Speaker: Matya Katz (BGU) Title: Batched Point Location in SINR Diagrams via Algebraic Tools Abstract: The SINR model for the quality of wireless connections has been the subject of extensive recent study. It attempts to predict whether a particular transmitter is heard at a specific location, in a setting consisting of n simultaneous transmitters and background noise. The SINR model gives rise to a natural geometric object, the SINR diagram, which partitions the space into n regions where each of the transmitters can be heard and the remaining space where no transmitter can be heard. Efficient point location in the SINR diagram, i.e., being able to build a data structure that facilitates determining, for a query point, whether any transmitter is heard there, and if so, which one, has been recently investigated in several papers. These planar data structures are constructed in time at least quadratic in n and support logarithmic-time approximate queries. We address the question of batched point location queries, i.e., answering many queries simultaneously. Specifically, in one dimension, we can answer n queries exactly in amortized polylogarithmic time per query, while in the plane we can do it approximately. These results demonstrate the (so far underutilized) power of combining algebraic tools with those of computational geometry and other fields. Based on work with Boris Aronov