Speaker: Sariel Har-Peled (UIUC) Title: Shortest Path in a Polygon using Sublinear Space (see http://sarielhp.org/p/14/sublinear_space/ ) We resolve an open problem due to Tetsuo Asano, showing how to compute the shortest path in a polygon, given in a read only memory, using sublinear space and subquadratic time. Specifically, given a simple polygon P with n vertices in a read only memory, and additional working memory of size m, the new algorithm computes the shortest path (in P) in O( n^2 / m ) expected time, assuming m=O(n /\log^2 n). This requires several new tools, which we believe to be of independent interest. Specifically, we show that violator space problems, an abstraction of low dimensional linear-programming (and LP-type problems), can be solved using constant space and expected linear time, by modifying Seidel's linear programming algorithm and using pseudo-random sequences.