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Abstract. Let O = {O1, . . . , Om} be a set of m convex polygons in R
2

with a total of n vertices, and let B be another convex k-gon. A placement

of B, any congruent copy of B (without reflection), is called free if B

does not intersect the interior of any polygon in O at this placement. A
placement z of B is called critical if B forms three “distinct” contacts
with O at z. Let ϕ(B,O) be the number of free critical placements. A
set of placements of B is called a stabbing set of O if each polygon in O

intersects at least one placement of B in this set.
We develop efficient Monte Carlo algorithms that compute a stabbing set
of size h = O(h∗ log m), with high probability, where h∗ is the size of the
optimal stabbing set of O. We also improve bounds on ϕ(B, O) for the
following three cases, namely, (i) B is a line segment and the obstacles
in O are pairwise-disjoint, (ii) B is a line segment and the obstacles in
O may intersect (iii) B is a convex k-gon and the obstacles in O are
disjoint, and use these improved bounds to analyze the running time of
our stabbing-set algorithm.

1 Introduction

Problem statement. Let O = {O1, . . . , Om} be a set of m convex polygons in R
2

with a total of n vertices, and let B be another convex polygon. A placement of
B is any congruent copy of B (without reflection). A set of placements of B is
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called a stabbing set of O if each polygon in O intersects at least one copy of B in
this set. In this paper we study the problem of computing a small-size stabbing
set of O.

Terminology. A placement of B can be represented by three real parameters
(x, y, tan(θ/2)) where (x, y) is the position of a reference point o in B, and θ is
the counterclockwise angle by which B is rotated from some fixed orientation.
The space of all placements of B, known as the configuration space of B, can
thus be identified with R

3 (a more precise identification would be with R
2 × S

1;
we use the simpler, albeit topologically less accurate identification with R

3).
For a given point z ∈ R

3, we use B[z] to denote the corresponding placement
(congruent copy) of B. Similarly, for a point p ∈ B or a subset X ⊆ B, we use
p[z] and X [z] to denote the corresponding point and subset, respectively, in B[z].
A placement z of B is called free if B[z] does not intersect the interior of any
polygon in O, and semifree if B[z] touches the boundary of some polygon(s) in
O but does not intersect the interior of any polygon. Let F(B, O) ⊆ R

3 denote
the set of all free placements of B. For 1 ≤ i ≤ m, let Ki ⊆ R

3 denote the set
of placements of B at which it intersects Oi. We refer to Ki as a c-polygon. Set
K(B, O) = {K1, . . . , Km}. If B and the set O are obvious from the context, we
use F and K to denote F(B, O) and K(B, O), respectively. Note that F(B, O) =
cl(R3 \

⋃
K(B, O)), where cl is the closure operator. If {B[z1], . . . , B[zh]} is a

stabbing set for O, then each Ki contains at least one point in the set Z =
{z1, . . . , zh}, i.e., Z is a hitting-set for K. Hence, the problem of computing a
small-size stabbing set of O reduces to computing a small-size hitting set of K.

We use a standard greedy algorithm (see, e.g., [6]) to compute a hitting set
of K. The efficiency of our algorithm depends on the combinatorial complexity
of F, defined below. We consider the following three cases:
(C1) B is a line segment and the polygons in O may intersect.
(C2) B is a line segment and the polygons in O are pairwise disjoint.
(C3) B is a convex k-gon and the polygons in O are pairwise disjoint.
A contact C is defined to be a pair (s, w) where s is a vertex of B and w is an
edge of O ∈ O, or w is a vertex of O and s is an edge of B. A double contact
is a pair of contacts, and a triple contact is a triple of contacts. A placement
z forms a contact C = (s, w) if s[z] touches w and B[z] does not intersect the
interior of the polygon O ∈ O containing w. A placement z forms a double
contact {C1, C2} if it forms both the contacts C1 and C2, and similarly it forms
a triple contact {C1, C2, C3} if it forms all three of them; we also refer to triple-
contact placements as critical. A double (or triple) contact is realizable if there
is a placement of B at which this contact is formed. We call a double contact
{C1, C2} degenerate if both the contacts C1 and C2 involve the same polygon of
O. If z forms a degenerate double contact then either a vertex of B[z] touches
a vertex of O or an edge of B[z] is flush with an edge of O. A triple contact is
called degenerate if its three contacts involve at most two polygons of O, i.e.,
if it involves a degenerate double contact. If we decompose ∂Ki into maximal
connected components so that all placements within a component form the same
contact(s), then the edges and vertices on ∂Ki correspond to degenerate double



and triple contacts, respectively (more precisely, the vertices are those triple
contacts that involve at most two polygons). A non-degenerate triple contact
(or critical) placement is formed by the intersection of the boundaries of three
distinct c-polygons. Using the fact that each Oi is a convex polygon and B is
also a convex polygon, it can be shown (see, e.g., [11]) that the complexity of F

is proportional to the number of semifree critical placements, which we denote
by ϕ(B, O). We use ϕ∗(B, O) to denote the number of semifree non-degenerate
critical placements. In many cases ϕ(B, O) is proportional to ϕ∗(B, O) but in
some cases ϕ∗(B, O) can be much smaller. We improve the bounds on ϕ(B, O)
for all three cases (C1)–(C3), and on ϕ∗(B, O) for (C2).

Related work. The general hitting-set problem is NP-hard, and it is believed to be
intractable to obtain an o(log n)-approximation [7]. An O(log n)-approximation
can be achieved by a simple greedy algorithm [16]. The hitting-set problem
remains NP-hard even in a geometric setting [12, 13], and in some instances
also hard to approximate [4]. However, in many cases polynomial-time algo-
rithms with approximation factors better than O(log n) are known. For exam-
ple, Hochbaum and Maass [9] devise (1 + ε)-approximation algorithms (for any
ε > 0), for the problem of hitting a set of unit disks by a set of points. For set
systems that typically arise in geometric problems, the approximation factor can
be improved to O(log c∗), where c∗ is the size of the optimal solution, and in
some settings a constant factor approximation is also possible; see, e.g., [5].

Motivated by motion-planning and related problems in robotics, there is a
rich body of literature on analyzing the complexity of the free space of a variety of
moving systems B (“robots”), and a considerable amount of the earlier work has
focussed on the cases where B is a line segment or a convex polygon translating
and rotating in a planar polygonal workspace. Cases (C2) and (C3) correspond to
these scenarios. It is beyond the scope of this paper to review all of this work. We
refer the reader to the surveys [8, 14, 15]. We briefly mention the results that are
directly related to our study. Leven and Sharir [10] proved that ϕ(B, O) = O(n2)
if B is a line segment and O is a set of pairwise-disjoint polygons with a total
of n vertices. They also give a near-quadratic algorithm to compute F(B, O).
For the case where B is a convex k-gon, Leven and Sharir [11] proved that
ϕ(B, O) = O(k2n2β6(kn)), where βs(t) = λs(t)/t, and λs(t) is the maximum
length of an (t, s)-Davenport-Schinzel sequence [15]; βs(t) is an extremely slowly
growing function of t.

Our results. There are two main contributions of this paper. First, we refine the
earlier bounds on ϕ(B, O) so that they also depend on the number m of polygons
in O, and not just on their total number of vertices, since m ≪ n in many cases.
Second, we present a general approach for computing a hitting set, which leads
to faster algorithms for computing stabbing sets.

Specifically, we first prove (in Section 2), for the case where B is a line
segment, that the complexity of F(B, O) is O(mnα(n)), and that F(B, O) can
be computed in O(mnα(n) log2 n) randomized expected time. If the polygons in
O are pairwise disjoint, then ϕ(B, O) = Θ(mn), but ϕ∗(B, O) = O(m2 + n). We



then show that we can compute, in O((m2+n) log m log2 n) randomized expected
time, an implicit representation of F of size O(m2 + n), which is sufficient for
many applications (including ours). We then consider case (C3) (Section 3). We
show that ϕ(B, O) = O(k2mnβ6(kn)) in this case, and that F can be computed
in expected time O(k2mnβ6(kn) log(kn) log n).

The subsequent results in this paper depend on the complexity of F. Since we
are mainly interested in bounds that are functions of the number of polygons and
of their total size, we abuse the notation a little, and write ϕ(m, n) to denote the
maximum complexity of F for each of the three cases; the maximum is taken over
all m convex polygons with a total of n vertices, and these polygons are disjoint
for cases (C2) and (C3). Similarly we define ϕ∗(m, n) for the maximum number
of nondegenerate critical placements (in case (C3), the bounds also depend on
k).

For a point z ∈ R
3, we define its depth to be the number of c-polygons Ki

that contain z. We present a randomized algorithm Depth Threshold , which,
given an integer l ≤ m, determines whether the maximum depth of a placement
(with respect to O) is at most l. If not, it returns all critical placements (of depth
at most l). The expected running time of this algorithm is O(l3ϕ(m/l, n/l) log n).
For (C2), the procedure runs in expected time O(l3ϕ∗(m/l, n/l) log2 n) time.

Finally, we describe algorithms for computing a hitting set of K of size
O(h∗ log m) where h∗ is the size of the smallest hitting set of K. Basically,
we use the standard greedy approach, mentioned above, to compute such a
hitting set, but we use more efficient implementations, which exploit the ge-
ometric structure of the problems at hand. The first implementation runs in
O(∆3ϕ(m/∆, n/∆) log n) time, where ∆ is the maximum depth of a placement.
The second implementation is a Monte Carlo algorithm, based on a technique of
Aronov and Har-Peled [3] for approximating the depth in an arrangement. The
expected running time of the second implementation is O(ϕ(m, n)h log m log n+
mn1+ε) time, where h is the size of the hitting set computed by the algorithm,
which is O(h∗ log m), with high probability. Finally, we combine the two ap-
proaches and obtain a Monte Carlo algorithm whose running time is O(ϕ(m, n) ·
nε + η3ϕ(m/η, n/η) log n log3 m), for any ε > 0, where η = min{h1/3, m1/4} and
h = O(h∗ log m), with high probability. For case (C2), the expected running time
can be improved to O(ϕ∗(m, n) ·nε +η3ϕ∗(m/η, n/η) logc n)), for some constant
c > 1. We believe that one should be able to improve the expected running time
to O(ϕ(m, n) logO(1) n), but such a bound remains elusive for now. Because of
lack of space many algorithms and proofs are omitted from this abstract, which
can be found in the full version of this paper [1].

2 Complexity of F for a Segment

Let B be a line segment of length d, and let O be a set of m convex polygons in
R

2 with a total of n vertices. We first bound the number of critical placements
when the polygons in O may intersect, and then prove a refined bound when



the polygons are pairwise disjoint. We omit the algorithms for computing these
placements from this abstract.

The case of intersecting polygons. There are several types of critical placements
of B (see Figure 1(a)):
(i) A placement where one endpoint of B touches a vertex of one polygon and
the other endpoint touches an edge of another polygon.
(ii) A placement where one endpoint of B touches a vertex of one polygon and
the relative interior of B touches a vertex of another polygon.
(iii) The relative interior of B touches two vertices (of the same or of distinct
polygons) and one endpoint of B touches a polygon edge.
(iv) The relative interior of B touches a vertex of a polygon, and one of its
endpoints touches an intersection point of two edges (of distinct polygons).
(v) One endpoint of B touches an intersection point of two edges (of distinct
polygons), and the other endpoint touches a third edge.
(vi) The relative interior of B touches a vertex of a polygon, and its two endpoints
touch two respective edges (of distinct polygons).
There are O(mn) placements of types (i) and (ii), and O(m2 + n) placements

(i) (ii)

(v)

(iii)

(iv) (vi)

(a) (b)

v

d d

u

z

y
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Q′

Q

Fig. 1. (a) Critical free placements of B; (b) FQ and GQ′ intersect at most twice.

of type (iii).
Consider the placements of types (iv) and (v). Let u be an intersection point

of two polygon boundaries (which lies on the boundary of their union), and let
H denote the hole (i.e., connected component of the complement) of the union
of O which contains u on its boundary. Again, placing an endpoint of B at u
leaves B with one degree of freedom of rotation about u. However, at any such
free placement, B must be fully contained in (the closure of) H . For any polygon
O ∈ O whose boundary contributes to ∂H , there are at most two critical free
placements of types (iv) and (v) where B swings around u and touches O, and no
other polygon (namely, those which do not show up on ∂H) can generate such a
placement. It follows that, for any polygon O ∈ O, the intersection points u that
can form with O critical free placements of type (iv) or (v) are vertices of the
zone of ∂O in the arrangement A(O \ {O}). Since ∂O is convex, the complexity



of the zone is O(nα(n)) [2]. Hence the overall number of such placements is
O(mnα(n)).

Finally, consider critical free placements of type (vi). Let v be a fixed vertex
of some polygon (not lying inside any other polygon). The placements of B at
which its relative interior touches v can be parametrized in a polar coordinate
system (r, θ), where r is the distance of one endpoint a of B from v, and θ is
the orientation of B, oriented towards a, so that O lies to the right of (the line
supporting) B. The admissible values of (r, θ) can be restricted to the rectangle
[0, d]×I, where I is the range of orientations of tangent lines to O at v, for which
O lies to their right. For any polygon Q ∈ O \ {O}, we define a forward function
r = FQ(θ) and a backward function r = GQ(θ), where FQ(θ) (resp., GQ(θ)) is
the distance from v to ℓθ ∩ Q (resp., d minus that distance), where ℓθ is the
line at orientation θ that passes through v. FQ(θ) (resp., GQ(θ)) is defined only
when ℓθ ∩ Q is nonempty, lies ahead (resp., behind) v along ℓθ, and its distance
from v is at most d; in all other cases, we set FQ(θ) := d (resp., GQ(θ) := 0). It
is clear that the set Fv of free placements of B when its relative interior hinges
over v, is given in parametric form by

{(r, θ) | max
Q

GQ(θ) ≤ r ≤ min
Q

FQ(θ)}.

That is, Fv, in parametric form, is the sandwich region between the lower enve-
lope of the functions FQ and the upper envelope of the functions GQ. It follows
that the combinatorial complexity of Fv is proportional to the sum of the com-
plexities of the two individual envelopes. A placement of B, where one endpoint
lies either at a vertex of some polygon (including v itself), or at the intersection
point between two edges of distinct polygons, its relative interior touches v, and
the portion of B between these two contacts is free, corresponds to a breakpoint
in one of the envelopes. Arguing as in the analysis of the preceding types of criti-
cal placements, the overall number of such placements, summed over all vertices
v, is O(mnα(n)). It follows that the overall number of critical placements of type
(vi) is also O(mnα(n)). Putting everything together, we obtain:

Theorem 1. Let B be a line segment and let O be a set of m (possibly intersect-
ing) convex polygons in R

2 with n vertices in total. The number of free critical
placements of B is O(mnα(n)).

The case of pairwise-disjoint polygons. We now prove a refined bound on the
number of free critical placements if the polygons in O are pairwise disjoint.
A trivial construction shows that, even in this case, there can be Ω(mn) free
critical placements of types (i) and (ii). However, most of these placements in-
volve contacts with only two distinct polygons, so they are degenerate critical
contacts. As we next show, the number of nondegenerate critical contacts is
smaller. Specifically, we argue that there are only O(m2 + n) free nondegenerate
critical placements.

We have already ruled out critical placements of types (i) and (ii) because
they are degenerate, and we rule out placements of type (iv) and (v) because



they involve intersecting polygons. It thus remains to bound the number of free
critical placements of types (iii) and (vi). There are only O(m2 + n) critical
placements of type (iii), as argued above. For placements of type (vi), we use the
same scheme as above, fixing the pivot vertex v and considering the system of
functions FQ(θ), GQ(θ) in polar coordinates about v. Let Lv(θ) = minQ FQ(θ)
and Uv(θ) = maxQ GQ(θ); Let µv (resp. νv) be the number of breakpoints in Lv

(resp. Uv). Using the fact that the functions FQ (and GQ) are pairwise disjoint,
we claim the following:

Lemma 1.
∑

v(µv + νv) = O(m2 + n).

If we mark the θ-values at which a breakpoint of Lv or Uv occurs, we partition
the θ-range into intervals so that each of Lv and Uv is attained by (a connected
portion of the graph of) a single function, say FQ and GQ′ , respectively. We
claim that FQ and GQ′ intersect in at most two points in this interval, i.e., there
are two semifree placements of B such that v lies in the interior of B and the
endpoints of B lie on ∂Q and ∂Q′; see Figure 1(b). Hence, the number of vertices
in the sandwich region between Lv and Uv is O(µv + νv). Putting everything
together, we obtain:

Theorem 2. Let B be a line segment, and let O be a set of pairwise-disjoint con-
vex polygons with n vertices in total. The number of nondegenerate free critical
placements of B is O(m2 + n).

3 Complexity of F for a Convex k-gon

In this section we derive an improved bound on ϕ(B, O) for the case where B is
a convex k-gon and O is a set of m pairwise-disjoint convex polygons in R

2 with
n vertices in total. We assume that the polygons in O are in general position,
as in [11]. We first prove that the number of degenerate free critical placements
is O(k2mn), and then show that the total number of realizable double contacts
is O(k2mn). By adapting the argument of Leven and Sharir [11], we then prove
that ϕ(B, O) = O(k2mnβ6(kn)). We begin by stating a lemma, which establishes
an upper bound on the number of realizable double contacts when there are only
two obstacles.

Lemma 2. Let B be a convex k-gon, and let O1 and O2 be two disjoint con-
vex polygons with n1 and n2 vertices, respectively, then the number of semifree
degenerate critical placements in F(B, {O1, O2}) is O(k2(n1 + n2)).

The following corollary follows immediately from Lemma 2.

Corollary 1. Let B be a convex k-gon and let O be a set of m pairwise-disjoint
convex polygons with n vertices in total. The number of degenerate critical place-
ments in F(B, O) is O(k2mn).



Next, we bound the number of realizable double contacts. It is tempting to
prove that a fixed contact C can realize only O(km) double contacts, but, as
shown in the full version, a contact may be involved in Ω(kn) realizable double
contacts, so we have to rely on a more global counting argument. Note first that
the preceding argument shows that the number of degenerate double contacts
is O(k2mn), so it suffices to consider only nondegenerate double contacts. Since
we assume that the polygons are in general position, the locus of placements
forming a fixed non-degenerate double contact {C1, C2} is a curve in R

3. Let
O1 and O2 be the two (distinct) polygons involved in {C1, C2}. Adapting the
argument in [15, Lemma 8.55], one can show that at least one endpoint of this
curve is a degenerate triple contact, which we denote by z(C1, C2), which is
semifree with respect to O1 and O2. We thus charge {C1, C2} to z(C1, C2), and
argue that each nondegenerate triple contact in F(B, {O1, O2}) is charged at
most O(1) times. Omitting all further details, we obtain:

Lemma 3. Let B be a convex k-gon and let O be a set of m pairwise-disjoint
convex polygons with n vertices in total. The number of realizable double contacts
is O(k2mn).

Plugging Corollary 1 and Lemma 3 into the proof of Leven and Sharir [11],
we obtain the main result of this section.

Theorem 3. Let B be a convex k-gon, and let O be a set of m pairwise-disjoint
convex polygons with n vertices in total. Then ϕ(B, O) = O(k2mnβ6(kn)).

4 Computing Critical Placements

So far, we have only considered semifree critical placements, but, since we want to
construct a set of stabbing placements of B, we need to consider (and compute)
the set of all (nonfree) critical placements.

Bounding the number of critical placements. Let K = {K1, . . . , Km} be the
set of c-polygons yielded by B and O, as defined in the Introduction, and let
A(K) denote the 3-dimensional arrangement of K. For a point z ∈ R

3 and a
subset G ⊆ K, let ∆(z, G) denote the depth of z with respect to G, i.e., the
number of c-polygons in G containing z in their interior; we use ∆(z) to denote
∆(z, K). Let Φl(K) denote the set of vertices of A(K), whose depth is l, and put
Φ≤l(K) =

⋃
h≤l Φh(K). Set ϕl(K) = |Φl(K)| and ϕ≤l(K) = |Φ≤l(K)|. We now

state a theorem, whose proof is deferred to the full version of this paper.

Theorem 4. (i) Let B be a line segment, let O be a set of m convex polygons
in R

2 with a total of n vertices, and let K = K(B, O). Then, for any 1 ≤ l ≤ m,
we have ϕ≤l(K) = O(mnlα(n)). If the polygons in O are pairwise disjoint, then
the number of non-degenerate critical placements in Φ≤l(K) is O(m2l + nl2).

(ii) Let B be a convex k-gon, let O be a set of m pairwise-disjoint polygons
in R

2 with a total of n vertices, and let K = K(B, O). Then, for any 1 ≤ l ≤ m,
we have ϕ≤l(K) = O(k2mnlβ6(kn)).



The Depth Threshold procedure. One of the strategies that we will use for
computing a stabbing set is based on determining whether the maximal depth
in A(K) exceeds a given threshold l. For this we use the Depth Threshold

procedure, which, given an integer l ≥ 1, determines whether Depth (K) ≤ l. If
not, it returns a critical placement whose depth is greater than l. Otherwise, it
returns all critical placements of B (which are all the vertices of A(K)). Without
describing the details of this procedure, we claim the following.

Theorem 5. (i) Let B be a line segment, and let O be a set of m convex poly-
gons in R

2 with a total of n vertices. For a given integer 1 ≤ l ≤ m, the
Depth Threshold (l) procedure takes O(mn(log n + lα(n))) expected time.
If the polygons in O are pairwise disjoint, the expected running time is O((m2l+
nl2) log2 n).

(ii) Let B be a convex k-gon and O be a set of m pairwise-disjoint convex
polygons in R

2 with a total of n vertices. For a given integer 1 ≤ l ≤ m, the
Depth Threshold (l) procedure takes O(k2mn(log n+lβ6(kn))) expected time.

5 Computing a Hitting Set

Let K = {K1, . . . , Km} be the set of c-polygons, for an input collection O of
convex polygons and a line segment or convex polygon B, as above. Our goal is
to compute a small-size hitting set for K, and we do it by applying a standard
greedy technique which proceeds as follows. In the beginning of the ith step we
have a subset Ki ⊆ K; initially K1 = K. We compute a placement zi ∈ R

3

such that ∆(zi, Ki) = Depth (Ki), and we also compute the set Kzi
⊆ Ki of

the c-polygons that contain zi. We add zi to H , and set Ki+1 = Ki \ Kzi
. The

algorithm stops when Ki becomes empty. The standard analysis of the greedy
algorithm [6] shows that |H | = O(h∗ log m), where h∗ is the size of the smallest
hitting set for K. In fact, the size of H remains O(h∗ log m), even if at each
step we choose a point zi such that ∆(zi, Ki) ≥ Depth (Ki)/2. We describe
three different procedures to implement this greedy algorithm. The first one, a
Las Vegas algorithm, works well when Depth (K) is small. The second one, a
Monte Carlo algorithm, works well when h∗ is small. Finally, we combine the
two approaches to obtain an improved Monte Carlo algorithm. For simplicity,
and due to lack of space, we focus on case (C1): B is a segment and the polygons
in O may intersect.

The Las Vegas algorithm. It suffices to find a deepest point in A(K) that lies
on ∂Ki for some i, and that (assuming general position), we may assume it to
lie in the relative interior of some 2-face (the depth of all the points within the
same 2-face is the same). Thus, for each 2-face f of A(K) we choose a sample
point zf . Let Z ⊆ R

3 be the set of these points. We maintain ∆(z, Ki) for each
z ∈ Z, as we run the greedy algorithm, and return zi = arg maxz∈Z ∆(z, Ki) at
each step, and delete the c-polygons containing zi from K. It will be expensive
to maintain the depth of each point in Z explicitly. We describe a data structure
that maintains the depth of each placement zi in Z implicitly, supports deletion



of c-polygons and returns a placement of maximum depth. For each c-polygon
Kj , let Γj = {γji = ∂Kj ∩ Ki | i 6= j} be a set of regions on ∂Kj . We compute
A(Γj) using Theorem 5. Let D(Γj) be the planar graph that is dual to A(Γj).
We choose a representative point zf from each face f of A(Γj), and use zf to
denote the node of D(Γj) dual to f . If an edge e of A(Γj) lies on ∂Ka, for some
Ka ∈ K, we label the edge e of D(Γj) with Ka and denote this label by χ(e).
We compute a spanning tree T of D(Γj), and then convert T into a path Π by
performing a traversal of T , starting from some leaf v; each edge of T appears
twice in Π . The sequence of vertices in Π can be decomposed into intervals, such
that all vertices in each interval either lie in a c-polygon Ka or none of them lie
inside Ka. Let Ja be the subset of those intervals whose vertices lie inside Ka.
We represent an interval vx, . . . , vy by the pair [x, y]. Set J =

⋃
a6=j Ja. For any

vertex vs ∈ Π , we define the weight w(vs) to be the number of intervals [x, y]
in J that contain vs, i.e., intervals satisfying x ≤ s ≤ y. For a subset G ⊆ K,
∆(vs, G) is the number of intervals in

⋃
Ka∈G

Ja that contain vs. We store J
in a segment tree, Σ, built on the sequence of edges in Π . Each node σ of Σ
corresponds to a subpath Πσ of Π . For each σ, we maintain the vertex of Πσ of
the maximum weight. The root of Σ stores a vertex of Π of the maximum weight.
Once we have computed A(Γj), J and Σ can be constructed in O(κj log κj) time,
where κj is the complexity of A(Γj). We have

∑
j κj = O(mn∆α(n)), where

∆ = Depth (K). The information in Σ can be updated in O(log n) time when
an interval is deleted from J . When the greedy algorithm deletes a c-polygon
Ka, we delete all intervals in Ja from J and update Σ. The total time spent in
updating Σ is O(κj log n). Maintaining this structure for each c-polygon Kj, the
greedy algorithm can be implemented in O(mn∆α(n) log n) expected time.

Lemma 4. A hitting set of K of size O(h∗ log m) can be computed in expected
time O(mn∆α(n) log n), where ∆ = Depth (K) and where h∗ is the size of a
smallest hitting set of K.

A simple Monte Carlo algorithm. Let ∆ = Depth (K). If ∆ = O(log m), we use
the above algorithm and compute a hitting set in time O(mnα(n) log m log n).
So assume that ∆ ≥ c log m for some constant c ≥ 1. We use a procedure by
Aronov and Har-Peled [3], which computes a placement whose depth is at least
∆/2. Their main algorithm is based on the following observation. Fix an integer
l ≥ ∆/4. Let G ⊆ K be a random subset obtained by choosing each c-polygon
of K with probability ρ = (c1 ln m)/l, where c1 is an appropriate constant.
Then the following two conditions hold with high probability, (i) if ∆ ≥ l then
Depth (G) ≥ 3lρ/2 = (3c1/2) ln m, and, ii) if ∆ ≤ l then Depth (G) ≤ 5lρ/4 =
(5c1/4) ln m.

This observation immediately leads to a binary-search procedure for approxi-
mating Depth (K). Let τ = (5c1/4) ln m. In the ith step, for i ≤ ⌈log2(m/ log2 m)⌉,
we set li = m/2i. We choose a random subset Gi ⊆ K using the parameter
l = li, and then run the procedure Depth Threshold on Gi with parameter
τ . If the procedure determines that Depth (Gi) ≤ τ , then we conclude that
Depth (K) ≤ li, and we continue with the next iteration. Otherwise, the algo-
rithm returns a point z ∈ R

3 such that ∆(z, Gi) ≥ τ . We need a data structure



for reporting the set of polygons in O intersected by B[z] for a placement z ∈ R
3.

As we show in the full version, we can preprocess O into a data structure of size
O(mn1+ε), for any ε > 0, so that a convex polygon Oi of O can be deleted in
time O(|Oi| · n

ε), where |Oi| is the number of vertices of Oi, and so that the set
of all κ polygons intersecting a query placement B[z] of B can be reported in
time O((1 + κ) log n).

Set mi = |Gi|, and let ni be the number of vertices in the original polygons
corresponding to the c-polygons in Gi. Then the expected running time of the ith
iteration is O(miniτα(n) log n). Since E[mini] = O(mnρ2 + nρ), the expected
running time of the ith iteration is O((mn/l2i )α(n) log3 m log n).

Since the algorithm always stops after at most ⌈log2(m/ log2 m)⌉ iterations,
the overall expected running time is O(mnα(n) log m log n). Note that if the al-
gorithm stops after i steps, then, with high probability, ∆ ∈ [li, 2li]. Hence, the
expected running time of the algorithm is O((mn/∆2)α(n) log3 m log n). Plug-
ging this procedure into the greedy algorithm described above, and accounting
for O(mn1+ε) time for preprocessing and reporting the polygons intersecting a
placement z, we get the following lemma.

Lemma 5. There is a Monte Carlo algorithm for computing a hitting set of K

whose size is h = O(h∗ log m) with probability at least 1 − 1/mO(1), and whose
expected running time is O(mnhα(n) log m log n + mn1+ε).

An improved Monte Carlo algorithm. We now combine the two algorithms given
above, to obtain a faster algorithm for computing a small-size hitting set of K.
For this we use the data structure mentioned above, which preprocesses O in
O(mn1+ε) time to support deletion.

We now run the greedy algorithm as follows. We begin by running the Monte
Carlo algorithm described above. In the ith iteration, it returns a point zi such
that ∆(zi, Ki) ≥ Depth (Ki)/2, with high probability. We use the above data
structure to report the set Ozi

of all polygons that intersect the query placement
B[zi], or, equivalently, the set Kzi

of the c-polygons that contain zi. We delete
these polygons from the data structure. If |Ozi

| < i1/3 then we switch to the Las
Vegas algorithm described earlier, to compute a hitting set of Ki+1.

We now analyze the expected running time of the algorithm. The total time
spent in reporting the polygons intersected by the placements B[z1], . . . , B[zh],
is O(mn1+ε), so it suffices to bound the time spent in computing z1, . . . , zh.
Suppose that the algorithm switches to the second stage after ξ + 1 steps. Then
Depth (Ki) ≥ ξ1/3, for 1 ≤ i ≤ ξ, and, the expected running time of each of the
iterations of the first stage is O((mn/ξ2/3)α(n) log n log3 m). Hence, the expected
running time of the first stage is O(mnξ1/3α(n) log n log3 m). The expected run-
ning time of the second stage is O(mnξ1/3α(n) log n) because Depth (Kξ+2) ≤
2ξ1/3. Suppose h is the size of the hitting set computed by the algorithm. Then
ξ ≤ h. Moreover, for 1 ≤ i ≤ ξ, each zi lies inside at least (ξ1/3)/2 c-polygons
of Ki, and all these polygons are distinct. Therefore, ξ4/3 ≤ 2m. The expected
running time of the overall algorithm is O(mnηα(n) log n log3 m+mn1+ε), where
η = min{m1/4, h1/3}. We thus obtain the following.



Theorem 6. Let B be a line segment, and let O be a set of m (possibly in-
tersecting) convex polygons in R

2, with a total of n vertices. A stabbing set
of O of h = O(h∗ log m) placements of B can be computed, with probability
at least 1 − 1/mO(1), in expected time O(mn(nε + ηα(n) log n log3 m)), where
η = min{m1/4, h1/3}, h∗ is the smallest size of a hitting set, and ε > 0 is an
arbitrarily small constant.

Remark: The expected running time of the above approach is O((m2 +
n)nε+(m2η+nη2) logc(n)) for case (C2) and O(k2mn(nε+ηβ6(kn) log n log3 m))
for case (C3).
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