
SAMPLING AND THE

MOMENT TECHNIQUE
By Sveta Oksen

Overview

- Vertical decomposition

- Construction

- Running time analysis

- The bounded moments theorem

- General settings

- The sampling model

- The exponential decay lemma

- Applications

- Proving the guess (of vertical decomposition)

- (1/r)-cutting

Basic definitions

We would like to build a data structure, which
will make it easy to answer the following
questions –
Are p1 and p2 in the same face?

Vertical decomposition - motivation

Can one traverse from p1 to p2 without

crossing any segment?

- S – set of segments (lines)

- A(S) – plane arrangement - Decomposition of 𝑅2 by the

segments into edges, vertices and faces.

- A’(S) – the data structure that stores the arrangement

A(S).

Vertical decomposition - definitions

Draw a vertical line through each vertex in our
arrangement (including endpoints), until it hits a
segment or until infinity. The result is called vertical
decomposition.

Vertical decomposition - algorithm

The vertical decomposition breaks the plane

into trapezoids. Some of them might be

degenerate.

Trapezoids structure types
- Every trapezoid must have a ceiling or a floor (or both).

- If the ceiling touches the floor – we get a degenerate

triangle trapezoid.

- If there is no ceiling or no floor, we get a degenerate

unbounded trapezoid.

Trapezoids structure types - cont
- The left and right walls of the trapezoids are defined by one of the following –

- A segment which crosses the ceiling or the floor

- An endpoint of a segment

- In the case of a triangle, one wall is missing

Therefore, every trapezoid

is defined by up to 4

segments.

Data structure for A(S)

The data structure that represents A(S) will consists of –

T – a linked list of all trapezoids

S – a linked list of all segments

Each cell in T maintains up to 4 pointers to S, which

represent the segments which define it.

We will call the data structure A’(S).

A’(S) - Example

- We take the group of segments 𝑆 and apply a random
permutation on it. Denote it as -

𝑆 =< 𝑠1, 𝑠2, … , 𝑠𝑛 >

- Let 𝑆𝑖 be the prefix of length i of S. 𝑆𝑖 =< 𝑠1, 𝑠2, … , 𝑠𝑖 >

- Before step 1, T and S are empty.

- On every step i we will add one segment 𝑆𝑖 to the data
structure.

- 𝐴′ 𝑆𝑖 - the data structure created after adding 𝑆𝑖

- 𝐴′(𝑆𝑛) – the final desire structure

Constructing A’(S) - Algorithm

Algorithm - continued
On each step we also maintain the following lists-

- 𝑐𝑙(𝜎) – contains the segments which intersect the trapezoid 𝜎. We call

it the conflict list of 𝜎.

- 𝑐𝑙(𝑠𝑖) – contains the trapezoids which intersect the segment 𝑠𝑖. We

call it the conflict list of 𝑠𝑖 .

Example: After adding 4 segments
We’ve added 𝑠1, 𝑠2, 𝑠3, 𝑠4 and still have 𝑠5, 𝑠6, 𝑠7, s8 to add.

Example: Adding 𝑠5
We want to add 𝑠5. We go through the conflict list of 𝑠5 and split every
trapezoid in this list. There will be up to 4 new trapezoids created for each
entry in the conflict list.

Example: Adding 𝑠5 - continuation
When creating the new trapezoids, we construct their conflict lists out of

the old trapezoid conflict list.

Possible splits of the trapezoid

Example: Adding 𝑠5 - continuation
After creating the new trapezoids, some of them might be invalid. I.e if we

would do a full decomposition, we would not get those trapezoids.

In the example below, 𝜎12 and 𝜎14 are invalid.

Merging invalid trapezoids
- To fix the problem of the invalid trapezoids, we need to perform

the “merge” operation.

- Every invalid trapezoid has an adjacent trapezoid which has
the same ceiling and floor.

- If we merge all the trapezoids with same ceiling and floor, we
get rid of the invalid trapezoids and get a valid vertical
decomposition.

- We maintain a list of adjacent trapezoids.

- After creation of new trapezoids, we go through adjacent
trapezoids and merge them if they have same ceiling and
floor.

Merging invalid trapezoids – cont.

Example: A’(S)
This way we will proceed until we add all the segments. In the end, all the conflict
lists will be empty (because the segments which already added can’t be in conflict
list).

Claim 1: the amortized running time of constructing of 𝐴′ 𝑆𝑖 is
proportional to the size of the conflict lists of the trapezoids in
𝐴′ 𝑆𝑖 \A′(𝑆𝑖−1).

Proof:
Every time we create new trapezoids, we break an existing
trapezoid. When we construct new trapezoids out of existing
one, we do three things:

- Vertical decomposition of new trapezoids – for this we go
through all 5 segments (4 old and one new) intersections. – up
to 52 actions - O(1) per trapezoid

- Merging of new trapezoids – we go through all new trapezoids
once (up to 4 new trapezoids from each old one) and merge
them – O(1) per trapezoid

- We create the conflict list of the new trapezoids out of the old
ones.

Running time

Running time – proof cont.

- Each old conflict list is used by at most 4 new conflict lists

- Each new conflict list is created out of the “ruins” of an

old. So old destroyed lists pay for creation of new ones.

Therefore we can charge every time a conflict list is

created. And the charges at step i are proportional to the

size of the conflict lists of the trapezoids created at step i.

∎

Running time – illustration

Running time – illustration

Running time of the algorithm
Therefore it is enough to bound the expected size of the

conflict lists created in the 𝑖𝑡ℎ iteration. (Which is the size of

the conflict lists in 𝐴′(𝑆𝑖)\A′(𝑆𝑖−1))

We will analyze the running time in two steps:

1) Find the expected size of 𝐴′ 𝑆𝑖

2) Do backward analysis to compute the expected size of

𝐴′(𝑆𝑖)\A′(𝑆𝑖−1)

Lemma 1: Let S be a set of segments with k intersection

points. Let 𝑆𝑖 be the first i segments in the random

permutation of S .The expected size of 𝐴′(𝑆𝑖) (i.e the

number of trapezoids

in 𝐴′(𝑆𝑖)), denoted by 𝜏 𝑖 ,

is 𝑂 𝑖 + 𝑘
𝑖

𝑛

2
.

Step 1 – the size of 𝐴′(𝑆𝑖)

Proof: Consider an intersection point 𝑝 = 𝑠 ∩ 𝑠′, where 𝑠, 𝑠′ ∈ 𝑆.
The probability that p is present in 𝐴′(𝑆𝑖) is the probability that
both s and s’ are in 𝑆𝑖.

𝑆4 =< 𝑠1, 𝑠2, 𝑠3, 𝑠4 >
𝑝 = 𝑠6 ∩ 𝑠7

Proof continuation
Now we define an indicator variable 𝑋𝑝 which is 1 if the two

defining segments of p are in 𝑆𝑖. 0 otherwise.

From before we have 𝐸 𝑋𝑝 = 𝛼.

Therefore, the expected number

of the intersections in 𝐴(𝑆𝑖) is

where V is the set of k intersection

points of A(S).

Proof continuation
Also, every end point of segment s of 𝑆𝑖
contributes 2 endpoints to 𝐴′ 𝑆𝑖

Thus, we get that the expected

number of vertices in 𝐴′(𝑆𝑖) is

2i + k𝛼 =

Since the number of trapezoids in

𝐴′(𝑆𝑖) is proportional to number of

vertices in 𝐴(𝑆𝑖), we conclude

that the expected number of

trapezoids in 𝐴′(𝑆𝑖) is 𝑂 𝑖 + 𝑘
𝑖

𝑛

2

as desired. ∎

Claim 2: Pr 𝜎 ∈ 𝐴′ 𝑆𝑖 \A
′ 𝑆𝑖−1 ≤

4

i

Proof: if a trapezoid 𝜎 is in 𝐴′(𝑆𝑖) but not in 𝐴′(𝑆𝑖−1), that means
that at least one of its defining segments 𝑠𝑖 was added the last in
𝑆𝑖. The probability of a segment 𝑠𝑖 to be the last in 𝑆𝑖 is

1

𝑖
.

Therefore, the probability that at least one of the segments was
added at 𝑆𝑖 is at most

4

𝑖
. ∎

Step 2 – backward analysis

Definitions:

- 𝐵𝑖 = 𝐴
′ 𝑆𝑖

- 𝐶𝑖 = |𝑐𝑙 𝐵𝑖\B𝑖−1 | - size of conflict lists
introduced in step i.

- 𝑊𝑖 = |𝑐𝑙 𝐵𝑖 | - total size of conflict
lists in 𝐴′ 𝑆𝑖

- By claim 2: Pr 𝜎 ∈ 𝐵𝑖\B𝑖−1 ≤
4

i

- 𝑊𝑖 = |𝑐𝑙 𝜎 |𝜎∈𝐴′(𝑆𝑖)

Therefore,

𝐸 𝐶𝑖 𝐵𝑖 = Pr 𝜎 ∈ 𝐵𝑖\B𝑖−1 ∙ 𝑐𝑙 𝜎 ≤
4

𝑖
𝑐𝑙 𝜎

𝜎∈𝐴′ 𝑆𝑖

≤
4

𝑖
𝑊𝑖

𝜎∈𝐴′(𝑆𝑖)

Intuition: The expected size of conflict lists added in step i is getting
lower as i grows: the trapezoids become lighter and lighter.

Running time analysis – summing up

Summing up - continuation

- 𝐵𝑖 = 𝐴
′ 𝑆𝑖

-𝑊𝑖 = |𝑐𝑙 𝜎 |𝜎∈𝐴′(𝑆𝑖)

- By lemma 1: 𝐵𝑖 = 𝑂 𝑖 + 𝑘
𝑖

𝑛

2

- Guess: the average size of the conflict list of a
trapezoid of 𝐵𝑖 is 𝑂(

𝑛

𝑖
).

Therefore

𝐸 𝑊𝑖 = 𝐵𝑖 ∙ 𝑂
𝑛

𝑖
= 𝑂 𝑖 + 𝑘

𝑖

𝑛

2
∙ 𝑂
𝑛

𝑖
=

𝑂 𝑛 + 𝑘
𝑖

𝑛

- 𝐶𝑖 - size of conflict lists introduced in step i.

- 𝐸 𝑊𝑖 = 𝑂 𝑛 + 𝑘
𝑖

𝑛

Therefore

And finally, the overall expected running time of the

algorithm is

Running time analysis - continuation

Intuition for the guess
We will now try to get some intuition for the guess from

before –

On average, the size of the conflict list of a trapezoid of 𝐵𝑖

is about 𝑂(
𝑛

𝑖
)

Intuition: In 𝑆𝑖 we pick i out of n segments ≈ pick each

segment with probability of
𝑖

𝑛
.

If 𝑐𝑙 𝜎 ≫
𝑛

𝑖
, we expect to pick ≈

𝑖

𝑛
∙ 𝑐𝑙 𝜎 ≫ 1 segments

from it.

But we picked none!

Intuition cont.
Let’s look on the one dimensional case.

In this case we have a line instead of plane, interval I is a
trapezoid, points 𝑠𝑖 are the segments.

We choose i points Si = {𝑠𝑘1 , … , 𝑠𝑘𝑖}, out of 𝑆 = 𝑠1, … , 𝑠𝑛 at

random. Our trapezoids will be the biggest intervals we can draw
that don’t contain any 𝑠 ∈ {𝑠𝑘1 , … , 𝑠𝑘𝑖} in their interior.

In the resulting decomposition, the number of the points which
appear inside the intervals is the size of the conflict list of the
trapezoid.

Intuition – cont.

We are interested in the expected size of conflict list of 𝜎𝑖.
If we fix a point s and got to the right of it, while the probability of

any point to be chosen to 𝑆𝑖 is
𝑖

𝑛
, the random variable which is

the number of the points in the interval (excluding the chosen

points), acts like a geometric variable with probability
𝑖

𝑛
.

Therefore, the expected size of the conflict list of the trapezoid

(ie number of points which fall into the interval) is 𝑂
𝑛

𝑖
.

As a main part of the proof, we first need to introduce and prove
the “Bounded moments Theorem”.

The Bounded moments theorem will give us some bound on the
expected size of the conflict lists in step i.

To prove this theorem, we will need to introduce the following:

- The sampling model - how we sample the segments

- General settings – a framework for the analysis, more general
than segments and trapezoids.

- The exponential decay lemma – a lemma which tells that the
number of trapezoids with big conflict lists is dropping
exponentially

Proof of the guess - preparation

The sampling model

In algorithms when we want to build a group of r randomly

chosen objects out of n, we will usually implement it by first

permuting the group and taking its r prefix.

For analysis, this sampling model is much harder to

calculate than the model where we pick every object with

probability r/n. We will use the “easier” model in our

analysis.

General Settings

- Let S be a set of objects

- For a subset 𝑅 ⊆ 𝑆, we define a collection of regions

F(R).

For the case of vertical decomposition, S will be the set of

segments and F(R) will be the set of trapezoids.

- Let T be the set of all possible regions, defined by the

subsets of S.

General Settings - continuation

- 𝐷(𝜎) – is the defining set of 𝜎. - In the case of vertical

decomposition 𝐷(𝜎) is the set of segments which define

𝜎.
- We assume that for every 𝜎 ∈ 𝑇, 𝑫 𝝈 ≤ 𝒅 for a small

constant d. - In the case of vertical decomposition, each

trapezoid is defined by at most 4 segments, therefore

d=4.

- 𝐾 𝜎 - is the stopping set of 𝜎. – In the case of vertical

decomposition 𝐾(𝜎) is the set of segments of S

intersecting the interior of the trapezoid 𝜎 (its conflict list).

- 𝜔 𝜎 - is the weight of 𝜎. Defined to be |𝐾 𝜎 |.

Axioms
Let S, F(R), 𝐷(𝜎) and 𝐾(𝜎) be such that for any subset

𝑅 ⊆ 𝑆, the set F(R) satisfies the following axioms:

1) For any 𝜎 ∈ 𝐹 𝑅 , we have

𝐷 𝜎 ⊆ 𝑅 and 𝑅 ∩ 𝐾 𝜎 = ∅.

I.e: choose all defining

segments. Don’t choose any

conflicting/stopping one.

2) If 𝐷 𝜎 ⊆ 𝑅 and 𝐾 𝜎 ∩ 𝑅 = ∅,
then 𝜎 ∈ 𝐹 𝑅

Probability of region to be created
Let S be a set complying with the axioms.

We denote by 𝝆𝒓,𝒏(𝒅, 𝒌) the

probability that a region 𝜎 ∈ 𝑇
appears in F(R).

Where its defining set is of size d,

its stopping set is of size k,

R is random sample of size r

from S, and n=|S|.

Claim 3:

Proof of the claim

Claim 3:

Proof in simpler sampling model:

If we assume that every segment is

picked with the probability r/n, then

the probability that the defining segments are chosen and

that the stopping segments

aren’t is indeed

The exponential decay lemma

- S – set of objects

- 𝑟 ≤ 𝑛

- 1 ≤ 𝑡 ≤ 𝑟/𝑑, where
 𝑑 = max

𝜎∈𝑇 𝑆
|𝐷 𝜎 |

- S comply to the axioms

- 𝐸𝑓 r = E 𝐹 R

- 𝜎 ∈ 𝐹(𝑅) is t-heavy if 𝜔 𝜎 ≥ 𝑡(
𝑛

𝑟
)

- 𝐸𝑓≥𝑡 r = E[|F≥t(R)|]

Then

We will prove the lemma in steps.

The exponential decay intuition

- Consider R to be a random sample

of size r from S without repetitions.

- A region 𝜎 ∈ 𝐹(𝑅) is t-heavy

if 𝜔 𝜎 ≥ 𝑡
𝑛

𝑟

- 𝐹≥𝑡 𝑅 - all t-heavy regions of F(R)

Intuition: the probability of creating a

t-heavy trapezoid drops exponentially in t

- Indeed

The exponential decay - proof

Lemma 2:

- 𝑟 ≤ 𝑛 and t, such that 1 ≤ 𝑡 ≤
𝑟

𝑑

- R - sample of size r

- R’ - sample of size 𝑟′ =
𝑟

𝑡

- 𝜎 ∈ 𝑇 - trapezoid with weight 𝜔 𝜎 ≥ 𝑡
𝑛

𝑟

Then

Intuition: the probability that a heavy trapezoid will be created in
the large sample R drops exponentially from its probability to be
created in the small sample R’. (Because we are more likely to
choose a conflicting segment in R).

Lemma 2 - proof - illustration

-

- 𝑟′ =
𝑟

𝑡

- By claim 3:

Therefore we get –

 ~
22𝑑 𝑒

−
𝑟𝑘
2𝑛 𝑟 𝑑

1

22𝑑
𝑒
−
4𝑟′𝑘
𝑛 𝑟′𝑑

~
22𝑑(𝑒−

𝑡
2)

1
22𝑑
(𝑒−4)
td = O e−

t
2td

 (The third transition is because 1 − 𝑥 ~ 𝑒−𝑥)
∎

Lemma 2 - proof – cont.

The exponential decay lemma

- S – set of objects

- 𝑟 ≤ 𝑛

- 1 ≤ 𝑡 ≤ 𝑟/𝑑, where

 𝑑 = max
𝜎∈𝑇 𝑆
|𝐷 𝜎 |

- S complies to the axioms

- 𝐸𝑓 r = E[|𝐹 (R)|]

- 𝐸𝑓≥𝑡 r = E[|F≥t(R)|]

Then

- R - sample of size r

- R’ - sample of size 𝑟′ =
𝑟

𝑡

- 𝑋𝜎 - indicator variable which is 1iff 𝜎 ∈ 𝐹 𝑅

∎

The exponential decay lemma - proof

Bounded moments theorem

- 𝑅 ⊆ 𝑆 a random sample of size r

- Denote 𝐸𝑓 𝑟 = 𝐸[𝐹 𝑅]

- 𝑐 ≥ 1 – arbitrary constant

Then

Intuition: if we want to sum up all the sizes of conflict lists

after sample R (powered by some constant c), it would be

similar to taking the expected number of trapezoids and

multiplying it by
𝑛

𝑟

𝑐
, the expected weight to the power c.

Sketch of the proof: By the exponential decay lemma,

most regions have weight ≈
𝑛

𝑟
.

The very few that have large weight contribute little to the

sum.

Bounded moments theorem

Applications

- Analyzing the running time of the vertical decomposition

algorithm - proving the guess that the average size of the

conflict list of the trapezoid of 𝐵𝑖 is 𝑂
𝑛

𝑖

- Showing an algorithm for creating a small size (1/r)-cutting

Proving the guess
- By lemma 1: the expected size of 𝐵𝑖 (i.e the number of

trapezoids in 𝐵𝑖) is 𝑂 𝑖 + 𝑘
𝑖

𝑛

2
.

- By bounded moments theorem (plugging c=1), we have

that the total expected size of the conflict lists computed

at step i of the vertical decomposition algorithm is

The Running Time of the Algorithm

And since the expected amortized work done by the

algorithm in step i is 𝑂(
𝑊𝑖

𝑖
), we get that the total running

time of the algorithm is -

(1/r)-cuttings

- S - set of n lines in the plane

- r – arbitrary parameter (<n)

- (1/r)-cutting of S is the partition of the plane into constant

complexity regions, such that each region intersects at

most n/r lines of S

Building (1/r)-cutting using vertical decomposition

- We want to show that using the vertical decomposition,

we can build a (1/r)-cutting of size 𝑂(𝑟2).

- We will show that 𝑂 𝑟2 is the best (smallest) possible

size.

- Let (S,T) be the range space, where S

is the set of lines

(the ground set)

- T are the trapezoids

 (ranges). The range of

𝜎 ∈ 𝑇 : all the segments

of S that intersect the

interior of 𝜎

- (S,T) has a VC dimension

 which is a constant

- 𝑋 ⊆ 𝑆 – an 𝜖-net for (S,T)

- By the 𝜖-net theorem, there exists such an 𝜖-net, of size

Lemma 4: There exists a (1/r)-cutting of a set of lines S in

the plane of size 𝑂 𝑟𝑙𝑜𝑔𝑟 2 .

Proof: consider the vertical decomposition A’(X) where X is

as above (X is 𝜖-net). Then, the collection of the trapezoids

is the desired cutting.

Proof continuation:

The (1/r)-cutting is indeed of size 𝑂(𝑟𝑙𝑜𝑔𝑟 2), because the

size of A’(X) (the number of trapezoids) is 𝑂(𝑋 2) and

𝑋 = 𝑂(𝑟𝑙𝑜𝑔𝑟).

Correctness:

- Let 𝜎 ∈ 𝐴′(𝑆)

- 𝜎 doesn’t intersect any of the

lines in X (s5, s6)

- If 𝜎 intersected more than

n/r (8/2=4) lines of S in the

interior, then 𝜎 intersects

one of the lines in X,

since X is an 𝜖-net.

Contradiction. ∎

Claim 4: any (1/r)-cutting in the plane of n lines, contains at

least Ω(𝑟2) regions.

Proof:

- Number of intersections in

a region is at most 𝑚 = 𝑛/𝑟
2

- Number of all intersections

of n lines is 𝑀 = 𝑛
2

Therefore, number of regions in

a cutting must be at least

∎

Theorem:

- S - set of lines in the plane

- r – arbitrary parameter

We can construct a (1/r)-cutting of size 𝑶(𝒓𝟐).

Building (1/r)-cutting using vertical decomposition

Theorem – proof

- Pick r random

lines

- Build vertical

decomposition

- If a trapezoid 𝜎 intersects at most n/r lines of S – add it to

the cutting

- Otherwise, 𝜎 intersects t(n/r) lines of s (for some t>1) –

apply a (1/t)-cutting on this trapezoid.

- Now, each trapezoid in this cutting intersects at most n/r

lines in S.

Theorem – proof cont.

- The size of the cutting inside 𝜎 is 𝑂 𝑡2 log2 𝑡 = 𝑂(𝑡4)

- By the bounded moments theorem, the expected size of

the cutting is

∎

