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ABSTRACT
We establish an improved upper bound for the number of in-
cidences betweenm points and n arbitrary circles in three di-
mensions. The previous best known bound, originally estab-
lished for the planar case and later extended to any dimen-

sion ≥ 2, is O∗
(

m2/3n2/3 +m6/11n9/11 +m+ n
)

(where

the O∗(·) notation hides sub-polynomial factors). Since all
the points and circles may lie on a common plane or sphere,
it is impossible to improve the bound in R

3 without first
improving it in the plane.
Nevertheless, we show that if the set of circles is required

to be “truly three-dimensional” in the sense that no sphere
or plane contains more than q of the circles, for some q ≪ n,
then the bound can be improved to

O∗(m3/7n6/7 +m2/3n1/2q1/6 +m6/11n15/22q3/22 +m+ n
)

.

For various ranges of parameters (e.g., when m = Θ(n) and

q = o(n7/9)), this bound is smaller than the best known two-

dimensional worst-case lower bound Ω∗(m2/3n2/3 +m+ n).
We present several extensions and applications of the new

bound: (i) For the special case where all the circles have the
same radius, we obtain the improved bound

O∗
(

m5/11n9/11 +m2/3n1/2q1/6 +m+ n
)

. (ii) We present

an improved analysis that removes the subpolynomial fac-
tors from the bound when m = O(n3/2−ε) for any fixed
ε > 0. (iii) We use our results to obtain the improved bound
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O(m15/7) for the number of mutually similar triangles de-
termined by any set of m points in R

3.
Our result is obtained by applying the polynomial parti-

tioning technique of Guth and Katz using a constant-degree
partitioning polynomial (as was also recently used by Soly-
mosi and Tao). We also rely on various additional tools from
analytic, algebraic, and combinatorial geometry.

Categories and Subject Descriptors
G.2.1 [DISCRETE MATHEMATICS]: Combinatorics

Keywords
Incidences, Polynomial partitioning, Combinatorial geom-
etry, Algebraic geometry, Ruled surfaces, Circles, Similar
triangles

1. INTRODUCTION
Recently, Guth and Katz [20] presented the polynomial

partitioning technique as a major technical tool in their solu-
tion of the famous planar distinct distances problem of Erdős
[16]. This problem can be reduced to an incidence prob-
lem involving points and lines in R

3 (following the reduction
that was proposed in [15]), which can be solved by applying
the aforementioned polynomial partitioning technique. The
Guth-Katz result prompted various other incidence-related
studies that rely on polynomial partitioning (e.g., see [24,
25, 38, 43]). One consequence of these studies is that they
have led to further developments and enhancements of the
technique itself (as seen for example in the use of induction
in [38], and the use of two partitioning polynomials in [24,
43]). Also, the technique was recently applied to some prob-
lems that are not incidence related: it was used to provide
an alternate proof of the existence of spanning trees with
small crossing number in any dimension [25], and to obtain
improved algorithms for range searching with semialgebraic
sets [2]. Thus, it seems fair to say that applications and en-
hancements of the polynomial partitioning technique form
an active contemporary area of research in combinatorial
and computational geometry.

In this paper we study incidences between points and cir-
cles in three dimensions. Let P be a set of m points and C a
set of n circles in R

3. We denote the number of point-circle
incidences in P × C as I(P, C). When the circles have arbi-
trary radii, the current best bound for any dimension d ≥ 2
(originally established for the planar case in [3, 8, 28], and



later extended to higher dimensions by Aronov et al. [7]) is

I(P, C) = O∗
(

m2/3n2/3 +m6/11n9/11 +m+ n
)

. (1)

Here in fact the O∗(·) notation only hides polylogarithmic

factors; the precise best known upper bound isO(m2/3n2/3+

m6/11n9/11 log2/11(m3/n) +m+ n) [28].
Since the three-dimensional case also allows P and C to

lie on a single common plane or sphere1, the point-circle
incidence bound in R

3 cannot be improved without first im-
proving the planar bound (1) (which is an open problem for
about 10 years). Nevertheless, as we show in this paper,
an improved bound can be obtained if the configuration of
points and circles is “truly three-dimensional” in the sense
that no sphere or plane contains too many circles from C.
(Guth and Katz [20] use a similar assumption on the max-
imum number of lines that can lie in a common plane or
regulus.) Our main result is given in the following theorem.

Theorem 1.1. Let P be a set of m points and let C be a
set of n circles in R

3, let ε be an arbitrarily small positive
constant, and let q < n be an integer. If no sphere or plane
contains more than q circles of C, then

I(P, C) = O
(

m3/7+εn6/7 +m2/3+εn1/2q1/6

+m6/11+εn15/22q3/22 +m+ n
)

,

where the constant of proportionality depends on ε.

Remarks. (1) In the planar case, the best known lower
bound for the number of incidences between points and cir-
cles is Ω∗(m2/3n2/3 +m+ n) (e.g., see [33])2. Theorem 1.1
implies that for certain ranges of m,n, and q, a smaller up-
per bound holds in R

3. This is the case, for example, when
m = Θ(n) and q = o(n7/9).

(2) When m > n3/2, we have m3/7n6/7 < m and also

m6/11n15/22q3/22 < m2/3n1/2q1/6. Hence, we have I(P, C) =
O(m2/3+εn1/2q1/6 + m1+ε). In fact, as the analysis in this
paper will show, the first term in this bound only arises from
bounding incidences on certain potentially“heavy”planes or
spheres. For q = O(m2/n3) we have I(P, C) = O(m1+ε).

(3) When m ≤ n3/2, any of the terms except for m can dom-

inate the bound. However, if in addition q = O

(

(

n3

m2

)3/7
)

then the bound becomes I(P, C) = O(m3/7+εn6/7 + n).
Note also that the interesting range of parameters is m =
Ω∗(n1/3) and m = O∗(n2); in the complementary ranges
both the old and new bounds become (almost) linear in
m + n. In the interesting range, the new bound is asymp-
totically smaller than the planar bound given in (1) for q

sufficiently small (e.g., when q = O

(

(

n3

m2

)3/7
)

as above),

and as noted, it is also smaller than the best known worst-
case lower bound in the planar case for certain ranges of m
and n.
(4) Interestingly, the “threshold” value m = Θ(n3/2) where
a quantitative change in the bound takes place (as noted

1There is no real difference between the cases of coplanarity
and cosphericality of the points and circles, since the latter
case can be reduced to the former (and vice versa) by means
of the stereographic projection.
2It is in fact larger than the explicit expression by a frac-
tional logarithmic factor.

in Remarks (2) and (3) above) also arises in the study of
incidences between points and lines in R

3 [14, 19, 20]. See
Section 5 for a discussion of this threshold phenomenon.

The proof of Theorem 1.1 is based on the polynomial par-
titioning technique of Guth and Katz [20], where we use a
constant-degree partitioning polynomial in a manner similar
to that used by Solymosi and Tao [38]. (The use of constant-
degree polynomials and the induction arguments it leads to
are essentially the only similarities with the technique of
[38], which does not apply to circles in any dimension since
it cannot handle situations where arbitrarily many curves
can pass between any specific pair of points.) The applica-
tion of this technique to incidences involving circles leads to
new problems involving the handling of points that are inci-
dent to many circles that are entirely contained in the zero
set of the partitioning polynomial. To handle this situation
we turn these circles into lines using an inversion transforma-
tion. We then analyze the geometric and algebraic structure
of the transformed zero set using a variety of tools such as
flecnode polynomials (as used in [20]), additional classical
19th-century results in analytic geometry from [35] (mostly
related to ruled surfaces), a very recent technique for ana-
lyzing surfaces that are “ruled” by lines and circles [32], and
some traditional tools from combinatorial geometry.

Removing the epsilons. One disadvantage of the current
use of constant-degree partitioning polynomials is that ε’s
appear in some exponents in the resulting bound, as stated
in Theorem 1.1. In Section 3.1 we present a new method,
with a more involved analysis, for partially removing these
ε’s. It yields the following theorem:

Theorem 1.2. Let P be a set of m points and let C be
a set of n circles in R

3, let q < n be an integer, and let
m = O(n3/2−ε), for some fixed arbitrarily small ε > 0. If
no sphere or plane contains more than q circles of C, then

I(P, C) ≤ Am,n

(

m3/7n6/7 +m2/3n1/2q1/6

+m6/11n15/22q3/22 log2/11 m+m+ n
)

, (2)

where Am,n = A

⌈

3
2
·
log(m/n1/3)

log(n3/2/m)

⌉

, for some absolute constant
A > 1.

Recently, several other cases in which such ε’s can be re-
moved were described in [44]. Our method seems to be suf-
ficiently generic, so that variants of it may possibly yield
similar improvements of other bounds that were obtained
with constant-degree partitioning polynomials, such as the
ones in [38].

Unit circles. In the special case where all the circles of
C have the same radius, we derive the following improved
bound.

Theorem 1.3. Let P be a set of m points and let C be
a set of n unit circles in R

3, let ε be an arbitrarily small
positive constant, and let q < n be an integer. If no plane
or sphere contains more than q circles of C, then

I(P, C) = O
(

m5/11+εn9/11 +m2/3+εn1/2q1/6 +m+ n
)

,

where the constant of proportionality depends on ε.

This improvement is obtained through the following steps.
(i) We use the planar (or spherical) bound O(m2/3n2/3 +



m + n) for incidences with unit circles (e.g., see [39]). (ii)
We show that the number of unit circles incident to at least
three points in a given set of m points in R

3 is only O(m5/2).
(iii) We use this bound as a bootstrapping tool for deriving
the bound asserted in the theorem. The details are presented
in the full version of this paper [37]. Here too the ε’s can be
(partially) removed from the bound; we omit the details of
this improvement in this abstract.

An application: similar triangles. Given a finite point
set P in R

3 and a triangle ∆, we denote by F (P,∆) the
number of triangles that are spanned by points of P and
are similar to ∆. Let F (m) = max|P|=m,∆ F (P,∆). The
problem of obtaining good bounds for F (m) is motivated by
questions in exact pattern matching, and has been studied
in several previous works (see [1, 4, 6, 10]). Theorem 1.2 im-

plies the bound F (m) = O(m15/7), which slightly improves

upon the previous bound of O∗(m58/27) from [6] (in the pre-
vious bound, the O∗() notation only hides polylogarithmic
factors); see also [1]. The new bound is an almost immediate
corollary of Theorem 1.2, while the previous bound requires
a more complicated analysis. This application is presented
in Section 5.

2. ALGEBRAIC PRELIMINARIES
We briefly review in this section the machinery needed

for our analysis, including the polynomial partitioning tech-
nique of Guth and Katz and several basic tools from alge-
braic geometry.

Polynomial partitioning. Consider a set P of m points in
R

d. Given a polynomial f ∈ R[x1, . . . , xd], we define the zero
set of f to be Z(f) = {p ∈ R

d | f(p) = 0}. For 1 < r ≤ m,
we say that f ∈ R[x1, . . . , xd] is an r-partitioning polynomial
for P if no connected component of Rd \Z(f) contains more
than m/r points of P. Notice that there is no restriction on
the number of points of P that lie in Z(f). The following
result is due to Guth and Katz [20]. A detailed proof can
also be found in [25].

Theorem 2.1. (Polynomial partitioning [20]) Let P
be a set of m points in R

d. Then for every 1 < r ≤ m,
there exists an r-partitioning polynomial f ∈ R[x1, . . . , xd]

of degree O(r1/d).

To use such a partitioning effectively, we also need a bound
on the maximum possible number of cells of the partition.
Such a bound is provided by the following theorem.

Theorem 2.2. (Warren’s theorem [41]) Given a poly-
nomial f ∈ R[x1, . . . , xd] of degree k, the number of con-

nected components of Rd \ Z(f) is O((2k)d).

Consider an r-partitioning polynomial f for a point-set P,
as provided in Theorem 2.1. The number of cells in the
partition is equal to the number of connected components of
R

d\Z(f). By Theorem 2.2, this is O((r1/d)d) = O(r) (recall

that f is of degree O(r1/d) and that d is treated as a fixed
constant — 3 in our case). It follows that the bound on the
number of points in each cell, namely m/r, is asymptotically
best possible.
Since this paper studies incidences in a three-dimensional

space, we will only apply the above theorems for d = 3.

Bézout’s theorem. We also need the following basic prop-
erty of zero sets of polynomials in the plane (for further
discussion see [12, 13]).

Theorem 2.3. (Bézout’s theorem) Let f, g be two poly-
nomials in R[x1, x2] of degrees Df and Dg, respectively. (i)
If Z(f) and Z(g) have a finite number of common points,
then this number is at most DfDg. (ii) If Z(f) and Z(g)
have an infinite number of (or just more than DfDg) com-
mon points, then f and g have a common (nontrivial) factor.

The following is an extension of Bézout’s theorem to com-
plex projective spaces of any dimension (e.g., see [18]).

Theorem 2.4. (Higher dimensional extension of Bé-
zout’s theorem) Let Z1 and Z2 be pure-dimensional va-
rieties (every irreducible component of a pure-dimensional
variety has the same dimension) in the d-dimensional com-
plex projective space, with codimZ1+codimZ1 = d. Then if
Z1 ∩Z2 is a zero-dimensional set of points, this set is finite.

The following lemma is a consequence of Theorem 2.3. Its
proof is given in [14, Proposition 1] and [19, Corollary 2.5].

Lemma 2.5. (Guth and Katz [19]) Let f and g be two
polynomials in R[x1, x2, x3] of respective degrees Df and Dg,
such that f and g have no common factor. Then there are at
most DfDg lines on which both f and g vanish identically.

Flecnode polynomial. A flecnode of a surface Z in R
3

is a point p ∈ Z for which there exists a line that passes
through p and agrees with Z at p to order three. That is,
if Z = Z(f) (here f is the lowest degree polynomial whose
zero-set is Z) and the direction of the line is v = (v1, v2, v3)
then

f(p) = 0, ∇vf(p) = 0, ∇2
vf(p) = 0, ∇3

vf(p) = 0,

where ∇vf,∇2
vf,∇3

vf are, respectively, the first, second,
and third-order derivatives of f in the direction v. That is
∇vf = ∇f · v,∇2

vf = vTHfv, where Hf is the Hessian ma-
trix of f , and ∇3

vf is similarly defined, although its explicit
expression in terms of the third-order partial derivatives of
f is somewhat more involved.

The flecnode polynomial of f , denoted FLf , is the polyno-
mial obtained by eliminating v from the last three equations.
Note that the corresponding polynomials of the system are
homogeneous in v. We thus have a system of three equations
in six variables. Eliminating the variables v1, v2, v3 results
in a single polynomial equation in p = (x1, x2, x3), which is
the desired flecnode polynomial. By construction, the flec-
node polynomial of f vanishes on all the flecnodes of Z(f).
The following results, also mentioned in [20, Section 3], are
taken from Salmon [35, Chapter XVII, Section III].

Lemma 2.6. Let Z ⊂ R
3 be a surface, with Z = Z(f) for

a polynomial f ∈ R[x1, x2, x3] of degree d ≥ 3. Then FLf

has degree at most 11d− 24.

An algebraic surface S in a three-dimensional space (we
restrict our attention to R

3, C3, and the complex projective
space CP3) is said to be ruled if every point of S is incident
to a straight line that is fully contained in S. Equivalently,
S is a (two-dimensional) union of lines.3 We say that an
irreducible surface S is triply ruled if for every point on S
there are (at least) three straight lines contained in S and
passing through that point. As is well known (e.g., see [17,

3We do not insist on the more restrictive definition used in
differential geometry, which requires the ruling lines to form
a smooth 1-parameter family; cf. [9, Chapter III].



Lecture 16]), the only triply ruled surfaces are planes. We
say that an irreducible surface S is doubly ruled if it is not
triply ruled and for every point on S there are (at least)
two straight lines contained in S and passing through that
point. It is well known that the only doubly ruled surfaces
are the hyperbolic paraboloid and the hyperboloid of one
sheet (again, see [17, Lecture 16]). Finally, we say that an
irreducible ruled surface is singly ruled if it is neither doubly
nor triply ruled.

Lemma 2.7. Let Z ⊂ R
3 be a surface with Z = Z(f) for

a polynomial f ∈ R[x1, x2, x3] of degree d ≥ 3. Then every
line that is fully contained in Z is also fully contained in
Z(FLf ).

Theorem 2.8. (Cayley-Salmon [35]) Let Z ⊂ R
3 be a

surface with Z = Z(f) for a polynomial f ∈ R[x1, x2, x3] of
degree d ≥ 3. Then Z is ruled if and only if Z ⊆ Z(FLf ).

Corollary 2.9. Let Z ⊂ R
3 be a surface with Z = Z(f)

for an irreducible polynomial f ∈ R[x1, x2, x3] of degree d ≥
3. If Z contains more than d(11d − 24) lines then Z is a
ruled surface.

Proof. Lemma 2.5 and Lemma 2.7 imply that in this case
f and FLf have a common factor. Since f is irreducible, f
divides FLf , and Theorem 2.8 completes the proof.

A modern treatment (and generalization) of the Cayley-
Salmon theorem can be found in a more recent work by
Landsberg [26].

Theorem 2.10. (Landsberg [26]) Let Z be a surface in
either C

3 or CP3 (the three-dimensional complex projective
space), and let Z = Z(f) for a polynomial f of degree d ≥ 3.
Then Z is ruled if and only if Z ⊆ Z(FLf ).

3. PROOF OF THEOREM 1.1
The proof proceeds by induction on m + n. Specifically,

we prove by induction that, for any fixed ε > 0, there exist
constants α1, α2 such that

I(P, C) ≤ α1

(

m3/7+εn6/7 +m2/3+εn1/2q1/6+

m6/11+εn15/22q3/22
)

+ α2(m+ n).

Let n0 be a constant. The base case where m + n < n0

can be dealt with by choosing α1 and α2 sufficiently large.
We start by recalling a well-known simple, albeit weaker

bound. The incidence graph G ⊆ P×C whose edges are the
incident pairs in P × C cannot contain K3,2 as a subgraph,
because two circles have at most two intersection points. By
the Kővári-Sós-Turán theorem (e.g., see [29, Section 4.5]),

I(P, C) = |G| = O
(

n2/3m+ n
)

. This immediately implies

the theorem if m = O
(

n1/3
)

. Thus we may assume that

n = O
(

m3
)

.
We next apply the polynomial partitioning technique.

That is, we set r as a sufficiently large constant (whose value
depends on ε and will be determined later), and apply the
polynomial partitioning theorem (Theorem 2.1) to obtain an
r-partitioning polynomial f . According to the theorem, f is

of degree D = O
(

r1/3
)

and Z(f) partitions R
3 into max-

imal connected cells, each containing at most m/r points

of P. As already noted, Warren’s theorem (Theorem 2.2)
implies that the number of cells is O(r).

Let C0 denote the subset of circles of C that are fully con-
tained in Z(f), and let C′ = C \ C0. Similarly, set P0 =
P ∩ Z(f) and P ′ = P \ P0. Notice that

I(P, C) = I(P0, C0) + I(P0, C′) + I(P ′, C′). (3)

The terms I(P0, C′) and I(P ′, C′) can be bounded using tech-
niques (detailed below) that are by now fairly standard.
On the other hand, bounding I(P0, C0) is the main tech-
nical challenge in this proof. Other works that have applied
the polynomial partitioning technique, such as [24, 25, 38,
43, 44], also spend most of their efforts on incidences with
curves that are fully contained in the zero set of the par-
titioning polynomial (where these curves are either original
input curves or the intersections of input surfaces with the
zero set).

Bounding I(P0, C′) and I(P ′, C′). For a circle C ∈ C′,
let ΠC be the plane that contains C, and let fC denote the
restriction of f to ΠC . Since C is not contained in Z(fC),
fC and the irreducible quadratic equation of C within ΠC

do not have any common factor. Thus by Bézout’s theorem
(Theorem 2.3), C and Z(fC) have at most 2 · deg(fC) =

O
(

r1/3
)

common points. This immediately implies

I(P0, C′) = O
(

nr1/3
)

. (4)

Next, let us denote the cells of the partition as K1, . . . ,Ks

(recall that s = O(r) and that the cells are open). For
i = 1, . . . , s, put Pi = P ∩ Ki and let Ci denote the set of
circles in C′ that intersect Ki. Put mi = |Pi|, ni = |Ci|,
for i = 1, . . . , s. Note that |P ′| = ∑s

i=1 mi, and recall that

mi ≤ m/r for every i. The above bound of O
(

r1/3
)

on the

number of intersection points of a circle C ∈ C′ and Z(f)

implies that each circle crosses O
(

r1/3
)

cells (a circle has to

intersect Z(f) when moving from one cell to another). This

implies
∑

i ni = O
(

nr1/3
)

.

Notice that I(P ′, C′) =
∑s

i=1 I(Pi, Ci), so we proceed to
bound the number of incidences within a cell Ki. From the
induction hypothesis, we get

I(P ′, C′) ≤
s
∑

i=1

(

α1

(

m
3/7+ε
i n

6/7
i +m

2/3+ε
i n

1/2
i q1/6

+m
6/11+ε
i n

15/22
i q3/22

)

+ α2(mi + ni)
)

≤
s
∑

i=1

(

α1

(

(m

r

)3/7+ε

n
6/7
i +

(m

r

)2/3+ε

n
1/2
i q1/6

+
(m

r

)6/11+ε

n
15/22
i q3/22

))

+ α2

(

|P ′|+
s
∑

i=1

ni

)

. (5)

Since
∑

i ni = O
(

nr1/3
)

, Hölder’s inequality implies

s
∑

i=1

n
6/7
i = O

(

(

nr1/3
)6/7

· r1/7
)

= O
(

n6/7r3/7
)

.

Similarly,
∑s

i=1 n
1/2
i = O

(

n1/2r2/3
)

and
∑s

i=1 n
15/22
i =



O
(

n15/22r6/11
)

. By combining this with (5), we obtain

I(P ′, C′) ≤ α1 ·O
(

m3/7+εn6/7 +m2/3+εn1/2q1/6

rε

+
m6/11+εn15/22q3/22

rε

)

+ α2

(

|P ′|+O
(

nr1/3
))

.

Notice that the bound in (4) is subsumed in this bound,

and it is dominated by O(m3/7n6/7) since we assumed that
n = O

(

m3
)

and that r is constant. Taking r to be suffi-

ciently large, and α1 to be sufficiently larger than α2r
1/3,

we have

I(P0 ∪ P ′, C′) ≤ α1

3

(

m3/7+εn6/7 +m2/3+εn1/2q1/6

+m6/11+εn15/22q3/22
)

+ α2|P ′|. (6)

Bounding I(P0, C0): Handling shared points. We are
left with the task of bounding the number of incidences be-
tween the set P0 of points of P that are contained in Z(f)
and the set C0 of circles of C that are fully contained in Z(f).
We call a point of P0 shared if it is contained in the zero sets
of at least two distinct irreducible factors of f , and other-
wise we call it private. We first consider the case of shared
points.
Let Ps denote the subset of points in P0 that are shared,

and putms = |Ps|. Let f ′ = ∇ef , where e is a generic choice
of a unit vector, and ∇ef denotes the directional derivative
of f in direction e. Then deg(f ′) < D. We may assume that
f is the lowest-degree polynomial whose zero-set is Z(f),
and thus in particular, f is square-free. Therefore, Z(f ′)
contains the singular set of Z(f). By definition, a shared
point is necessarily a singular point of f (because, as is eas-
ily checked, all first-order partial derivatives of f vanish at
a shared point), and thus Ps ⊂ Z(f) ∩ Z(f ′). Since f is
square-free, Z(f)∩Z(f ′) has dimension at most 1. We claim
that at most 1

2
D2 circles can be contained in Z(f) ∩ Z(f ′).

Indeed, a generic projection of Z(f) ∩ Z(f ′) onto R
2 yields

a (planar) algebraic curve4 of degree at most D2, and every
circle contained in Z(f)∩Z(f ′) is a distinct ellipse contained
in the projected curve. A planar algebraic curve of degree
at most D2 can contain at most 1

2
D2 ellipses, from which

the claim follows. Thus there are at most 1
2
D2ms incidences

between points in Ps and circles contained in Z(f) ∩ Z(f ′).
It remains to bound the number of incidences between

points in Ps and circles of C0 not contained in Z(f)∩Z(f ′)
(that is, circles that are contained in Z(f) but not in Z(f ′)).
Consider such a circle C and let ΠC be the plane contain-
ing C. The intersection Z(f ′) ∩ ΠC is therefore a planar
algebraic curve of degree at most D− 1, and by assumption
this curve does not contain C. According to Bézout’s theo-
rem (Theorem 2.3), C intersects Z(f ′)∩ΠC at most 2D− 2
times, so C meets Z(f)∩Z(f ′) at most 2D− 2 times. This
in turn implies that |C ∩Ps| < 2D. Therefore, by taking α1

4Technically, we need to argue that over C, Z(f) and Z(f ′)
have one–dimensional intersection. However, this follows
from the the fact that f is the lowest-degree polynomial
whose zero-set is Z(f), and that over R, Z(f) ∩ Z(f ′) has
dimension 1. See [42] for further details.
The fact that the degree of the projected curve is at most
D(D − 1) < D2 is a consequence of the proof of Bézout’s
theorem (Theorem 2.3), which makes use of the resultant of
f and f ′; e.g., see [13, Section 8.7].

and α2 to be sufficiently large, we have

I(Ps, C0) ≤ 1

2
D2ms + 2Dn ≤ α2(ms + n/3). (7)

Bounding I(P0, C0): Handling private points. Let Pp =
P0 \ Ps denote the set of private points in P0. Recall that
each private point is contained in the zero set of a single
irreducible factor of f . Let f1, f2, . . . , ft be the factors of f
whose zero sets are planes or spheres. For i = 1, . . . , t, set

P(1)
p,i = Pp ∩ Z(fi) and mp,i = |P(1)

p,i |. Put P(1)
p =

⋃t
i=1 P

(1)
p,i

and m
(1)
p = |P(1)

p | =∑t
i=1 mp,i. Let np,i denote the number

of circles of C0 that are fully contained in Z(fi). Notice that

(i) t ≤ D = O
(

r1/3
)

, (ii) np,i ≤ q for every i, and (iii)
∑

i np,i ≤ n (we may ignore circles that are fully contained
in more than one component, since these will not have in-
cidences with private points). Applying (1) and using the
fact that there are no hidden polylogarithmic terms in the
linear part of (1), we obtain5

I(P(1)
p , C0) =

t
∑

i=1

(

O∗
(

m
2/3
p,i n

2/3
p,i +m

6/11
p,i n

9/11
p,i

)

+O(mp,i + np,i)
)

=
t
∑

i=1

(

O∗
(

m
2/3
p,i n

1/3
p,i q

1/3 +m
6/11
p,i n

5/11
p,i q4/11

)

+O(mp,i + np,i)
)

= O∗
(

m2/3n1/3q1/3 +m6/11n5/11q4/11
)

+O
(

m(1)
p + n

)

,

where the last step uses Hölder’s inequality; it bounds (twice)
∑

i mp,i = m
(1)
p by m. Since q ≤ n, it follows that when n0

(and thus n), α1, and α2 are sufficiently large, we have

I(P(1)
p , C0) ≤ α1

3

(

m2/3+εn1/2q1/6 +m6/11+εn15/22q3/22
)

+ α2(m
(1)
p + n/3). (8)

Let P(2)
p = Pp \ P(1)

p be the set of private points that lie
on the zero sets of factors of f which are neither planes nor

spheres, and put m
(2)
p =

∣

∣P(2)
p

∣

∣. To handle incidences with
these points we require the following lemma, which consti-
tutes a major component of our analysis and which is proved
in Section 4 (somewhat similar results can be found in [23,
27]). Let g be an irreducible polynomial in R[x1, x2, x3] such
that Z(g) is a surface. We say that a point p ∈ Z(g) is pop-
ular if it is incident to at least 44(deg g)2 circles that are
fully contained in Z(g).

Lemma 3.1. An irreducible algebraic surface that is nei-
ther a plane nor a sphere cannot contain more than two
popular points.

The lemma implies that the number of incidences between

popular points of P(2)
p (within their respective irreducible

components of Z(f)) and circles of C0 is at most 2(D/2)n =

5Notice that the dependency of this bound in n and q is
better than the one in the bound of the theorem. We com-
promise on the worse bound so that the partitioning would
work.



Dn ≤ α2n/3 (the latter inequality holds if α2 is chosen

sufficiently large with respect to D = O(r1/3)). The number

of incidences between non-popular points of P(2)
p and circles

of C0 is at most m
(2)
p ·44D2 ≤ α2m

(2)
p (again for a sufficiently

large value of α2). Combining this with (3), (6), (7), and
(8), we get

I(P, C) ≤ α1

(

m3/7+εn6/7 +m2/3+εn1/2q1/6

+m6/11+εn15/22q3/22
)

+ α2(m+ n).

This establishes the induction step, and thus completes the
proof of the theorem.

Remark. It is not immediately clear from the induction
step why m3/7+εn6/7 is the best choice for the leading term.
Let us denote the leading term as ma+εnb and observe the
following restrictions on a and b: (i) For r to cancel itself in
the analysis of incidences within the cells of the partition (up
to a power of ε), we require a ≥ 1−2b/3. (ii) For n = O(m3)
to imply n = O(manb), we must have a+3b ≥ 3. Combining
both constraints, with equalities, results in a = 3/7 and
b = 6/7.

3.1 Removing the epsilons
In this section we will show that, for any ε > 0, when

m = O(n3/2−ε), the epsilons from the bound of Theorem
1.1 can be removed. This is what Theorem 1.2 asserts; we
repeat its statement for the convenience of the reader.
Theorem 1.2. Let P be a set of m points and let C be

a set of n circles in R
3, let q < n be an integer, and let

m = O(n3/2−ε), for some fixed arbitrarily small ε > 0. If
no sphere or plane contains more than q circles of C, then

I(P, C) ≤ Am,n

(

m3/7n6/7 +m2/3n1/2q1/6

+m6/11n15/22q3/22 log2/11 m+m+ n
)

,

where Am,n = A

⌈

3
2
·
log(m/n1/3)

log(n3/2/m)

⌉

, for some absolute constant
A > 1.
Proof. We define P, P0, C, C′, etc., as in the proof of The-
orem 1.1. The proof is similar to the one of Theorem 1.1,
except that it works in stages, so that in each stage we en-
large the range ofm where the (improved) bound applies. At
each stage we construct a partitioning polynomial, as before
but of a non-constant degree, use the bound obtained in the
previous stage for the incidence count within the cells of the
polynomial partitioning, and then use a separate argument
(essentially the one given in the second part of of the proof
of Theorem 1.1) to bound the number of incidences with
the points that lie on the zero set of the polynomial. Each
stage increases the constant of proportionality in the bound
by a constant factor, which is why the “constant” Am,n in-
creases as the m-range approaches n3/2. The j-th stage, for
j = 1, 2, . . ., asserts the bound specified in the theorem when
m ≤ nαj , for some sequence of exponents αj < 3/2 that in-
crease from stage to stage, and approach 3/2. Each stage

has its own constant of proportionality A(j). The specific
values of the exponents αj (and the constants of propor-
tionality) will be set later. For the 0-th, vacuous stage we
use α0 = 1/3, and the bound O(n) that was noted above for
m ≤ nα0 , with an implied initial constant of proportionality
A(0).

In handling the j-th stage, we assume that nαj−1 < m ≤
nαj ; if m ≤ nαj−1 there is nothing to do as we can use
the bound from the previous stage. As in the proof of Theo-
rem 1.1, we consider an r-partitioning polynomial f and put
α = αj−1. To apply the bound from the previous stage uni-
formly within each cell, we want to have a uniform bound on
the number of circles crossing a cell. The average number of
such crossings per cell is proportional to n/r2/3 (assuming
that the number of cells is Θ(r), an assumption made only

for the sake of intuition). A cell crossed by tn/r2/3 circles,
for t > 1, induces ⌈t⌉ subproblems, each involving all the

points in the cell and up to n/r2/3 crossing circles. It is eas-
ily checked that the number of subproblems remains O(r),
with a slightly larger constant of proportionality, and each
subproblem now involves at most m/r points and at most

n/r2/3 circles. Moreover, in cells that have strictly fewer

than n/r2/3 circles, we will assume that there are exactly

n/r2/3 circles, e.g., by adding dummy circles. This can only
increase the number of incidences.

We assume that the number of cells is at most br, for some
absolute constant b. To apply the bound from the previous
stage, we need to choose r that will guarantee that

m

r
≤
( n

r2/3

)α

, or r1−2α/3 ≥ m

nα
, or r ≥ m3/(3−2α)

n3α/(3−2α)
.

We choose r to be equal to the last expression. We note
that (i) r ≥ 1, because m is assumed to be greater than nα

and α < 3/2, and (ii) r ≤ m, because m ≤ n3/2. Because
of the somewhat weak bound that we will derive below on
the number of incidences with points that lie on Z(f), this
choice of r will work only when m is not too large. The
resulting constraint on m, of the form m ≤ nαj , will define
the new range in which the bound derived in the present
stage applies. The number of incidences within the partition
cells is thus

I(P ′, C′) ≤ A(j−1)
br
∑

i=1

(

(m

r

)3/7 ( n

r2/3

)6/7

+
(m

r

)2/3 ( n

r2/3

)1/2

q1/6

+
(m

r

)6/11 ( n

r2/3

)15/22

q3/22 log2/11
(m

r

)

+
m

r
+

n

r2/3

)

≤ bA(j−1)
(

m3/7n6/7 +m2/3n1/2q1/6

+m6/11n15/22q3/22 log2/11 m+m+ nr1/3
)

.

We claim that the above choice of r ensures that nr1/3 ≤
m3/7n6/7. That is,

r1/3 =
m1/(3−2α)

nα/(3−2α)
≤ m3/7

n1/7
.

Indeed, this is easily seen to hold because 1/3 ≤ α < 3/2

and m ≤ n3/2. Recall that we also have I(P0, C′) ≤ A′nr1/3

for some constant A′ (see (4)). By choosing A(0) > A′ (so



that A(j−1) > A′ for every j), we have

I(P, C′) = I(P0, C′) + I(P ′, C′)

≤ bA(j−1)
(

3m3/7n6/7 +m2/3n1/2q1/6

+m6/11n15/22q3/22 log2/11 m+m
)

. (9)

As proved in Theorem 1.1,

I(Ps, C0) + I(P(2)
p , C0) ≤ 45mr2/3 + 3nr1/3 (10)

(this follows by substituting D = O(r1/3) in the bounds in
the proof of Theorem 1.1, which are I(Ps, C0) ≤ mD2/2 +

2nD and I(P(2)
p , C0) ≤ 44mD2 + nD).

It remains to bound I(P(1)
p , C0). For this, we again use an

analysis similar to the one in Theorem 1.1. Let f1, f2, . . . , ft
be the factors of f whose zero sets are planes or spheres.

For i = 1, . . . , t, set P(1)
p,i = Pp ∩ Z(fi) and mp,i = |P(1)

p,i |.
Let np,i denote the number of circles of C0 that are fully

contained in Z(fi). Put P(1)
p =

⋃t
i=1 P

(1)
p,i . Notice that (i)

t = O
(

r1/3
)

, (ii) np,i ≤ q for every i, and (iii)
∑

i np,i ≤ n.

Applying (1), we obtain

I(P(1)
p , C0) =

t
∑

i=1

O
(

m
2/3
p,i n

2/3
p,i

+m
6/11
p,i n

9/11
p,i log2/11(m3

p,i/np,i) +mp,i + np,i

)

=
t
∑

i=1

O
(

m
2/3
p,i n

1/3
p,i q

1/3

+m
6/11
p,i n

5/11
p,i q4/11 log2/11(m3

p,i) +mp,i + np,i

)

= O
(

m2/3n1/3q1/3 +m6/11n5/11q4/11 log2/11 m

+m+ n
)

, (11)

where the last step uses Hölder’s inequality.
We would like to combine (9), (10), and (11) to obtain the

asserted bound. All the elements in these bounds add up to
the bound, with an appropriate sufficiently large choice of
A(j), except for the term O(mr2/3), which may exceed the
bound of the theorem if m is too large. Thus, we restrict m
to satisfy

mr2/3 ≤ m3/7n6/7, or r ≤ n9/7

m6/7
.

Substituting the chosen value of r, we thus require that

m3/(3−2α)

n3α/(3−2α)
≤ n9/7

m6/7
.

That is, we require

m ≤ n
9+α

13−4α .

That is, recalling that we write the (upper bound) constraint
on m at the j-th stage as m ≤ nαj , we have the recurrence

αj =
9 + αj−1

13− 4αj−1
.

To simplify this, we write αj = 3
2
− 1

xj
, and obtain the

recurrence

xj = xj−1 +
4

7
,

with the initial value x0 = 6
7
(this gives the initial constraint

m ≤ n1/3). In other words, we have xj = (4j + 6)/7, and

αj =
3

2
− 7

4j + 6
.

The first few values are α0 = 1/3, α1 = 4/5, α2 = 1, and

α3 = 10/9. Note that every m < n3/2 is covered by the
range of some stage. Specifically, given such an m, it is
covered by stage j, where j is the smallest integer satisfying

m ≤ n
3
2
− 7

4j+6 ,

and straightforward calculations show that

j =

⌈

3

2
· log(m/n1/3)

log(n3/2/m)

⌉

.

Inspecting the preceding analysis, we see that the bound
holds for the j-th stage if we choose A(j) = A ·A(j−1), where
A is a sufficiently large absolute constant. Hence, for m in
the j-th range, the bound on I(P, C) has Aj as the constant
of proportionality. This completes the description of the
stage, and thus the proof of Theorem 1.2.

4. THE NUMBER OF POPULAR POINTS
IN AN IRREDUCIBLE VARIETY

In this section we provide a sketch of the proof of Lemma
3.1. Most of the statements made in the proof are stated
without proof. Complete and detailed proofs can be found
in the full version of this paper [37].

Inversion. We consider the three-dimensional inversion
transformation I : R3 → R

3 about the origin (e.g., see [22,
Chapter 37]). The transformation I(·) maps the point p =
(x1, x2, x3) 6= (0, 0, 0) to the point p̄ = I(p) = (x̄1, x̄2, x̄3),
where

x̄i =
xi

x2
1 + x2

2 + x2
3

, i = 1, 2, 3.

The inversion satisfies: (a) Let C be a circle incident to the
origin. Then I(C) is a line not passing through the origin.
(b) Let C be a circle not incident to the origin. Then I(C)
is a circle not passing through the origin. (c) The converse
statements of both (a) and (b) also hold.

Consider an irreducible surface Z = Z(g) which is neither
a plane nor a sphere, and let E = deg(g). Assume, for con-
tradiction, that there exist three popular points z1, z2, z3 ∈
Z. After a translation, we may assume that z1 is the origin.
We apply the inversion transformation to obtain Z̄ = I(Z),
which is easily seen to be an irreducible surface, and the
zero set of a polynomial ḡ of degree at most 2E. Since each
of the 44E2 circles that are incident to z1 is mapped to a
line that is fully contained in Z̄, Corollary 2.9 implies that
Z(ḡ) is ruled. From this we conclude that for i = 1, 2, 3,
every point u in Z is incident to a circle or a line that is also
incident to zi. These three circles or lines are not necessar-
ily distinct, but they can all coincide only when u lies on
the unique circle or line γ that passes through z1, z2, z3, and
then all the above three circles or lines coincide with γ. We
use this property to derive the following claim (which holds
up to a permutation of z1, z2, z3): There exists an infinite
family of circles C̄ that are fully contained in Z̄, such that
every circle of C̄ is incident to z̄2 = I(z2). We then take
an infinite subset C̄′ of C̄ such that no two circles of C̄′ are
coplanar.



In the remainder of the proof, we work mainly in the com-
plex projective 3-space, denoted as CP3, instead of the real
affine space that we have considered so far.

Complexification and projectivization. Given a va-
riety V ⊂ R

3, the complexification V ∗ ⊂ C
3 of V is the

smallest complex variety that contains V (in the sense that
any other complex variety that contains V also contains V ∗,
e.g., see [34, 42]). As shown in [42, Lemma 6], such a com-
plexification always exists, and V is precisely the set of real
points of V ∗. According to [42, Lemma 7], there is a bi-
jection between the set of irreducible components of V and
the set of irreducible components of V ∗, such that each real
component is the real part of its corresponding complex com-
ponent. In particular, the complexification of an irreducible
variety is irreducible. Moreover, if follows from Theorems
2.8 and 2.10 that the complexification of a ruled algebraic
surface is also ruled.
If h ∈ C[x1, x2, x3] is a polynomial of degree E, we write

h =
∑

I aIx
I , where each index I is of the form (I1, I2, I3)

with I1 + I2 + I3 ≤ E, and xI = xI1
1 xI2

2 xI3
3 . Define

h† =
∑

I

aIx
E−I1−I2−I3
0 xI1

1 xI2
2 xI3

3 .

Then h† is a homogeneous polynomial of degree E, referred
to as the homogenization of h. We define the projectivization
of the complex surface Z(h) to be the zero set of h† in CP3.
We define the complex projectivization of a real surface S as
the projectivization of the complexification S∗ of S.
To distinguish between the complex projective space CP3

and the real affine space, we denote the homogeneous coor-
dinates in CP3 (using a rather standard notation, see [30])

as [x0 : x1 : x2 : x3]. Let Ẑ ⊂ CP3 be the complex projec-

tivization of the surface Z̄ = Z(ḡ). The surface Ẑ ⊂ CP3 is
irreducible and singly ruled. Let

Γ =
{

[x0 : x1 : x2 : x3]
∣

∣ x0 = 0, x2
1 + x2

2 + x2
3 = 0

}

be the absolute conic in CP3 (e.g., see [32]).

Using the Plücker representation of lines. The fol-
lowing arguments are based on the machinery in the recent
work of Nilov and Skopenkov [32]. Let

Λ =
{

[x0 : . . . : x5] | x0x5 + x1x4 + x2x3 = 0
}

⊂ CP5

be the Plücker quadric. Given a point p = [x0 : . . . : x5] ∈ Λ,
at least two of the four “canonical” points [0 : x0 : x1 : x2],
[x0 : 0 : −x3 : −x4], [x1 : x3 : 0 : −x5], and [x2 : x4 : x5 : 0]
cannot be the undefined point [0 : 0 : 0 : 0] because each of
the six coordinates x0, . . . , x5 appears as a coordinate of two
of these points. Then there exists a unique line ℓp in CP3

that passes through all nonzero canonical points of p. We
refer to the map p → ℓp as the Plücker map, and observe
that it is a bijection between the points p ∈ Λ and the lines
ℓp ⊂ CP3. Further details about the Plücker map and the
Plücker quadric can be found in [13, Section 8.6].

Let ΛẐ = {p ∈ Λ | ℓp ⊂ Ẑ}; that is, ΛẐ is the set of all
points in Λ that correspond to lines that are fully contained
in Ẑ. Then ΛẐ is an algebraic variety in CP5 that is com-
posed of a single one-dimensional irreducible component,
possibly together with an additional pair of isolated points
(which correspond to at most two non-generating lines that

are contained in the singly ruled surface Ẑ; see, e.g., [20,
Corollary 3.6]).
The set ΓΛ = {p ∈ Λ | ℓp ∩ Γ 6= ∅} is a variety of codi-

mension 1 in Λ. Since the irreducible one-dimensional curve

of ΛẐ is also a variety, either it is fully contained in ΓΛ, or
the intersection ΛẐ ∩ ΓΛ is a zero-dimensional variety, and
therefore finite according to the higher-dimensional variant
of Bézout’s theorem (Theorem 2.4). If the former case oc-

curs, then at most two lines in Ẑ do not intersect Γ. How-
ever, since Ẑ is the complex projectivization of a real ruled
surface, Ẑ contains infinitely many real lines (lines whose
defining equations involve only real coefficients) that are not
contained in the plane {x0 = 0}, and if ℓ is such a line then
ℓ∩{x0 = 0} is a real point. This is a contradiction since the
curve Γ contains no real points. Therefore, the intersection
ΛẐ ∩ ΓΛ is finite.

Every line intersects Γ in at most two points, which implies
that Γ ∩ Ẑ is a finite set. Indeed, if this were not the case,
then there would exist infinitely many points of Γ that lie in
Ẑ and each of them is therefore incident to a line contained
in Ẑ. Since every line meets Γ in at most two points, Γ
would have intersected infinitely many lines contained in Ẑ.
This is a contradiction since, as argued above, ΛẐ ∩ ΓΛ is a
finite intersection.

Adding the circles to the analysis. Let C̄′ be the col-
lection of circles described above; that is, an infinite set of
pairwise non-coplanar circles that are fully contained in Z̄
and incident to z̄2. Let Ĉ′ be the corresponding collection
of the complex projectivizations of these circles. As just ar-
gued, all of the intersection points between the circles of Ĉ′

and Γ must lie in the finite intersection Γ ∩ Ẑ.
Each circle Ĉ in Ĉ′ intersects Γ in precisely two points.

Since Ĉ′ contains infinitely many circles and Γ ∩ Ẑ is fi-
nite, by the pigeonhole principle there must exist two circles
C1, C2 in Ĉ′ such that the sets C1∩Γ and C2∩Γ are identical
(each being a doubleton set). By construction, C1 and C2

are contained in two distinct planes Π1 and Π2. The line
ℓ = Π1 ∩ Π2 contains C1 ∩ C2. Thus, ℓ contains the two
common intersection points of C1, C2 with Γ. Since these
two points are contained in the plane {x0 = 0}, ℓ is also
contained in this plane. This is impossible, since ℓ also con-
tains z̄2 (common to all circles of Ĉ′), which is not in the
plane {x0 = 0}. This contradiction completes the proof of
Lemma 3.1.

5. APPLICATIONS
High-multiplicity points. The following is an easy but
interesting consequence of Theorems 1.1 and 1.3.

Corollary 5.1. (a) Let C be a set of n circles in R
3, and

let q < n be an integer so that no sphere or plane contains
more than q circles of C. Then there exists a constant k0
(independent of C) such that for any k ≥ k0, the number of
points incident to at least k circles of C is

O∗

(

n3/2

k7/4
+

n3/2q1/2

k3
+

n3/2q3/10

k11/5
+

n

k

)

. (12)

In particular, if q = O(1), the number of such points is

O∗

(

n3/2

k7/4
+

n

k

)

.

(b) If the circles of C are all congruent the bound improves
to

O∗

(

n3/2

k11/6
+

n3/2q1/2

k3
+

n

k

)

. (13)



In particular, if q = O(1), the number of such points is

O∗

(

n3/2

k11/6
+

n

k

)

.

Proof. Let m be the number of points incident to at least
k circles of C, and observe that these points determine at
least mk incidences with the circles of C. Comparing this
lower bound with the upper bound in Theorem 1.1 (for (a)),
or in Theorem 1.3 (for (b)), the claims follow.

Remarks. (1) It is interesting to compare the bounds in
(12) and (13) with the various recent bounds on incidences
between points and lines in three dimensions [14, 19, 20]. In

all of them the threshold value m = Θ(n3/2) plays a signifi-
cant role. Specifically: (i) The number of joints in a set of n

lines in R
3 is O(n3/2), a bound tight in the worst case [19].

(ii) If no plane contains more than
√
n lines, the number of

points incident to at least k ≥ 3 lines is O(n3/2/k2) [20]. (iii)

A related bound where m = n3/2 is a threshold value, under
different assumptions, is given in [14]. The bounds in (12)
and (13) are somewhat weaker (because of the extra small
factors hidden in the O∗(·) notation, the rather restrictive
constraints on q, and the constraint k ≥ k0) but they belong
to the same class of results. It would be interesting to un-
derstand how general this phenomenon is; for example, does
it also show up in incidences with other classes of curves
in R

3? We tend to conjecture that this is the case, under
reasonable assumptions concerning those curves.
(2) The bounds can be slightly tightened by using Theo-
rem 1.2 (or a similar theorem for unit circles, established in
the full version [37]) instead of Theorem 1.1 or Theorem 1.3,
respectively, but we leave these slight improvements to the
interested reader.

Similar triangles. Another application of Theorem 1.1
(or rather of Theorem 1.2) is an improved bound on the
number of triangles spanned by a set P of t points in R

3 and
similar to a given triangle ∆. Let F (P,∆) be the number of
triangles spanned by P that are similar to ∆, and let F (t)
be the maximum of F (P,∆) as P ranges over all sets of t
points and ∆ ranges over all triangles. We then have:

Theorem 5.2.

F (t) = O(t15/7) = O(t2.143).

Proof. Let P be a set of t points in R
3 and let ∆ = uvw

be a given triangle. Suppose that pqr is a similar copy of ∆,
where p, q, r ∈ P. If p corresponds to u and q to v, then r
has to lie on a circle cpq that is orthogonal to the segment
pq, whose center lies at a fixed point on this segment, and
whose radius is proportional to |pq|. Thus, the number of
possible candidates for the point r, for p, q fixed, is exactly
the number of incidences between P and cpq. There are
2
(

t
2

)

= t(t − 1) such circles, and no circle arises more than
twice in this manner. It follows that F (t) is bounded by
twice the number of incidences between the t points of P and
the t(t−1) circles cpq. We now apply Theorem 1.2 with m =
t and n = t(t − 1). (The theorem applies for these values,

which satisfy m ≈ n1/2, much smaller than the threshold
n3/2; in fact, m lies in the second range [n1/3, n4/5].) It

remains to show that the expression (2) is O(t15/7).

The first term of (2) is O(t15/7). To control the remain-

ing terms, it suffices to show that at most O
(

(

n3

m2

)3/7
)

=

O(t12/7) of the circles lie on a common plane or sphere. In
fact, we claim that at most O(t) circles can lie on a common
plane or sphere. Indeed, let Π be a plane. Then for any
circle cpq contained in Π, pq must be orthogonal to Π, pass
through the center of cpq, and each of p and q must lie at a
fixed distance from Π (the distances are determined by the
triangle ∆ and by the radius of cpq). This implies that each
point of P can generate at most two circles on Π. The ar-
gument for cosphericality is essentially the same. The only
difference is that one point of P may lie at the center of the
given sphere σ, and then it can determine up to 2(t−1) dis-
tinct circles on σ. Still, the number of circles on σ is O(t).
As noted above, this completes the proof of the theorem.

As already mentioned in the introduction, this slightly
improves a previous bound in [6] (see also [1]).
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