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Abstract

We derive improved bounds on the complexity of many cells in arrangements of
hyperplanes in higher dimensions, and use these bounds to obtain a very simple proof
of a bound, due to [2], on the sum of squares of cell complexities in such an arrangement.

1 Complexity of Many Cells

The main result of the paper, which improves upon previous bounds given in [2], is:

Theorem 1.1 The complexity of m distinct cells in an arrangement of n hyperplanes in d
dimensions, for d ≥ 4, is O(m1/2nd/2 log(⌊d/2⌋−2)/2 n) with the implied constant of propor-

tionality depending on d.

Proof: The proof proceeds by induction on d. The base case d = 4 depends on a sharper
bound that is known for d = 3 and will be cited below.

Let H be a collection of n hyperplanes in d-space. We will assume that the planes are in
general position, meaning that any k planes meet in a d− k-flat, if k = 1, . . . , d, and not at
all if k > d. It is not difficult to see that worst-case cell complexity can always be achieved
by planes in general position. Let P be a set of m points, not lying on any hyperplane.

Denote by K
(d)
j (P,H) the number of j-faces bounding the cells of A(H) that contain points

of P . We will mainly be concerned with the case j = ⌈d/2⌉, because, as follows from the
Dehn-Sommerville relations (see, e.g., [3]), the total number of faces, of all dimensions, of a
cell (which is a simple d-polytope) is at most proportional to the number of its ⌈d/2⌉-faces.

We denote by K
(d)
j (m,n) the maximum of K

(d)
j (P,H) over all sets P,H as above.
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We now derive a recurrence for K
(d)
j (m,n). Pick h ∈ H, remove it and add it back.

Consider the j-faces that are not contained in h and bound cells of the arrangement that
contain points of P . This number can increase when h is added to A(H \{h}), only when h
splits a cell c containing points of P into two subcells, each containing points of P . In this
case, the local increase in the number of j-faces under consideration is equal to the number
of (j−1)-faces of the (d−1)-face c∩h of A(H). Denote by H/h the set {h∩h′ | h′ ∈ H\{h}}
of (d − 2)-hyperplanes within h. Then the total increase in the number of j-faces under
consideration that is caused by the re-insertion of h is equal to the number of (j − 1)-faces
in the ‘splitting cells’ of the (d − 1)-dimensional arrangement A(H/h). If the number of
cell splittings caused by the re-insertion of h is mh, then the number of j-faces counted in

K
(d)
j (P,H) and not contained in h is at most K

(d)
j (Ph,H \ {h}) + K

(d−1)
j−1 (mh, n− 1), where

Ph is a subset of P obtained by removing mh points from the cells that got merged when h
was removed. Repeating this analysis for all h ∈ H, summing the respective bounds, and
taking the maximum over P,H, we obtain

(n − d + j)K
(d)
j (m,n) ≤

∑

h∈H

(

K
(d)
j (m − mh, n − 1) + K

(d−1)
j−1 (mh, n − 1)

)

, (1)

where the factor n− d + j comes from the observation that a j-face is appears in the count
for every h ∈ H, except for the d − j hyperplanes containing it.

The case d = 4. We start with the base case d = 4 (and j = 2). The equation (1)
becomes

(n − 2)K
(4)
2 (m,n) ≤

∑

h∈H

(

K
(4)
2 (m − mh, n − 1) + K

(3)
1 (mh, n − 1)

)

. (2)

By the result of [1], we have

K
(3)
1 (m,n) =







Θ(m2/3n) for m ≥ n3/2

Θ(n2) for n ≤ m ≤ n3/2

Θ(mn) for m ≤ n.

(3)

Divide (2) by n(n − 1)(n − 2), and put F
(4)
2 (m,n) = K

(4)
2 (m,n)/(n(n − 1)), to obtain

F
(4)
2 (m,n) ≤

1

n

∑

h∈H

F
(4)
2 (m − mh, n − 1) + O

(

1

n

∑

h∈H

K
(3)
1 (mh, n − 1)

n2

)

. (4)

We now unwind the recurrence in (4) all the way down to n0 = m1/4 remaining hyperplanes.
We obtain a recurrence tree T . The j-th level of T is the collection of all nodes whose
corresponding substructure involves j hyperplanes of H; thus the root of T is at level n (it
represents the whole set H) and the leaves are at level n0. Let π be a path in T , let vj(π)
denote the node of π at level j, and let hj(π) denote the hyperplane removed and reinserted
at vj(π), for j = n, n−1, . . . , n0 +1; in other words, hj(π) is the hyperplane that represents
the edge of π between vj(π) (parent node) and vj−1(π) (child node). It is easily verified
that the unwound recurrence can be rewritten as

F
(4)
2 (m,n) ≤

n0!

n!

∑

π



F
(4)
2 (m∗(π), n0) + O





n
∑

j=n0+1

K
(3)
1 (mj(π), j − 1)

j2







 , (5)
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where π ranges over all paths in T , and where mj(π) is the number of points removed from
the current subset of P when hj(π) is removed from the subset of H associated with vj(π);
the number of points remaining in P after all these removals is denoted by m∗(π), and we

have m∗(π)+
∑n

j=n0+1 mj(π) = m. In other words, F
(4)
2 (m,n) is the average, over all paths

of T , of the path-dependent expression in the brackets in (5). Denote this expression by

E(π) = F
(4)
2 (m∗(π), n0) + O(

∑n
j=n0+1 Ej(π)), where Ej(π) = K

(3)
1 (mj(π), j − 1)/j2.

We fix a path π in T , and estimate E(π). First we have

F
(4)
2 (m∗(π), n0) = F

(4)
2 (m,m1/4) =

K
(4)
2 (m,m1/4)

m1/4(m1/4 − 1)
= O

(

O(m)

m1/2

)

= O(m1/2),

where we have used the fact that an arrangement of m1/4 hyperplanes has O(m) cells and
total complexity O(m). Partition the nodes of π into three subsets:

J1 = {j | mj(π) > (j − 1)3/2}

J2 = {j | j − 1 < mj(π) ≤ (j − 1)3/2}

J3 = {j | mj(π) ≤ j − 1}.

Using (3) and Hölder’s inequality, we obtain

∑

j∈J1

Ej(π) =O





∑

j∈J1

mj(π)2/3

j





=O











∑

j∈J1

mj(π)





2/3



∑

j>n0

1

j3





1/3






=O

(

m2/3

n
2/3
0

)

= O(m1/2).

Next we have

∑

j∈J3

Ej(π) = O





∑

j∈J3

mj(π)

j



 = O









∑

j∈J3

j≤m1/2

mj(π)

j
+

∑

j∈J3

j>m1/2

mj(π)

j









.

In the first sum, we use the fact that mj(π) < j to conclude that the sum is O(m1/2). As
for the second sum, we have

∑

j∈J3

j>m1/2

mj(π)

j
<

1

m1/2

∑

j∈J3

j>m1/2

mj(π) ≤
1

m1/2
· m = m1/2.

Finally, we have

∑

j∈J2

Ej(π) = O





∑

j∈J2

1



 = O









∑

j∈J2

j≤m1/2

1 +
∑

j∈J2

j>m1/2

1









.
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The first subsum is at most m1/2, while the second is at most

∑

mj≥m1/2

1 =
m

m1/2
= m1/2.

To summarize, we have shown that E(π) = O(m1/2) for each path π in T . Since

F
(4)
2 (m,n) is the average of these expressions, we conclude that F

(4)
2 (m,n) = O(m1/2), and

hence K
(4)
2 (m,n) = O(m1/2n2). This establishes the base case d = 4, since the Dehn-

Sommerville relations imply that K
(4)
j (m,n) = O(K

(4)
2 (m,n)), for j = 0, 1, 3, as already

mentioned.

The case of odd d. Next assume that d > 4 is odd, say d = 2q + 1. In this case, we
focus on j = ⌈d/2⌉ = q + 1 and (1) becomes

(n − q)K
(2q+1)
q+1 (m,n) ≤

∑

h∈H

(

K
(2q+1)
q+1 (m − mh, n − 1) + K(2q)

q (mh, n − 1)
)

. (6)

By the induction hypothesis, we have

K(2q)
q (m,n) = O(m1/2nq log(q−2)/2 n).

We substitute this bound in (6), divide it by n(n − 1) · · · (n − q), and put F
(2q+1)
q+1 (m,n) =

K
(2q+1)
q+1 (m,n)/(n(n − 1) · · · (n − q + 1)), to obtain

F
(2q+1)
q+1 (m,n) ≤

1

n

∑

h∈H

F
(2q+1)
q+1 (m − mh, n − 1) + O

(

1

n

∑

h∈H

m
1/2
h log(q−2)/2 n

)

. (7)

We now unwind the recurrence in (7) until only one hyperplane remains. We obtain a
recurrence tree T , and continue to use the same notations as in the case d = 4. It is easily
verified that the unwound recurrence can be rewritten as

F
(2q+1)
q+1 (m,n) ≤

1

n!

∑

π





n
∑

j=1

O(mj(π)1/2 log(q−2)/2 j)



 , (8)

where π ranges over all paths in T . In other words, as above, F
(2q+1)
q+1 (m,n) is the average,

over all paths of T , of the path-dependent expression in the brackets in (8). By the Cauchy-
Schwarz inequality, we have

n
∑

j=1

mj(π)1/2 ≤





n
∑

j=1

mj(π)





1/2

n1/2 ≤ m1/2n1/2.

Hence F
(2q+1)
q+1 (m,n) = O(m1/2n1/2 log(q−2)/2 n), and thus

K
(2q+1)
q+1 (m,n) = O(m1/2nq+1/2 log(q−2)/2 n),

which is the asserted bound for d = 2q + 1.
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The case of even d. Finally consider the case where d is even, say d = 2q > 4. Here we
take j = ⌈d/2⌉ = q. In this case, (1) becomes

(n − q)K(2q)
q (m,n) ≤

∑

h∈H

(

K(2q)
q (m − mh, n − 1) + K

(2q−1)
q−1 (mh, n − 1)

)

. (9)

As noted above, it follows from the Dehn-Sommerville relations that

K
(2q−1)
q−1 (mh, n − 1) = O(K(2q−1)

q (mh, n − 1)),

which allows us to rewrite (9) as

(n − q)K(2q)
q (m,n) ≤

∑

h∈H

(

K(2q)
q (m − mh, n − 1) + O(K(2q−1)

q (mh, n − 1))
)

. (10)

By the induction hypothesis, we have

K(2q−1)
q (m,n) = O(m1/2nq−1/2 log(q−3)/2 n).

We substitute this bound in (10), divide it by n(n − 1) · · · (n − q), and put F
(2q)
q (m,n) =

K
(2q)
q (m,n)/(n(n − 1) · · · (n − q + 1)), to obtain

F (2q)
q (m,n) ≤

1

n

∑

h∈H

F (2q)
q (m − mh, n − 1) + O

(

1

n

∑

h∈H

K
(2q−1)
q (mh, n − 1)

nq

)

= (11)

1

n

∑

h∈H

F (2q)
q (m − mh, n − 1) + O

(

1

n

∑

h∈H

m
1/2
h

n1/2
log(q−3)/2 n

)

.

We now unwind the recurrence in (11) until only one hyperplane remains. We obtain a
recurrence tree T , and, as above, rewrite the unwound recurrence as

F (2q)
q (m,n) ≤

1

n!

∑

π





n
∑

j=1

O

(

mj(π)1/2

j1/2
log(q−3)/2 j

)



 , (12)

where π ranges over all paths in T . In other words, as above, F
(2q)
q (m,n) is the average,

over all paths of T , of the path-dependent expression in the brackets in (12). By the
Cauchy-Schwarz inequality, we have

n
∑

j=1

mj(π)1/2

j1/2
≤





n
∑

j=1

mj(π)





1/2



n
∑

j=1

1

j





1/2

= O(m1/2 log1/2 n).

Hence F
(2q)
q (m,n) = O(m1/2 log(q−2)/2 n), and thus K

(2q)
q (m,n) = O(m1/2nq log(q−2)/2 n),

which is the asserted bound for d = 2q.

This completes the proof of the theorem. 2

Remarks: (1) The bounds in the theorem are new, and improve, by a polylogarithmic
factor, previous upper bounds given in [2].
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(2) In 4 dimensions the bound is O(m1/2n2). We do not know whether this bound is tight for
the whole range of m. It is clearly tight for m = Θ(1) and for m = Θ(n4). It is also tight for
m = Θ(n2). This has been noted in [2, Theorem 3.3(b)]. For the sake of completeness, here
is a sketch of the construction. Take two orthogonal planes p, p′ in 4-space. Construct in p an
arbitrary arrangement of n/2 lines in general position, and construct in p′ an arrangement of
n/2 lines that has a cell c so that all lines appear on its boundary. Now extend each of these
n lines to a hyperplane in 4-space by taking its Cartesian product with the complementary
plane. The cells under consideration in the resulting 4-dimensional arrangement are the
Cartesian products of each cell of the arrangement in p with c. We obtain a collection of
m = Θ(n2) cells whose overall complexity is Θ(n2 · n) = Θ(n3) = Θ(m1/2n2).

(3) The method of proof employed above can also be used to derive the known bound

of O(m2/3nd/3 + nd−1), d ≥ 4, on K
(d)
d−1(m,n), from the corresponding bound in three

dimensions. We omit the details.

2 Sum of Squares of Cell Complexities in Hyperplane Ar-

rangements

We next apply Theorem 1.1 to obtain a simple proof of the following result, originally
established in [2].

Theorem 2.1 The sum of squares of the cell complexities in an arrangement of n hyper-

planes in d dimensions, for d ≥ 4, is O(nd log⌊d/2⌋−1 n).

Proof: Let H be a set of n hyperplanes in d-space, and let |C| denote the combinatorial
complexity (number of faces of all dimensions) of a cell C in A(H). We wish to bound the
quantity Σ(H) =

∑

C |C|2, where the sum ranges over all cells C of A(H).

Let Ck denote the subset of cells whose complexity is exactly k, for k ≤ Θ(n⌊d/2⌋).
Let C≥k denote the subset of cells whose complexity is at least k, and let mk denote the
cardinality of C≥k. Apply the bound of Theorem 1.1 to C≥k, to obtain

kmk = O(m
1/2
k nd/2 log(⌊d/2⌋−2)/2 n),

which implies that

mk = O

(

nd log⌊d/2⌋−2 n

k2

)

.

We thus have

Σ(H) =
∑

k

k2|Ck| =
∑

k

k2(|C≥k| − |C≥k+1|) ≤ O(nd +
∑

k

kmk) =

O(nd) + O





∑

k≤Θ(n⌊d/2⌋)

nd log⌊d/2⌋−2 n

k



 = O(nd log⌊d/2⌋−1 n),

as asserted. 2
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Remarks: (1) Lemma 3.4 of [2] provides an alternative derivation of this bound from the
many-cell bound of Theorem 1.1.

(2) This proof shows that for any β < 2 we have

∑

C

|C|β = O(nd log⌊d/2⌋−2 n).

This improves the bound of Theorem 2.1, and, for the cases d = 4 and d = 5, settles in the
affirmative a conjecture in [2].
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