja3a3 is the largest-area triangle spanned
by three points of A*. We have

Width (Aaja3a3) > Width (4%)/2 > 3.25w.

Fix a point ¢ € S*. By Corollary 3.2(ii), the area of each of the triangles Aajalq,
Aajalq, Naaiq is at most (4¢ — 1) - Area (Aajasal). Let A be an annulus of width w that
contains A* U {q}, and let C' be the mid-circle of A. Let A* be the annulus of width 26tw
that has C as its mid-circle. We claim that A* contains S*. Indeed, let ¢ be any point of
S*, and let A’ be an annulus of width w that contains A* U {¢'}. Let C' be the mid-circle
of A'. Clearly, C, C', and Aajaja} satisty the conditions in Lemma 3.4 (with 7 = 4¢ — 1),
which implies

d(q,C) < (6.5(4t — 1) + 3.6)w < 26tw,

implying that ¢ € A*, as claimed. O

4 Approximating the Minimum-Width Cylindrical Shell

In this section we apply the results of the preceding section to obtain an algorithm for
computing a cylindrical shell of width at most O(w*(S)) that encloses an n-element point
set S C R3. We first describe an algorithm for computing a subset A C S of four points so
that p(A) > (1 —¢)u(S), for some constant € > 0; recall that ;(X) is the maximum volume
of a simplex spanned by the points of X.

Lemma 4.1 Given a set of n points in R® and a parameter ¢ > 0, we can compute in
O(nlog(1/e) + (1/e)* log(1/¢)) time a subset A of four points so that u(A) > (1 —e)u(S).

Proof (Sketch): We first compute a box B enclosing S whose volume is at most 1 + ¢
times the minimum volume of any box containing S. This can be done in O(n+1/¢*?) time
using the algorithm by Barequet and Har-Peled [7]. Suppose, with no loss of generality,
that B is axis-aligned and the coordinates of the endpoints of its main diagonal are (0, 0,0)
and (lz,1y,1,). Choose a sufficiently large constant ¢ > 1 and set 6 = €/c. Draw a three-
dimensional grid

{[i6L, (i + 1)8L] x [joly, (j + 1)8L,] x [kdL,, (k + 1)3L.] | 0 < i, j, k < [1/8]}

of size O(1/6%). Let @ be the set of grid vertices adjacent to the grid cells that contain at
least one point of S. Q can be computed in O(nlog(1/e) + 1/&3) time. We then compute,
in O((1/6%)log(1/8)) time, the set V C @ of vertices of the convex hull of Q. By a result
of Andrews [6], |[V| = O(1/6%?). Next, we compute in O(|V|*log|V|) time the largest
volume tetrahedron ¢j¢2q3q4 spanned by V' (we omit details of the rather straightforward

12
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algorithm for doing so). Let a; € S be a nearest neighbor of ¢;, for i = 1,...,4. We return
A ={ay1,a9,as3,a4}. Using a somewhat tedious analysis, similar to the one in [7], it can be
shown that p(A) > (1 —&)u(S). O

Set & = (1/n)*? and compute in O(n?logn) time a set A C S of four points such that
p(A) > (1 —¢/2)uu(S), using the above lemma. Let S? denote the unit sphere of directions
in R3. For each ¢ € S we define a real-valued function F, on S?, so that, for n € S?,
F,(n) is the width of a thinnest annulus within the plane 7™ that contains the orthogonal
projections of AU {q} on the plane 7™ Clearly, F, is a piecewise-algebraic function of
“constant description complexity” (in the terminology of [13]). Let E denote the pointwise
maximum of {F,},cs, let n € S? be a direction that minimizes F, and let w = E(n).

Lemma 4.2 w < w*(S) < 26(1 + 1/n*)w.

Proof: The fact that w = minycg> max,eg Fy(v) implies that for each v € S? there exists
g € S such that any cylindrical shell that contains A U {¢} and has axis-direction v must
have width at least w. Hence the minimum width of a cylindrical shell that encloses S is at
least w.

On the other hand, since pu(A) > (1 — ¢/2)u(S), which corresponds to setting ¢t =
1/(1—¢/2) < (14+1/n*?) in Lemma 3.4, Theorem 3.3 implies that there exists a cylindrical
shell with axis-direction n and width at most 26(1 + 1/n%?)w that contains S. O

The algorithm is now straightforward. We compute E in O(n?*?) time, for any § > 0,
using, e.g., the algorithm of [4], and then examine each vertex, edge, and face of (the graph
of) E to find the global minimum of E. Suppose the minimum is attained at some direction
n. We project S orthogonally onto 7™ and compute the minimum-width annulus A within
7™ that contains the projected set S*. This can be done in time O(n?) [11]. (Alternatively,
we can compute the radius p and the mid circle C* of the minimum width annulus containing
A™) and set A to be the annulus of width 26(1+1/n*?)p and with mid circle C*.) We then
“lift” A in the direction n to obtain a cylindrical shell, of the same width, that encloses S.
By the preceding analysis, we obtain the following.

Theorem 4.3 Given a set S of n points in R, one can compute, in O(n*+°) time, for any
6 >0, a cylindrical shell that contains S, whose width is at most 26(1 + 1/n*/?)w*(S).

Remark 4.4 We believe that our approach can be strengthened to give a near-linear-time
algorithm. Intuitively, we need to show that one does not have to search over all directions
n € S2 Instead, we conjecture that it suffices to search over the 1-dimensional locus of
axis directions of cylinders that pass through four points of S that span the largest-, or
nearly largest-volume simplex spanned by S. However, at present we have some technical
difficulties in proving this claim.
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5 Conclusions

In this paper we presented a constant-factor approximation algorithm for the minimum-
width cylindrical shell problem that runs in near-quadratic time. We also presented an
algorithm for computing the thinnest cylindrical shell containing a point set. We conclude
by mentioning two open problems:

1. Is there a faster algorithm for computing the minimum-width cylindrical shell con-
taining a point set in R3?

2. Develop a (1 + €)-approximation algorithm for the minimum-width cylindrical shell
problem that runs in near-linear time.
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