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Introdu
tion 11 Introdu
tionGiven a line ` in R3 and two real numbers 0 � r � R, the 
ylindri
al shell �(`; r; R) is the
losed region lying between the two 
o-axial 
ylinders of radii r and R with ` as their axis,i.e., �(`; r; R) = fp 2 R3 j r � d(p; `) � Rg;where d(p; `) is the Eu
lidean distan
e between point p and line `. The width of �(`; r; R)is R � r. Let S be a set of n points in R3 . How well S �ts a 
ylindri
al surfa
e 
anbe measured by 
omputing a 
ylindri
al surfa
e C = C(S) so that the maximum distan
ebetween any point of S and C is minimized. If ` and � are the axis and the radius of C and Æis the maximum distan
e between C and S, then S � �(`; �� Æ; �+ Æ). Hen
e, the problemof approximating S by a 
ylindri
al surfa
e is equivalent to 
omputing a 
ylindri
al shell,��(S), of the minimum width that 
ontains S.The main motivation for 
omputing a minimum-width 
ylindri
al shell 
omes from 
om-putational metrology. In order to measure the quality of a manufa
tured 
ylinder �, wesample a set S of points on the surfa
e of � using 
oordinate measuring ma
hines and then�t a 
ylindri
al surfa
e through S so that the maximum distan
e between the points of Sand the 
ylinder is minimized. For example, this is one of the 
riteria suggested in there
ent ASME Y14.5M standard to determine how 
losely � resembles a 
ylinder [15, 16℄.In the last few years mu
h work has been done on measuring the 
ir
ularity of a planarpoint set, whi
h is de�ned as the width of the thinnest annulus that 
ontains the pointset [2, 5, 10, 11, 12℄. The best known algorithm runs inO(n3=2+Æ), for any Æ > 0 [5℄, and near-linear approximation algorithms are proposed in [2, 10℄. In three dimensions, the minimum-width spheri
al shell (a region en
losed between two 
on
entri
 spheres) 
ontaining an n-element point set S 
an be 
omputed in time O(n3� 119+Æ), for any Æ > 0 [2℄. The same paperalso presents near-linear algorithms that 
ompute an approximation to the minimum-widthen
losing spheri
al shell in any dimension. There has also been some work on 
omputing thesmallest 
ylinder en
losing a point set in R3 [1, 14℄. Agarwal et al. [1℄ developed an O(n3+Æ)-time algorithm, for any Æ > 0, for 
omputing the smallest en
losing 
ylinder. They alsoproposed a (1 + ")-approximation algorithm (i.e., an algorithm that produ
es an en
losing
ylinder whose radius is at most (1 + ") times the minimum radius) that runs in O(n="2)time.Finding the minimum-width 
ylindri
al shell that 
ontains a given set of points is harderthan 
omputing a minimum-width en
losing spheri
al shell, 
omputing a smallest en
losing
ylinder, or 
omputing a thinnest annulus 
ontaining a planar point set. A
tually, these
ond and third problems are spe
ial 
ases of 
omputing a thinnest 
ylindri
al shell |�nding a smallest en
losing 
ylinder is the same as �nding a minimum-width 
ylindri
alshell whose inner radius is 0; and �nding a thinnest 
ylindri
al shell with axis parallel toa given dire
tion n is the same as �nding a thinnest annulus 
ontaining the proje
tion ofS in dire
tion n onto a plane orthogonal to n. Sin
e a 
ylindri
al shell is spe
i�ed by sixparameters | four parameters de�ne the axis of the shell, and the remaining two de�nethe inner and outer radii of the shell, ��(S) is \de�ned" by a subset A � S of six points, in1



Computing ��(S) 2the sense that ��(S) is one of the O(1) 
ylindri
al shells that 
ontain A on their inner andouter boundaries. This suggests the following naive pro
edure for 
omputing ��(S): Forea
h subset A � S of size six, 
ompute the O(1) 
ylindri
al shells 
ontaining A on their innerand outer boundary. For ea
h su
h shell �, 
he
k in O(n) time whether S � �. Return thethinnest among them that 
ontains S. This naive approa
h leads to an O(n7) algorithm for
omputing ��(S). As the �rst result of this paper, we des
ribe, in Se
tion 2, an improvedO(n5)-time algorithm for 
omputing ��(S). We are not aware of any faster algorithm forthe exa
t problem. Re
ently, Devillers and Preparata [9℄, proposed a linear-time 
onstant-fa
tor approximation algorithm for the minimum-width 
ylindri
al shell problem under theassumption that the points are \almost" 
ylindri
al [9℄.Sin
e 
omputing ��(S) is so expensive, we develop an eÆ
ient approximation algorithmfor 
omputing a 
ylindri
al shell that 
ontains S and has width at most 
!�, where !� =!�(S) is the width of ��(S) and 
 is a 
onstant. We �rst prove in Se
tion 3 a Helly-typetheorem for ��(S), whi
h we believe to be of independent interest, and whi
h, roughlyspeaking, says the following: Let A � S be a subset of four points so that the volume ofthe tetrahedron spanned by A is 
lose to the largest volume of a simplex spanned by anyfour points of S. Then !�(S) � 
 �maxp2S !�(A [ fpg), for a 
onstant 
 > 1. The 
onstantthat our analysis yields is about 26, but we believe that the theorem also holds with amu
h smaller 
onstant. Using this observation, we develop in Se
tion 4 an O(n2+Æ)-timealgorithm, for any Æ > 0, to 
ompute a 
ylindri
al shell of width at most about 26!� that
ontains S. We believe that our approa
h 
an be strengthened to 
ompute in near-lineartime a 
ylindri
al shell of width O(!�) that 
ontains S, but at present there are somete
hni
al diÆ
ulties that we have not over
ome yet (see Remark 4.4 for more details). Wealso believe that our te
hnique 
an be enhan
ed to yield a near-quadrati
 algorithm thatapproximates the minimum width of an en
losing 
ylindri
al shell by a fa
tor of at most1 + ", for any " > 0.2 Computing ��(S)In this se
tion we des
ribe an O(n5)-time algorithm for 
omputing ��(S). Without lossof generality assume that the axis of ��(S) is not parallel to the xy-plane; the 
ase of ahorizontal axis 
an be handled by a simpler algorithm, whose details are omitted. A 
ylinderC with a nonhorizontal axis a 
an be parameterized by a �ve-tuple (a1; a2; a3; a4; r), wherer is the radius of C and where the axis of C is the line a = fp+ tq j t 2 Rg, p = (a1; a2; 0) isthe interse
tion point of a with the xy-plane, and q = (a3; a4; 1) is the dire
tion ve
tor of a.Let x be a point in R3 . Changing the 
oordinate system so that p maps to the origin, weobserve that the proje
tion of x on the axis a is ((x� p) � q=kqk)q=kqk = ((x� p) � q=kqk2)q.Hen
e, distan
e between x and the line a isd(x; a) = 



(p� x)� (p� x) � qkqk2 q



 :2



Computing ��(S) 3Sin
e x lies in the 
ylinder C if and only if d(x; a) � r, after some algebrai
 manipulation,we obtain that x = (x1; x2; x3) lies inside C if and only iff(x1; x2; x3; a1; a2; a3; a4) � (a23 + a24 + 1)r2;where f(x1; x2; x3; a1; a2; a3; a4) =[(a24 + 1)a21 + (a23 + 1)a22 � 2a1a2a3a4℄ + 2[a2a3a4 � a1(a24 + 1)℄x1 +2[a1a3a4 � a2(a23 + 1)℄x2 + 2[a1a3 + a2a4℄x3 � 2[a3a4℄x1x2 �2[a3℄x1x3 � 2[a4℄x2x3 + [1℄(x21 + x22) + [a23℄(x22 + x23) + [a24℄(x21 + x23) : (1)Hen
e, a point x lies in a 
ylindri
al shell � = (a1; a2; a3; a4; r; R) with axis a =(a1; a2; a3; a4), parametrized as above, inner radius r, and outer radius R if and only ifr2(a23 + a24 + 1) � f(x1; x2; x3; a1; a2; a3; a4) � R2(a23 + a24 + 1): (2)Let us set '1(�) = a2a3a4 � a1(a24 + 1);'2(�) = a1a3a4 � a2(a23 + 1);'3(�) = a1a3 + a2a4;'4(�) = a3a4; '5(�) = a3;'6(�) = a4; '7(�) = a23; '8(�) = a24;'9(�) = r2(a23 + a24 + 1)� (a24 + 1)a21 � (a23 + 1)a22 + 2a1a2a3a4;'10(�) = R2(a23 + a24 + 1)� (a24 + 1)a21 � (a23 + 1)a22 + 2a1a2a3a4; 0(x) = (x21 + x22);  1(x) = 2x1; 2(x) = 2x2;  3(x) = 2x3; 4(x) = �2x1x2;  5(x) = �2x1x3; 6(x) = �2x2x3;  7(x) = x22 + x23; 8(x) = x21 + x23:Then the 
onstraint (2) 
an be rewritten as a linear 
onstraintHx(�) : '9(�) �  0(x) + 8Xi=1 'i(�) i(x) � '10(�):For any point p 2 R3 , de�ne the wedge Hp � R10 , formed by the interse
tion of twohalfspa
es, as Hp = ((y1; : : : ; y10) j y9 �  0(p) + 8Xi=1 yi i(p) � y10) :3



A Helly-Like Property of Cylindri
al Shells 4Set '(�) = h'1(�); : : : ; '10(�)i 2 R10 . Let P = Tp2SHp be the 
onvex polyhedron de�nedby the interse
tion of the 2n 
orresponding halfspa
es. P has O(n5) fa
es and 
an be
omputed in O(n5) time [8℄. A 
ylindri
al shell (with nonhorizontal axis) � 
ontains S ifand only '(�) 2 P .Let 	 � R4 � (R+)2 denote the 6-dimensional set of all 
ylindri
al shells (with nonhor-izontal axis) that 
ontain S. Then '(	) is the interse
tion of P with the 6-dimensionalsurfa
e � = f'(�) j � 2 R4 � (R+)2g. After having 
omputed P , 	 
an be 
omputed inO(n5) time, e.g., by triangulating P into O(n5) simpli
es and then, for every simplex � inthe triangulation, 
omputing � \ �. Finally, for ea
h simplex � , we 
ompute in O(1) timethe minimum-width 
ylindri
al shell � su
h that '(�) 2 � \ '(	). Hen
e, we 
an 
on
ludethe following.Theorem 2.1 Given a set S of n points in R3 , a minimum-width 
ylindri
al shell 
ontain-ing S 
an be 
omputed in O(n5) time.3 A Helly-Like Property of Cylindri
al ShellsLet S be a set of n points in R3 , and let t > 1 be a 
onstant. For any �nite point setX � R3 of at least four points, let �(X) denote the volume of the largest volume simplexspanned by four points of X. Let � be a tetrahedron spanned by points of S so that itsvolume is �(S)=t. Let A = fa1; : : : ; a4g � S denote the set of verti
es of �. The simplex �has the following useful property.Lemma 3.1 Let f be any k-
at, for k = 0; 1; 2. Then for any p 2 S we haved(p; f) � (4t� 1) � max1�i�4 d(ai; f): (1)
ab 
K

Figure 1: A two dimensional version of the region K, for t slightly larger than 1Proof: Let K � R3 be the lo
us of all points q so that ea
h of the simpli
es a1a2a3q,a1a2a4q, a1a3a4q, and a2a3a4q has volume at most t �Vol(�); see Figure 1. By assumption,4



A Helly-Like Property of Cylindri
al Shells 5we have S � K. Let hi be the plane 
ontaining A n faig, and let �i be the slab boundedby two planes parallel to hi and at distan
e t � d(ai; hi) from it. K = T4i=1 �i; see Figure 1.Using bary
entri
 
oordinates, we 
an represent any point q 2 K as q =P4i=1 �iai, whereP4i=1 �i = 1 and j�ij � t, for i = 1; : : : ; 4. Let bi, for i = 1; : : : ; 4, be the point in f nearestto ai, and put q� :=P4i=1 �ibi 2 f . We then haved(q; f) � d(q; q�)= d 4Xi=1 �iai; 4Xi=1 �ibi!= 




 4Xi=1 �i(ai � bi)




� 4Xi=1 j�ijd(ai; f)� (4t� 1) � max1�i�4 d(ai; f);for ea
h q 2 K, where the last inequality follows by observing that maxP4i=1 j�ij, subje
tto P4i=1 �i = 1 and j�ij � t for i = 1; : : : ; 4, is 4t � 1. This implies the assertion of thelemma. 2Fix a dire
tion n 2 S2, and let � = �(n) be the plane normal to n and passing throughthe origin. For a point x 2 R3 , let x� denote its orthogonal proje
tion onto �. Set S� =fp� j p 2 Sg. Similarly, de�ne A� to be the proje
tion of A onto �.Corollary 3.2 (i) Let o and � be the 
enter and radius of the smallest disk en
losingA�. Then S� is 
ontained in the disk of radius (4t� 1)� 
entered at o.(ii) For any line ` lying in �,maxp2S d(p�; `) � (4t� 1)maxa2A d(a�; `):Proof: Part (i) follows by applying Lemma 3.1 to the line in dire
tion n and passingthrough o. The se
ond part is proved by applying Lemma 3.1 to the plane orthogonal to �and passing through `. 2The next theorem is the main result of this se
tion.Theorem 3.3 Suppose there exists ! > 0 su
h that for ea
h p 2 S� there exists an annulusof width ! that en
loses A� [ fpg. Then there exists an annulus of width at most 26t! thaten
loses S�.We need the following geometri
 lemma to prove the above theorem. Let D(x; Æ) denotethe disk of diameter Æ 
entered at a point x. 5



A Helly-Like Property of Cylindri
al Shells 6Lemma 3.4 Let ab
 be a triangle in the plane, and let � � 1 and 0 < ! <Width(4ab
)=3:25be two parameters. De�ne � = �(�) to be the lo
us of all points x su
h that the area ofea
h of the triangles 4abx, 4a
x, 4b
x is at most � times the area of 4ab
. Let C and C 0be two 
ir
les, ea
h of whi
h meets all three disks D(a; !), D(b; !), D(
; !). Then for anyz 2 C \� we have d(z; C 0) � (6:5� + 3:6)!(see Figure 2(i)).Remark 3.5 Informally, the lemma asserts that if two 
ir
les are 
lose to ea
h othernear three points a; b; 
 then they remain 
lose to ea
h other within �. Without su
h a
on�nement, the assertion may fail, as is easily 
he
ked.Proof: We parametrize points on C using inversion, as follows. Pi
k points u 2 C\D(a; !),v 2 C \D(b; !), w 2 C \D(
; !). Without loss of generality, we may assume that the orderof u; v; w and z along C in the 
lo
kwise dire
tion is u; v; z; w. Write v = u+ p, w = u+ q,and z = u+ �. Apply an inversion to the plane that takes u to in�nity. For example, using
omplex numbers, we may use the transformation � 7! 1=(��u). This transformation mapsC to a straight line 
ontaining the images 1=p, 1=q, and 1=� of v; w, and z, respe
tively, sothat 1=� lies between 1=p and 1=q. Hen
e there is a real parameter � 2 [0; 1℄, su
h that1� = �p + 1� �q ; (2)or � = pq�q + (1� �)p:The following geometri
 interpretation will be useful in the subsequent analysis. Put s =�q+(1��)p and x = u+ s. The point x lies on the edge vw of the triangle uvw and splitsit in the ratio � : (1 � �); that is jx � vj = �jw � vj and jx � wj = (1 � �)jw � vj. Sin
epq = �s (or p=s = �=q), the triangles 4vux and 4zuw are similar. Analogously, we 
anprove that the triangles 4wux and 4zuv are similar. See Figure 2(ii).This implies that�jw � vjjsj = jw � zjjqj and (1� �)jw � vjjsj = jv � zjjpj : (3)Sin
e u; v; z; w are 
o
ir
ular, ℄vuw = � � ℄vzw, therefore sin(℄vuw) = sin(℄vzw). Mul-tiplying the two equalities in (3), we obtain�(1� �)jw � vj2 = jsj2 � jv � zjjw � zjjpjjqj= jsj2 � jv � zj � jw � zj sin(℄vzw)jpj � jqj sin(℄vuw)= jsj2 � Area (4vwz)Area (4uvw) ;6



A Helly-Like Property of Cylindri
al Shells 7

(i) (ii)

C 0

a b

C �
uv w

zp qsx
Figure 2: (i) Setup of the lemma; (ii) geometri
 interpretation of the inversionWe will prove below in Corollary 3.7 thatArea (4vwz) � 28981 � �Area (4uvw): (4)Intuitively, this is true be
ause the area of the triangle uvw (resp. vwz) is a good approxi-mation of the area of ab
 (resp. b
z); a rigorous proof is given in Lemma 3.6 below.We thus have �(1� �)jw � vj2 � 28981 � jsj2: (5)Let � = ℄uvw. Using the law of 
osines, we havejsj2 = jpj2 + �2jw � vj2 � 2�jpjjw � vj 
os �and jqj2 = jpj2 + jw � vj2 � 2jpjjw � vj 
os �:Subtra
ting � times the se
ond equality from the �rst, we obtainjsj2 � �jqj2 = jpj2 + �2jw � vj2 � �jpj2 � �jw � vj2;or jsj2 = �jqj2 + (1� �)jpj2 � �(1� �)jw � vj2: (6)Combining (5) and (6), we obtain�jqj2 + (1� �)jpj2 � �28981 � + 1� jsj2: (7)7



A Helly-Like Property of Cylindri
al Shells 8Apply a symmetri
 transformation to parametrize C 0: Pi
k points u0 2 C 0 \ D(a; !), v0 2C 0 \ D(b; !), w0 2 C 0 \ D(
; !). Write v0 = u0 + p0, w0 = u0 + q0, and putz0 = u0 + p0q0�q0 + (1� �)p0 2 C 0:Set Æ = pq�q + (1� �)p � p0q0�q0 + (1� �)p0 :Put � = p0 � p and � = q0 � q. Observe that j�j, j�j � !. We havejÆj = ���� pq�q + (1� �)p � (p+ �)(q + �)�(q + �) + (1� �)(p+ �) ����� j�q + (1� �)pj � j�j � j�j + �jqj2j�j+ (1� �)jpj2j�jj�q + (1� �)pj � j�(q + �) + (1� �)(p+ �)j :Hen
e the denominator in the expression for Æ is at least jsj(jsj �!). Moreover, jsj is largerthan the height to vw in the triangle uvw. As we will show below in Lemma 3.6, thisheight is at least Width (4ab
) � ! � 2:25! (again, this holds be
ause 4uvw is a goodapproximation of 4ab
). ThereforejÆj � jsj!2 + !(�jqj2 + (1� �)jpj2)jsj(jsj � !) :Using (7) and the fa
t that jsj � 2:25!, we obtainjÆj � � 1(jsj=!)� 1 + (289=81)� + 11� (!=jsj) �!� �45 + 9 ((289=81)� + 1)5 �!� �28945 � + 2:6�!:Therefore, d(z; C 0) � d(z; z0) � d(u; u0) + jÆj� �28945 � + 3:6�!� (6:5� + 3:6)!:This 
ompletes the proof of the lemma. 2We still need to establish the following lemma.8



A Helly-Like Property of Cylindri
al Shells 9
!au

v b> 3:25! z

wFigure 3: Illustration to Lemma 3.6.Lemma 3.6 (a) Area (4uvw) � 81169Area (4ab
).(b) Area (4vwz) � 289�169 Area (4ab
).(
) jWidth (4uvw)�Width (4ab
)j � !.Proof: For a segment e, let `e be the line supporting e. To prove (a), without loss ofgenerality, let uv be the longest edge in 4uvw. Then the orthogonal proje
tion w� of w onthe line `uv lies on the segment uv itself, so that w� = �u+ (1� �)v for some �, 0 � � � 1.Let w0 = �a+ (1� �)b. Thend(w; `ab) � jww0j � jww�j+ jw�w0j= jww�j+ j�(a� u) + (1� �)(b� v)j:Sin
e juaj; jvbj � !=2, d(w; `ab) � d(w; uv) + !=2: (8)Let h be the distan
e between 
 and the line supporting ab. Thenh = d(
; `ab) � d(w; `ab) + j
wj � d(w; uv) + !:Therefore Area (4uvw) = 12 juvj � d(w; uv)� 12(jabj � !)(h� !)= h � jabj2 �1� !h��1� !jabj�� 81169Area (4ab
):The last inequality follows from the fa
t thath; jabj �Width (4ab
) � 3:25!:9



A Helly-Like Property of Cylindri
al Shells 10Next, we prove (b). Obviously, Area (4vwz) is maximum when z lies on a vertex of theregion K. Sin
e Width (4ab
) � 3:25! and v; w lie inside the disks of radius !=2 
entertedat b and 
, respe
tively (i.e., the slope of vw is roughly the same as that of b
), Area(4vwz) ismaximum when z lies at a vertex of K that is in
ident upon the edge parallel to b
 and lyingon the opposite side of a; see Figure 4. In this 
ase d(z; `b
) = � d(a; `b
). If the proje
tion ofz on `vw lies on the segment vw itself, then, as in (8), d(z; `vw) � d(z; `b
)+!=2. Therefore,Area (4vwz) = 12 jvwjd(z; `vw)� 12(jb
j+ !)(d(z; `b
) + !=2)� Area (4b
z)�1 + !jb
j��1 + !d(z; `b
)� :Sin
e jb
j � 3:25! and d(z; `b
) = � d(a; `b
) � 3:25!,Area (4uvw) � 289169Area (4b
z) = 289169�Area (4ab
):If the proje
tion of z on `vw does not lie on the segment vw, then either \vwz or \wvz isobtuse. Assume that ℄vwz > �=2, so z is the vertex in
ident upon the edges parallel to b
and a
. Sin
e v; u; w; and z lie on the 
ir
le C in that order in 
ounter
lo
kwise dire
tion,all of them lie on a semi
ir
le of C. Therefore, \vuw > �=2, whi
h implies that vw is thelongest edge of 4uvw. Thereforeja
j � juwj + ! � jvwj+ ! � jb
j+ 2!:Similarly, we 
an show that jabj � jb
j + 2!. In other words, the length of ea
h edge (andthus also its height to b
) in 4ab
 is at most b
+ 2!.Let 
0 be the interse
tion point of the ray �!a
 with the line parallel to a
 and 
ontainingz (see Figure 4). By 
onstru
tion, j

0j = � ja
j, jz
0j = jabj, and z
 and ab are parallel,therefore jbzj = j

0j = � ja
j � �(jb
j + 2!):Sin
e Area (4b
z) = �Area (4ab
), we obtain� � jb
jd(a; `b
) = jbzj � d(
; `bz)or d(
; `bz) = � jb
jd(a; `b
)jbzj :On the other hand,Area (4vwz) = 12 jvzjd(w; vz)� 12 �jbzj+ !2 � d(w; vz)� Area (4b
z)d(w; vz)d(
; `bz) �1 + !2jbzj� :10
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Figure 4: Illustration to Lemma 3.6(b).Using the fa
t that jbzj � d(z; `b
) � 3:25! and d(w; vz) � d(
; `bz) + !, and substitutingthe value of d(
; `bz), we obtaind(w; vz)d(
; `bz) �1 + !2jbzj� � �1 + !d(
; `bz)��1 + !2jbzj�� �1 + !jbzj� jb
jd(a; `b
)��1 + !2jbzj�� 1 + !2jbzj + !d(a; `b
) jb
j+ 2!jb
j + !2jb
j !d(a; `b
)� 1 + !2 � 3:25! + 413 �1 + 2!jb
j�+ 8169� 203169 + 413 �1 + 813� = 287169 :Hen
e, Area (4vwz) � 287169Area (4b
z) < 289�169 Area (4ab
):Finally, to prove (
), suppose that the width of 4uvw is the height to edge uv (whi
h isthen the longest edge). Arguing as above, we haveWidth (4ab
) � d(
; ab) � d(w; uv) + != Width (4uvw) + !:The reverse inequality is proved in exa
tly the same manner. 2The �rst two parts of the above lemma imply the following.Corollary 3.7 Area (4vwz) < 28981 � � Area (4uvw).11



Approximating the Minimum-Width Cylindri
al Shell 12Proof of Theorem 3.3. If Width (A�) � 6:5!, then Lemma 3.1 implies that the width ofS� is at most 6:5(4t � 1)!. Sin
e a slab 
an be regarded as a degenerate annulus, S� 
anbe en
losed by an annulus of width at most 26t!. So assume that Width (A�) � 6:5!.Suppose, without loss of generality, that 4a�1a�2a�3 is the largest-area triangle spannedby three points of A�. We haveWidth (4a�1a�2a�3) �Width (A�)=2 � 3:25!:Fix a point q 2 S�. By Corollary 3.2(ii), the area of ea
h of the triangles 4a�1a�2q,4a�1a�3q, 4a�2a�3q is at most (4t� 1) �Area (4a�1a�2a�3). Let A be an annulus of width ! that
ontains A� [ fqg, and let C be the mid-
ir
le of A. Let A� be the annulus of width 26t!that has C as its mid-
ir
le. We 
laim that A� 
ontains S�. Indeed, let q0 be any point ofS�, and let A0 be an annulus of width ! that 
ontains A� [ fq0g. Let C 0 be the mid-
ir
leof A0. Clearly, C, C 0, and 4a�1a�2a�3 satisfy the 
onditions in Lemma 3.4 (with � = 4t� 1),whi
h implies d(q; C) � (6:5(4t � 1) + 3:6)! � 26t!;implying that q 2 A�, as 
laimed. 24 Approximating the Minimum-Width Cylindri
al ShellIn this se
tion we apply the results of the pre
eding se
tion to obtain an algorithm for
omputing a 
ylindri
al shell of width at most O(!�(S)) that en
loses an n-element pointset S � R3 . We �rst des
ribe an algorithm for 
omputing a subset A � S of four points sothat �(A) � (1� ")�(S), for some 
onstant " > 0; re
all that �(X) is the maximum volumeof a simplex spanned by the points of X.Lemma 4.1 Given a set of n points in R3 and a parameter " > 0, we 
an 
ompute inO(n log(1=") + (1=")4:5 log(1=")) time a subset A of four points so that �(A) � (1� ")�(S).Proof (Sket
h): We �rst 
ompute a box B en
losing S whose volume is at most 1 + "times the minimum volume of any box 
ontaining S. This 
an be done in O(n+1="4:5) timeusing the algorithm by Barequet and Har-Peled [7℄. Suppose, with no loss of generality,that B is axis-aligned and the 
oordinates of the endpoints of its main diagonal are (0; 0; 0)and (lx; ly; lz). Choose a suÆ
iently large 
onstant 
 > 1 and set Æ = "=
. Draw a three-dimensional gridf[iÆlx; (i + 1)Ælx℄� [jÆly ; (j + 1)Æly ℄� [kÆlz ; (k + 1)Ælz ℄ j 0 � i; j; k � d1=Æegof size O(1=Æ3). Let Q be the set of grid verti
es adja
ent to the grid 
ells that 
ontain atleast one point of S. Q 
an be 
omputed in O(n log(1=") + 1="3) time. We then 
ompute,in O((1=Æ2) log(1=Æ)) time, the set V � Q of verti
es of the 
onvex hull of Q. By a resultof Andrews [6℄, jV j = O(1=Æ3=2). Next, we 
ompute in O(jV j3 log jV j) time the largestvolume tetrahedron q1q2q3q4 spanned by V (we omit details of the rather straightforward12



Approximating the Minimum-Width Cylindri
al Shell 13algorithm for doing so). Let ai 2 S be a nearest neighbor of qi, for i = 1; : : : ; 4. We returnA = fa1; a2; a3; a4g. Using a somewhat tedious analysis, similar to the one in [7℄, it 
an beshown that �(A) � (1� ")�(S). 2Set " = (1=n)4=9 and 
ompute in O(n2 log n) time a set A � S of four points su
h that�(A) � (1� "=2)�(S), using the above lemma. Let S2 denote the unit sphere of dire
tionsin R3 . For ea
h q 2 S we de�ne a real-valued fun
tion Fq on S2, so that, for n 2 S2,Fq(n) is the width of a thinnest annulus within the plane �(n) that 
ontains the orthogonalproje
tions of A [ fqg on the plane �(n). Clearly, Fq is a pie
ewise-algebrai
 fun
tion of\
onstant des
ription 
omplexity" (in the terminology of [13℄). Let E denote the pointwisemaximum of fFqgq2S , let n 2 S2 be a dire
tion that minimizes E, and let ! = E(n).Lemma 4.2 ! � !�(S) � 26(1 + 1=n4=9)!.Proof: The fa
t that ! = minv2S2maxq2S Fq(v) implies that for ea
h v 2 S2 there existsq 2 S su
h that any 
ylindri
al shell that 
ontains A [ fqg and has axis-dire
tion v musthave width at least !. Hen
e the minimum width of a 
ylindri
al shell that en
loses S is atleast !.On the other hand, sin
e �(A) � (1 � "=2)�(S), whi
h 
orresponds to setting t =1=(1�"=2) � (1+1=n4=9) in Lemma 3.4, Theorem 3.3 implies that there exists a 
ylindri
alshell with axis-dire
tion n and width at most 26(1 + 1=n4=9)! that 
ontains S. 2The algorithm is now straightforward. We 
ompute E in O(n2+Æ) time, for any Æ > 0,using, e.g., the algorithm of [4℄, and then examine ea
h vertex, edge, and fa
e of (the graphof) E to �nd the global minimum of E. Suppose the minimum is attained at some dire
tionn. We proje
t S orthogonally onto �(n), and 
ompute the minimum-width annulusA within�(n) that 
ontains the proje
ted set S�. This 
an be done in time O(n2) [11℄. (Alternatively,we 
an 
ompute the radius � and the mid 
ir
le C� of the minimumwidth annulus 
ontainingA(n) and set A to be the annulus of width 26(1+1=n4=9)� and with mid 
ir
le C�.) We then\lift" A in the dire
tion n to obtain a 
ylindri
al shell, of the same width, that en
loses S.By the pre
eding analysis, we obtain the following.Theorem 4.3 Given a set S of n points in R3 , one 
an 
ompute, in O(n2+Æ) time, for anyÆ > 0, a 
ylindri
al shell that 
ontains S, whose width is at most 26(1 + 1=n4=9)!�(S).Remark 4.4 We believe that our approa
h 
an be strengthened to give a near-linear-timealgorithm. Intuitively, we need to show that one does not have to sear
h over all dire
tionsn 2 S2. Instead, we 
onje
ture that it suÆ
es to sear
h over the 1-dimensional lo
us ofaxis dire
tions of 
ylinders that pass through four points of S that span the largest-, ornearly largest-volume simplex spanned by S. However, at present we have some te
hni
aldiÆ
ulties in proving this 
laim.
13



Con
lusions 145 Con
lusionsIn this paper we presented a 
onstant-fa
tor approximation algorithm for the minimum-width 
ylindri
al shell problem that runs in near-quadrati
 time. We also presented analgorithm for 
omputing the thinnest 
ylindri
al shell 
ontaining a point set. We 
on
ludeby mentioning two open problems:1. Is there a faster algorithm for 
omputing the minimum-width 
ylindri
al shell 
on-taining a point set in R3?2. Develop a (1 + ")-approximation algorithm for the minimum-width 
ylindri
al shellproblem that runs in near-linear time.A
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