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Abstract

Given a polyhedral terrain � with � vertices, the two-watchtower problem for � asks to find
two vertical segments, called watchtowers, of smallest common height, whose bottom endpoints
(bases) lie on � , and whose top endpoints guard � , in the sense that each point on � is visible
from at least one of them. There are three versions of the problem, discrete, semi-discrete, and
continuous, depending on whether two, one, or none of the two bases are restricted to be among
the vertices of � , respectively.

In this paper we present the following results for the two-watchtower problem in 	�
 and 	
� :
(1) We show that the discrete two-watchtowers problem in 	 
 can be solved in ����� 
�������� ���
time, significantly improving previous solutions. The algorithm works, without increasing its
asymptotic running time, for the semi-continuous version, where one of the towers is allowed to
be placed anywhere on � . (2) We show that the continuous two-watchtower problem in 	 
 can
be solved in ����� ��� ����� ��� � � ��� time, again significantly improving previous results. (3) Still
in 	 
 , we show that the continuous version of the problem of guarding a finite set !#"$� of% points by two watchtowers of smallest common height can be solved in ��� % � ����� ����� time.
(4) We show that the discrete version of the two-watchtower problem in 	�� can be solved in�����'&(&() ��*+����,-��� � �����(� time; this is the first nontrivial result for this problem in 	 � .
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1 Introduction

A polyhedral terrain in 687 is the graph of a continuous, piecewise-linear 9;:=<?>�@ -variate function.
Thus, a terrain in 68A is an B -monotone polygonal chain, while a terrain in 6DC is an B�E -monotone
polyhedral surface. A watchtower is a vertical line segment whose bottom endpoint (base) lies onF

. A point GIH F
is seen (or guarded) by a watchtower J if the top endpoint of J sees G , that is,

the segment connecting it to G lies fully above
F

. Two watchtowers placed on
F

are said to guardF
if each point on

F
is visible from the top endpoint of at least one of the towers.

In this paper we study the two-watchtower problem for polyhedral terrains in 6KA and 6LC , which
is defined as follows. Given a polyhedral terrain

F
with M edges, find the smallest height NPORQ

for which there exist two points S�TVUWH F
such that the watchtowers of height N erected at S and U

guard
F

.

Two versions of the problem have been studied in the literature. In the discrete version, the
bases S and U are restricted to be among the vertices of

F
(or, for that matter, could belong to any

prespecified finite point set). In the continuous version, S and U can be located anywhere on
F

.
In this paper we study these two versions and also address a new version, called semi-discrete, in
which the base of one tower is restricted to be among the vertices on

F
while the base of the other

tower can be anywhere on
F

(see Figure 1). We further introduce a variant of the problem when
not all of

F
needs to be guarded. Instead, we specify a finite set X of Y “critical” points on

F
,

and the goal is to find two watchtowers of minimum common height that together guard X (i.e.,
every point of X is visible from at least one of the towers). Again, we may consider the discrete,
semi-continuous, or the continuous versions of this problem.

(i) (ii) (iii)

Figure 1. The three versions of the problem in Z\[ : (i) discrete, (ii) semi-discrete, and (iii) continuous.

Of course, similar problems can be stated for any number of watchtowers, and one can also
consider variants, such as the one where the height N of the watchtowers is specified, and one
wishes to find the smallest number of watchtowers of that height that collectively guard

F
.

Related work. Guarding a terrain by watchtowers is a special case of the general class of visibility
problems in two and three dimensions, known as art gallery problems, which have been extensively
studied for more than two decades. These problems have numerous applications in surveillance,
navigation, computer vision, modelling and graphics, GIS, and many more. See [23] for a recent
survey of art gallery problems.
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The problem of guarding a terrain in 6 A by two watchtowers has been studied in several recent
papers. Bespamyatnikh et al. [4] show that for the discrete case in 6]A deciding whether there exist
two watchtowers of given height N that guard

F
can be done in ^_9`M C @ time. Using parametric search

[18], they obtain an ^a9`MbC
cedgf A Mb@ -time algorithm for the optimization problem. They also present an
^a9`M\h�@ -time solution that avoids parametric search. Ben-Moshe et al. [2] also address the discrete
version of the problem in 6 A and give an ^a9`M A�i jVkVk cedgf A Mb@ -time algorithm, based on parametric
search and on the computation of all dominances for a set of M points in 6Dl . The continuous case
for 6 A is solved in [4] by an algorithm that takes ^a9`M h cedgf A Mb@ time, using parametric search.

Much less is known about terrain guarding in 6 C . Early work on terrain guarding, due to Cole
and Sharir [10], shows that the problem of finding the minimum number of guards is NP-complete,
even if the guards are placed on the terrain (no elevation is allowed). However, the case of a single
watchtower guarding the terrain has been shown by Sharir [21] to be solvable in ^_9`Mmcedgf A Mb@ time.
An ^a9`MmcedgfnMb@ -time algorithm for this problem was later obtained by Zhu [24].

Attention has also been given to the problem of guarding a two-dimensional terrain with the
minimum number of guards placed on the terrain. If the guards are at some fixed height, the min-
imum number of guards can be found in polynomial time [19]. Recently, Ben-Moshe, Katz, and
Mitchell [3], and, independently, Clarkson and Varadarajan [8], discovered constant-factor approxi-
mation algorithms for the problem. Eidenbenz et al. [12] show that the related problem of guarding
a simple polygon with a minimum number of guards is APX-hard. So for the problem of guarding
polygons there is an o such that it is NP-hard to obtain a 9p>]qro-@ -approximation for the minimum
number of guards.

Our results. we study the problem of guarding a terrain by two watchtowers in 6 A and 6 C . For
the planar case we obtain the following results.

(i) We show that the discrete two-watchtower problem can be solved in ^a9`MnA\c�dgf h Mb@ time, sig-
nificantly improving the previous solutions cited earlier. The algorithm works, without af-
fecting its asymptotic running time, for the semi-continuous version as well, in which one of
the bases can be anywhere on

F
and the other has to be placed at a vertex of

F
.

(ii) We show that the continuous two-watchtower problem can be solved in ^a9`M Cts 9`Mb@+c�dgf C Mb@
time, again significantly improving previous results.

(iii) We show that the continuous version of the problem of guarding a finite set Xvu F
of Y

points by two watchtowers can be solved in ^a9`YwMmcedgf h Mb@ time.

We also study the problem of guarding a terrain by two watchtowers in 6KC , and present an
^a9`MyxVx(z C
{ d|ce}~cedgf�9`Mb@V@ time algorithm for the discrete two-watchtower problem. This is the first
nontrivial algorithm for the problem: A trivial solution for the discrete problem takes about ^a9`M8h @
time.

All the results derived in this paper are based on the parametric-searching technique [18]. For
each result, we first design a decision procedure that, given

F
and a real value N�O#Q , determines

whether
F

can be guarded by two watchtowers of height at most N . Next, we apply the parametric
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searching technique to the decision procedure, to obtain an algorithm that finds where to place two
watchtowers of smallest possible height.

The parametric searching step involves developing a parallel algorithm for the decision problem
and simulating it generically at the unknown value of the smallest height. While the main contri-
butions of the paper lie in developing the decision procedures, their generic implementations for
parametric searching are also nontrivial and we describe them too in detail. (We note that previous
results on the problem do not detail the parametric searching steps.)

Section 2 describes the algorithms for the discrete and semicontinuous two-watchtower prob-
lems in 6LA . Section 3 describes the algorithm for the continuous two-watchtower problem in 6KA .
Section 4 discusses the continuous version in which only a given set of points on

F
need to be

guarded. Section 5 describes the algorithm for the discrete two-watchtower problem in 6KC . We
conclude the paper in Section 6 with a brief discussion and some open problems.

2 The Discrete and Semi-Continuous Problems in ���
Let

F
be an B -monotone polygonal chain in 68A , with M edges, and let � be the set of its vertices.

For a point S�H F
and N?ORQ , let S�9�N�@ be the point that is vertically above S at distance N . We

call the vertical segment S�Sy9�N'@ the watchtower with base S and height N , but we often refer to the
watchtower just by its top endpoint S�9�N�@ , for short.

The discrete two-watchtower problem asks for the smallest height N$O#Q such that there exist
two vertices S�TVU�H�� , so that the two points S�9�N�@ and U
9�N'@ (the tops of the towers at height N
erected at S and U , respectively), guard

F
. The semi-continuous two-watchtowers problem is the

same, except that only one of S , U is required to be a vertex of
F

, and the second one can lie
anywhere on

F
. We present algorithms that solve these two problems in time ^a9`MLA
cedgf h Mb@ . Both

algorithms employ parametric searching [18], and therefore rely on a decision procedure, to guide
the search for the optimum height.

Let
F

be a polygonal terrain in the plane with M edges, and let N�O�Q be a fixed parameter. To
solve the decision problem we need to determine whether there exist two points S�TVU�H F

, with both
S�TVU�H�� (discrete case) or at least one of S , U a vertex of

F
(semi-continuous case), such that the

top endpoints Sy9�N'@ , U
9�N'@ of the watchtowers of height N at S , U guard
F

. We present a procedure
that does much more than that: Given one tower S�9�N�@ , it finds the shortest second tower that can be
placed anywhere on the terrain, so that both towers guard

F
. This serves as a decision procedure

for both the discrete and the semi-continuous versions of the problem. We begin by describing a
procedure that is a main step in the decision procedure. Next, we describe the decision procedure,
and then discuss how to plug the parametric searching.

2.1 Computing visibility pairs

Let X be a set of points on
F

, and let � be the set of vertices of
F

. We want to find, for each vertex
U�HW� , a point ��HWX (if one exists), that satisfies the following conditions:

(i) � lies to the left of � ;
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(ii) � sees U ; and

(iii) � is the rightmost point in X that satisfies (i) and (ii). Alternatively, among the points of X
that satisfy (i) and (ii), the segment ��U has the largest slope (it is easily verified that these
alternative formulations are equivalent).

Figure 2. Some pairs of �����
���L� .

Denote by ��9;X]T���@ the set of these pairs. See Figure 2. We assume that � X�����^_9`Mb@ , which
will be the case in our application. We solve this problem using the following divide-and-conquer
technique. Consider the set X���� and let   be the vertical line that splits it into two subsets of equal
size. Let X�¡bT���¡ (resp., Xy¢LT���¢ ) denote the subsets of X and � that lie to the left (resp., right) of   .
We clearly have

��9;X]T���@n����9;X�¡�T���¡�@��£��9;Xy¢LT���¢¤@\�£��9;Xb¡bT��¦¥¢ @�T
where � ¥¢ is the subset of all points U$H��
¢ for which there is no point �?H�Xn¢ that forms with
U a pair in ��9;X¤¢nT��'¢�@ . Let M ¥ denote the size of � ¥¢ . We compute ��9;Xy¡bT���¡\@ and ��9;Xy¢LT���¢¤@
recursively, extract the subset � ¥¢ , and compute ��9;X ¡ T�� ¥¢ @ in the following direct way.

Without loss of generality, assume that   is the E -axis. We pass to the dual plane, using a duality
transform that maps a point 9`Y�T;�
@ to the line E=�?YwB�q�� . For each ��H�XL¡ , let §-¨ denote the dual
representation of the locus of all lines © that pass through � , such that � sees the intercept ©«ª£  . In
the dual plane, §g¨ is a rightward directed ray, contained in the line dual to � and emanating from the
point GL¨ that represents the shallowest line through � with the above property. Note that the rays §¬¨
are pairwise openly disjoint, because an intersection point of two such rays § ¨ , § ¨®­ is dual to a line
that passes through � and � ¥ , so that both points see the intercept. Since both points lie on

F
, this is

impossible (except at an endpoint of one of the rays, namely, the ray corresponding to the leftmost
point among ��T;� ¥ ).

In complete analogy, for each point ¯�H°� ¥¢ , let ±®² denote the dual representation of the locus
of all lines © that pass through ¯ , such that ¯ sees the intercept ©�ª�  (here ¯ sees the intercept to its
left). In the dual plane, ±³² is a leftward directed ray, emanating from the point ´|² that represents the
shallowest line through ¯ with the above property. Here too the rays ±-² are pairwise openly disjoint.
See Figure 3(i).

Let ¯�H�� ¥¢ , and let �µH¶X ¡ be the point that satisfies 9��bT·¯g@�H¶��9;X ¡ T�� ¥¢ @ (assuming that such
a point exists). The point dual to the line that passes through � and ¯ is a point that lies on both
rays §-¨~T¸±t² , and is the rightmost point of intersection of ± ² with some ray §g¨ (it corresponds to the
line of largest slope in condition (iii)). Let ¹ denote the unbounded (and degenerate) ‘comb-like’
simple polygon, whose boundary consists of all the rays §+¨ , and of a vertical line  ³º at B��Iqm» .
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(i) (ii)

Figure 3. (i) The rays ÀtÁ and a query ray Â ½ . (ii) The polygon Ã .

(In practice, we place  �º at a sufficiently large B -coordinate, and trim the rays §Ä¨ at their intercepts
with  ®º ; see Figure 3(ii).) Then the point ��HÅXn¡ that forms with ¯ a pair in ��9;X¤¡�T�� ¥¢ @ is simply
the output of a ray-shooting query inside ¹ along ± ² .

We first construct ¹ . For this, we need to compute the (apices of the) rays §~¨ , for ��H�X�¡ . LetF ¡ (resp.,
F ¢ ) denote the region consisting of all points that lie above

F
and to the left (resp., right)

of   . Let Æ·Ç denote the intersection point
F ª�  . We construct the shortest-path map inside

F ¡ with
Æ·Ç as a source, as in [13]. This allows us to find, in linear time, the terminal segments of all the
shortest paths from Æ�Ç to the points of Xy¡ . For each �µHµX�¡ , the apex of §g¨ is then the dual of the
line containing the respective terminal segment �'È ; see Figure 4. The total cost of this step is linear.

Ç É�Ê
É-Ë

¨
Ì

Í`Î
Figure 4. Constructing the rays À®Á from the shortest-path map from Ï Î .

To complete the construction of ¹ , we need to sort the rays §+¨ by their intercepts with  �º .
However, this order is equal to the order of the slopes of these rays, which in turn is the same as the
order of the abscissas of the points of Xn¡ , and this order can be computed prior to the beginning of
the divide-and-conquer process (the compuation of the order of abscissas over X requires ^a9`Mmc�dgfnMb@
time). Hence, this substep also takes linear time.

Using the algorithm of Guibas et al. [13] (see also [5]), we next preprocess ¹ in linear time for
ray shooting queries that take logarithmic time each. We then construct the (apices of the) rays ±Ð² ,
for ¯�HÑ� ¥¢ . This is done, in a symmetric manner to the construction of the rays § ¨ , using the regionF ¢ instead of

F ¡ . This step also runs in linear time. We then perform ray shooting queries in ¹
with the rays ±®² , for ¯�Hr� ¥¢ , thereby obtaining the set ��9;X¤¡bT�� ¥¢ @ . Hence, the overall cost of the
‘merge’ step of the recursion is ^a9`Mmc�dgfnMb@ time, so the entire procedure takes ^a9`Mmc�dgf A Mb@ time.
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In summary, we have an algorithm that computes the set ��9;X]T���@ in ^a9`Mmcedgf A Mb@ time.

2.2 The decision procedure

Let Ò be the region of the plane that lies above
F

. In the decision procedure, we fix a vertex S of
F

,
erect the first tower, of height N , over S , and compute the visibility polygon ÓR9`Sy9�N'@V@ , which is the
portion of Ò that is visible from S�9�N�@ . The polygon ÓR9`S�9�N�@V@ can be computed in linear time [13].
Let Ô�ÓR9`S�9�N�@V@ denote the boundary of ÓR9`S�9�N'@V@ . The portion of Ô�ÓR9`Sy9�N'@V@ that lies on

F
consists

of subsegments of the edges of
F

, at most one subsegment for each edge, which are delimited either
by the vertices of

F
, or by intercepts of visibility rays that emanate from S�9�N�@ and pass through

some vertex of
F

. In either case, at least one endpoint of each visibility segment is a vertex of
F

.
See Figure 5.

Let XÕ��X_9`S�T¸N�@ denote the set of all the endpoints of the portions of the edges of
F

that are not
visible from S�9�N'@ . Clearly, Sy9�N'@ and another tower top U
9�N ¥ @ (with a possibly different height N ¥ )
guard

F
if and only if U
9�N ¥ @ sees all the points of X . This follows from the easy observation that if

a point U
9�N ¥ @ above
F

sees both endpoints of a subsegment of some edge of
F

then it sees the entire
subsegment.

The following lemma provides the crucial geometric property on which our algorithm relies.

Lemma 2.1. For a point U on
F

and height N ¥ , the tower top U�9�N ¥ @ sees all the points of X that lie
to the left of U if and only if U
9�N ¥ @ lies above all the lines ��G such that 9���TVG�@]HÖ��9;X]T���@ and G lies
to the left of (or coincides with) U .

Equivalently, U
9�N ¥ @ sees all the points of X that lie to the left of U if and only if, for each �×HµX to
the left of U , U�9�N ¥ @ lies above the steepest line ��G such that 9���TVGØ@KH���9;X]T���@ and G lies to the left
of (or coincides with) U .

Ù
ÙgÚÜÛ�Ý

Figure 5. The visible portions of Þ from ß~��àg� , and the set �D�eß+�;àg� (highlighted along Þ ).

Proof: If U�9�N ¥ @ sees all the points of X that lie to the left of U then it must lie above all the lines �'G
as in the first statement of the lemma, or else the corresponding point � would not be visible from
U�9�N ¥ @ . Conversely, suppose that U�9�N ¥ @ lies above all these lines, and let � be a point in X to the left
of U . If U
9�N ¥ @ does not see � then the shortest path from � to U�9�N ¥ @ that lies above

F
must bend at

some vertices of
F

. Let G be the leftmost such vertex. If 9���TVG�@�Há��9;X]T���@ , then 9���TVG�@ satisfies
the conditions in the lemma, and U
9�N ¥ @ passes below the line ��G , contrary to our assumption. If
9���TVGØ@¶âHã��9;X]T���@ then there must exist another point � ¥ HÕX that lies between � and G so that
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9�� ¥ TVG�@�H#��9;XäT���@ . The line � ¥ G is even steeper than ��G , and U
9�N ¥ @ thus lies below it, again a
contradiction. The second statement of the lemma is obvious. å

Lemma 2.1 has a symmetric version, which handles visibility from a tower top U�9�N ¥ @ to the
points of X to its right. For this version we need a symmetric version of ��9;XäT���@ , involving pairs
9���TVU¬@�H�Xçæ£� with � lying to the right of U , which is defined and constructed in a fully symmetric
manner.

Next, we sweep the plane with a vertical line   from left to right, starting with the leftmost
vertex of

F
, and construct a height function N\¡ , so that, for each ¯ÅH F

, N�¡b9;¯|@ is the height of
the shortest tower erected over ¯ that sees all the points of X to its left. Equivalently, in view of
Lemma 2.1, N'¡b9;¯|@ is the distance from ¯ to the upper envelope è of the lines �'G , for all the pairs
9���TVGØ@DHÖ��9;X]T��=@ with G lying to the left of (or coinciding with) ¯ .

As we sweep   , N�¡�9;¯|@ remains a linear function, equal to the vertical distance between an edge
of è and an edge of

F
, until   reaches a vertex of either è or

F
. If it reaches a vertex of è , we pass

to another edge of è , and the corresponding update of N\¡ is easy and obvious. If   reaches a vertex
U of

F
, in addition to the obvious local update of N\¡ , we need to dynamically update è , by adding

the line ��U , for the unique pair 9���TVU~@«Há��9;X]T���@ , to the set of lines that form è , or do nothing if
such a pair does not exist. This has the effect of either leaving è unchanged or, since è is convex,
creating two new vertices of è and deleting the old vertices between them, and can easily be done
in overall time ^a9;c�dgfLMb@ . After each update is performed, we also need to find the next vertex of
è to the right of the current position of   , which can be done in ^_9p>�@ time per update. Hence, the
construction of N'¡ can be done in ^_9`MmcedgfnMb@ time (after the preprocessing stage of constructing
��9;X]T���@ , which takes ^a9`Mmcedgf A Mb@ time). Note that this algorithmic analysis also implies that the
combinatorial complexity (number of vertices of the graph) of the function Nb¡ is ^_9`Mb@ .

We then apply a symmetric process, in which we sweep the plane from right to left, starting with
the rightmost vertex of

F
, and construct the symmetrically defined height function N�¢ . We then

construct the upper envelope N � of N ¡ and N ¢ , in time ^_9`Mb@ , using a standard merging procedure.
The global minimum of N � is the shortest height of a second tower, erected anywhere on

F
, that

sees, together with S�9�N'@ , the entire terrain.

Since we need to repeat this step for each vertex S of
F

, the entire decision procedure runs in
^a9`M A cedgf A Mb@ time. In summary, we thus have:

Lemma 2.2. (a) Given a terrain
F

in the plane with M edges, a vertex S of
F

, and a height NÑé?Q ,
one can find, in ^_9`Mmcedgf A Mb@ time, the shortest second tower, erected anywhere on

F
, that sees,

together with Sy9�N'@ , the entire terrain.

(b) Given a terrain
F

in the plane with M edges, and a height NêéëQ , one can determine, in
^a9`M�A
cedgf A Mb@ time, whether N is smaller than, equal to, or greater than the optimum height for
the discrete or the semi-continuous two-towers problem for

F
.

Remark: An obvious open problem is to improve the efficiency of the construction of the set
��9;X]T���@ . Can it be done in ^_9`MmcedgfLMb@ time? This is the bottleneck step in the decision procedure,
and the above improvement, if possible, would have reduced the total running time to ^_9`M A cedgfnMb@ .
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2.3 Plugging the parametric search

In this section we show how to find the optimum height in the discrete and semi-continuous cases by
applying the parametric searching technique [18]. That is, we run a generic version of the decision
procedure, in which N is left as an unknown parameter. Comparisons that depend on N are resolved
by finding the few critical values of N at which the answer to the comparison may change, and by
running (a concrete version of) the decision procedure at these critical heights, thereby finding the
noncritical range that contains the optimum height N � and is delimited by two consecutive critical
heights. This determines the outcome of the comparison, and at the same time narrows down the
range ì that is known to contain N � . We proceed in this manner through the execution of the
generic decision procedure. If N � is found during one of these comparison resolutions, we stop
and report it. Otherwise, upon termination, we output the smaller endpoint of the final interval
ì . Since the function í¤9�N'@ corresponding to the portion of

F
visible from two towers of height

N is a monotonically increasing function, the overall problem can be casted as a monotonic root
finding problem, for which the parametric searching procedure is guaranteed to produce the optimal
solution N � .

To reduce the cost of the generic execution, we need to run a parallel version of it. More
precisely, the only steps in the algorithm that need be parallelized are comparisons that depend on N .
All such comparisons that arise in a single parallel step of the algorithm are resolved simultaneously,
by running a binary search on all the resulting critical heights. If the algorithm runs in

Fnî
parallel

steps and uses � processors, then its overall cost is ^a9 F�î 9��_qáïPcedgf��\@V@ , where ïð��^a9`M A cedgf A Mb@
is the cost of the decision procedure.

We describe two such generic parallel implementations of the decision procedure, one for
the discrete problem and one for the semi-continuous problem. Both implementations require
^a9;c�dgfLMb@ parallel steps. The first algorithm requires ^_9`M A cedgfLMb@ processors, and the second re-
quires ^_9`M�A
cedgf C Mb@ processors. Hence, both result in algorithms with ^a9`M¤A
cedgf h Mb@ running time.

We begin by preprocessing
F

as follows. For each vertex S of
F

, we compute the visibility map
from the vertical halfline above S , with an endpoint at S , using the algorithm of [13]. This takes
overall time ^a9`M�A³@ , since computing the visibility map from the vertical halfline above S takes ^a9`Mb@
time. For each S , the output contains all mutually visible pairs 9`U'TVU ¥ @ of vertices, such that some
point above S sees both U and U ¥ along the line UÐU ¥ . In addition, we also have the first point along
that line, as we trace it from the point above S towards U and U ¥ , where it crosses

F
into the region

below
F

(which may happen at the farthest vertex among U and U ¥ or at another further point ofF
). As shown in [13], the number of such critical events is linear for each S . We thus obtain ^a9`Mb@

critical heights over S , one for each of these visibility events (see Figure 6). Repeating this step for
each vertex S , we obtain a set Ò�º of a total of ^a9`M A @ critical heights, and a corresponding set ñ of
intercepts along the edges of

F
, where the above visibility rays UÄU ¥ ‘enter’ the region below

F
.

We run a standard binary search through Ò£º , using the decision procedure described above.
After ^a9;cedgf8Mb@ calls to that procedure, with overall cost ^a9`M A c�dgf C Mb@ , we obtain an initial interval
ì®º that contains the optimum height N � . For each S�HÑ� and for each NÖH�ì�º , the visibility polygon
ÓR9`S�9�N�@V@ has a fixed combinatorial structure. In particular, for each visible portion of an edge ò
of

F
, the nature of its endpoints is fixed, in the sense that each of them is either a fixed vertex ofF

, or the intercept along ò of a visibility ray that emanates from S�9�N'@ and passes through a fixed

8
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Figure 6. The critical heights over ß .

vertex of
F

before hitting ò . Let X_9`S�T¸N�@ denote the set of those endpoints of the visibility segments
of ÓR9`S�9�N�@V@ that are not vertices of

F
, and set X_9�N'@ to be the union of these sets, over all vertices

S . Clearly, X_9�N'@ has size ^a9`MbA�@ . The parameter N reminds us that these are parametric points that
depend on N .

Our next step is to locate the points of X�9�N'@ among the points of ñ . We run the following process
iteratively. At each stage we have a partition ó of the edges of

F
into subsegments, each delimited

by points of ñä��� , an interval ì�ô¶õ�ì®º , and a corresponding partition of X_9�N'@ into subsets, each
known to be contained in a fixed segment ö of ó , for all N�H�ì-ô . Initially, ó is the set of edges
of

F
, ì ô×÷ �øì º , and the sets X¤ù�9�N�@ ÷ ��X_9�N�@yªWö , for ö an edge of

F
, form the desired partition of

X_9�N�@ . (Recall that, for N�H�ì�º , the points of X ù 9�N�@ move continuously along ö , and no point enters
or leaves this set.) Each iterative step refines ó as follows.

For each segment öaHµó , set ñ ù ÷ �úñDªwû�üÄý�9�ö�@ . Segments öaHµó with ñ ù �çþ are removed from
ó , and we report the corresponding sets X ù 9�N'@ as part of the output of this stage. For any remaining
segment ö , let ¯ ù denote the median point of ñ ù . For each �×H¶X ù 9�N�@ , let NÐ¨ be the (unique) height
at which � coincides with ¯�ù . If there is no such height, or if N ¨ lies outside the range ì ô , then we
know which half of ö contains � , and we ignore � in the remainder of the present step. Repeating
this over all segments öÑHãó , we obtain a set Ò ô of ^a9`M�A�@ critical heights, and we run a binary
search through them, as above, to obtain a subinterval ì ¥ õ�ì³ô , so that for each NÑH�ì ¥ , ö�H×ó , and
��H×X ù 9�N'@ , we know which half of ö contains � . The next partition ó ¥ is then obtained by splitting
each surviving segment ö«H�ó at the median point ¯ . We set ì ô ­ ÷ �ãì ¥ , and get the new partition of
X_9�N�@ by assigning each point � to the new half-segment it belongs to. After at most ^a9;c�dgfLMb@ steps,
all segments of ó are removed, and each point �ÑH�X_9�N'@ , for any N in the final range ì ô , is located
between two successive points of ñL�Ö� , as required. The overall cost of this step is ^_9`M A cedgf h Mb@ .

Let ì x denote the final range ì ô . For each N$H�ì x and for each S$H°� , the set ��9;X_9`SbT¸N'@�T��a@
is now fixed, as is easily seen. This follows from the observation that whenever ��9;X_9`S�T¸N�@�T��a@
changes, some point in X_9�N'@ must coincide with a point in ñ8��� . This allows us to run the left-to-
right sweeping procedure, for each fixed S�H�� , without having to fix the value of N , and obtain, for
each swept vertex U , the set ÿ�� of all the active lines ��G , for 9���TVGØ@ H¶��9;X�9`S�T¸N'@�T��=@ , namely, the
lines corresponding to those pairs 9���TVGØ@ with G lying to the left of U . In the discrete problem, we
need to find which of these lines attain the maximum height at U , and assert that this maximum height
is no more than N � ; see below for more details. Handling the semi-continuous case is somewhat
more involved, and will be discussed later.

To parallelize this step, we store the vertices of
F

at the leaves of a minimum-height binary tree
J . Each internal node

�
of J represents the set ��9 � @ of all vertices stored at the leaves of the subtree

9



J�9 � @ rooted at
�
. Let ÿ 9 � @ denote the set of all the lines ��G , for 9���TVGØ@äH���9;X]T���@ , and G�H×��9 � @ ,

and let è�9 � @ denote the upper envelope of the lines in ÿ 9 � @ . Note that è�9 � @ is an envelope of � ÿ 9 � @®�
lines, so its complexity is ^_9·� ÿ 9 � @®� @ . We have �����	�ä� ÿ 9 � @®�ä�v^_9`MmcedgfLMb@ . Hence, the overall
complexity of all the envelopes è�9 � @ is ^a9`Mmc�dgfLMb@ , for a fixed first tower base S . We construct each
of the envelopes è�9 � @ as follows. We dualize the respective lines ��G to points in the dual plane,
and run the parallel algorithm of [1] for constructing the upper convex hull of these (parametric)
points. For a set of Y points, this algorithm uses ^a9`YW@ processors and runs in ^a9;cedgf8YW@ time. Each
generic comparison that the algorithm performs is either between the B -coordinates of two dual
points (that is, between the slopes of two input lines), or a left-turn test involving three dual points.
Clearly, all the envelopes è�9 � @ , over all the nodes

�
of J and over all the first tower bases S in � ,

can be constructed in parallel, using a total of ^_9`MyA\cedgfnMb@ processors and ^a9;cedgf8Mb@ parallel steps.
This yields an overall parametric searching stage that runs in time ^a9`MnA\cedgf h Mb@ , as follows from the
general time bound for parametric searching given above. Note that the output envelopes are still
parametric and vary with N . However, their combinatorial structure is fixed (within the restricted
subrange of N computed so far): For each envelope we know the sequence of lines (or, rather, pairs
9���TVGØ@ defining those lines) that attain the envelope from left to right, and thus also know the nature
of each breakpoint of the envelope.

We next apply another parallel stage, in which we locate, for each envelope è�9 � @ and each of its
breakpoints ¯ , the edge of

F
that lies vertically above or below ¯ . We process these breakpoints in

parallel, and for each breakpoint ¯ we run a binary search with its (parametric) B -coordinate among
the B -coordinates of the vertices of

F
. This stage uses ^a9`M A cedgfLMb@ processors and runs in ^a9;c�dgfLMb@

parallel steps, so its overall cost is also ^a9`MyA
cedgf h Mb@ .
This initial part of the algorithm applies to both the discrete and the semi-continuous cases.

Proceeding with the discrete case is now easy: Keeping the first tower base S fixed, we process
all the vertices U of

F
in parallel. For each vertex U , we obtain the set of vertices that lie to the

left of U as the (disjoint) union of ^a9;cedgf8Mb@ subtrees of J . For each of these trees J�9 � @ , we locate
U among the vertices of è�9 � @ , using binary search. Since we have already located the vertices
of each è�9 � @ among the vertices of

F
in their left-to-right order, these binary searches can be

performed explicitly, without having to use generic parametric searching. Hence this step can be
performed in overall ^_9`M A cedgf A Mb@ time. We now have, for each pair S�TVU , a set of ^a9;c�dgfLMb@ lines,
each attaining a respective subenvelope è�9 � @ at U , and we compute their maximum height at U . This
is still a parametric step, which can be easily performed in parallel, using ^a9`MLA\cedgfLMb@ processors
and ^a9;c�dgfnMb@ parallel depth, so that its overall cost is, as above, ^_9`M A cedgf h Mb@ . To end the algorithm,
we output a pair S�TVUãHø� for which the height computed at U , as described above, is no more
than N . This step is also parametric, and can be performed within the time bound for the preceding
step. It narrows down the range of N to its final value, and we terminate by returning the minimum
of this interval (unless the optimum height N � has already been detected in one of the comparison
resolution steps). Hence we obtain:

Theorem 2.3. The discrete two-watchtower problem for a terrain in 6äA with M edges can be solved
in ^_9`M A cedgf h Mb@ time.

We next handle the semi-continuous case. We proceed through the preceding stages, up to the
point where all the envelopes è�9 � @ have been constructed, and their vertices have been located over
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the edges of
F

. We then proceed as follows. Consider a fixed first tower base S . For each edge
ò��PU ¥ U of

F
, take its right endpoint U and obtain, as above, the set of vertices that lie to the left of U

as the (disjoint) union of ^_9;cedgfnMb@ subtrees of J . We need to find the shortest vertical distance from
ò to the upper envelope of the ^a9;c�dgfLMb@ envelopes è�9 � @ , over the corresponding subtrees J�9 � @ . See
Figure 7.

²
 ²

� Ú � ­ Ý� Ú � Ý

(ii)(i)

� Ú � Ý
(iii)

Figure 7. (i) The shortest vertical distance from an edge of Þ to the corresponding upper envelope. (ii) The shortest
vertical distance from � to the envelope is attained at a vertex of a single subenvelope. (iii) The shortest distance is
attained at an intersection point between two subenvelopes.

Note that the shortest vertical distance is attained (i) either at an endpoint of ò , (ii) at a vertex
¯ of one of the envelopes è�9 � @ , or (iii) at a point ¯ of intersection between two envelopes è�9 � @ ,
è�9 � ¥ @ . In case (ii), the edge of è�9 � @ incident to ¯ and lying to its left (resp., right) must have slope
smaller than (resp., larger than) that of ò . In case (iii), ¯ is incident to an edge of è�9 � @ and to an
edge of è�9 � ¥ @ , so that the slope of ò lies in between the slopes of these two edges. See Figure 7 (iii).

Consider such a shortest vertical distance of type (iii). Both subenvelopes è�9 � @ , è�9 � ¥ @ corre-
spond to subtrees J�9 � @ , J�9 � ¥ @ that are left children of nodes along the path in J from the leaf storing
U to the root. Without loss of generality, suppose that

�
is deeper in the tree than

� ¥ . Then if J�9 � @ is
part of the output for a vertex U of

F
, J�9 � ¥ @ must also be part of that output. We will refer to this case

by saying that
� ¥ is a left great uncle of

�
. In other words, we have argued that, independent of U , a

subenvelope è�9 � @ can form intersection points of type (iii) with only ^a9;cedgf8Mb@ other subenvelopes
è�9 � ¥ @ for which

� ¥ is higher in J , and all these nodes J ¥ are left great uncles of
�
. See Figure 8.

��
� [���
� � ­

�

Figure 8. The tree � . If a subtree �Ä��� 
 � is part of the output for a vertex � , all subtrees that are left children of nodes on
the path from � 
 to the root are also part of that output.

We therefore proceed as follows. We only fix the first tower base S , and obtain the corresponding
set X �#X_9`SbT¸N'@ and tree J . We fix a pair 9 � T � ¥ @ of nodes of J such that

� ¥ is a left great uncle of�
. We construct an implicit representation of the upper envelope of è�9 � @y��è�9 � ¥ @ , by merging the

vertices and edges of è�9 � @ into è�9 � ¥ @ , as follows. For each vertex ¯ of è�9 � @ , locate it among the
vertices of è�9 � ¥ @ , with respect to the B -coordinate, using binary search (which is parametric). Next,
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for each edge ò of è�9 � @ , find its intersections, if any, with è�9 � ¥ @ ; since è�9 � ¥ @ is a convex polygonal
chain, ò can meet it in at most two points, and they can be found using (parametric) binary search.
We assign a processor to each vertex and edge of è�9 � @ for each such pair 9 � T � ¥ @ . Since the overall
size of all the envelopes è�9 � @ is ^a9`Mmcedgf8Mb@ , and each has only ^a9;cedgf8Mb@ left great uncles, we need
a total of ^a9`Mmcedgf A Mb@ processors, and ^_9;cedgfLMb@ parallel steps. We run this procedure for all first
tower bases S in parallel, and thus use ^_9`M A cedgf A Mb@ processors and ^_9;cedgfLMb@ parallel steps, so the
overall cost of this parametric searching step is, as above, ^_9`M¤A\c�dgf h Mb@ .

We next construct the set � of all breakpoints of the individual envelopes è�9 � @ , of the break-
points of envelopes of pairs of envelopes è�9 � @ , è�9 � ¥ @ , and of the vertices of

F
, over all the first

tower bases S . The preceding analysis implies that the size of � is ^a9`MnA
cedgf A Mb@ . Using the same
parametric binary search as in a previous stage, we locate the new breakpoints (of envelopes of pairs
of envelopes) among the vertices of

F
. This step too takes ^a9`M A cedgf h Mb@ time.

For each fixed first tower base S , we next process each edge ò of
F

. We query in
F

with the right
vertex U of ò and obtain the set ÿ 9`U~@ of lines ��G , as defined above, as the union of ^a9;c�dgfLMb@ disjoint
subtrees of J . Let �w9`U~@ denote the subset of � consisting of the two endpoints of ò , and of all the
breakpoints of subenvelopes and of pairs of subenvelopes that correspond to the above ^a9;c�dgfLMb@
subtrees, with the additional requirement that they lie above or below ò . Except for vertices of

F
,

the sets �w9`U~@ are pairwise disjoint, and their overall size is at most twice the size of � . All the sets�w9`U~@ , over all tower bases S , can be retrieved in ^a9·� �Ö� @n�ã^_9`MyA�c�dgf A Mb@ time (note that this step is
no longer parametric).

With S and U fixed, we now assign a processor to each pair of a point ¯ÖH��w9`U~@ and a suben-
velope è�9 � ¥ ¥ @ in the output of U . The overall number of processors is ^_9`MyA\c�dgf C Mb@ . The processor
assigned to ¯ and è�9 � ¥ ¥ @ has to determine whether ¯ lies below è�9 � ¥ ¥ @ , which it can do using (para-
metric) binary search over the vertices of è�9 � ¥ ¥ @ . Hence, with ^a9`M�A\c�dgf C Mb@ processors and ^a9;cedgf8Mb@
parallel depth, we can collect all points ¯aH�� that are not hidden from above by another subenve-
lope. It is easily verified that, for each fixed S and U , among the points that pass these tests, exactly
one point ¯ has the property that the slope of ò lies between the slopes of the two envelope edges in-
cident to ¯ . This surviving point yields the desired shortest vertical distance from ò to the envelope.
We find this point by testing the slope condition at each of the surviving points.

To end the algorithm, we need to test (parametrically) that among the surviving points there
exists one for which the corresponding vertical distance is no more than N . This step narrows down
the range of N to its final value, and we terminate by returning the minimum of this interval.

The overall running time of this algorithm is ^a9`M A cedgf h Mb@ , which leads to the following result.

Theorem 2.4. The semi-continuous two-towers problem, for a terrain in 6äA with M edges, can be
solved in ^a9`M A cedgf h Mb@ time.

3 The Continuous Two-Tower Problem

In this section we consider the continuous version of the problem, where the two towers can be
erected anywhere on the terrain. We first describe the decision procedure, in which we are given
height N , and wish to determine whether there exist two towers of height N that together see the
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entire terrain. We give the full algorithm, including the parametric searching part, in Section 3.2.� ­
 
 Ú�Û�Ý�

 


Figure 9. Creating a simple polygon � ­ from Þ and � 
 ��àg� .
3.1 The decision procedure

Let ò x T¸ò A be two fixed distinct edges of
F

, and consider the subproblem of determining whether
there exist points �¶H�ò x , ¯�Hµò A such that the two tower tops ��9�N'@�T·¯¬9�N�@ see together the entire

F
.

We parametrize the locations of � and ¯ by their respective B -coordinates ö and � .
Let ò x 9�N�@ denote the segment obtained by translating ò x upwards by distance N . Compute the

visibility structure of
F

from ò x 9�N�@ . To do this efficiently, since ò x 9�N'@ is not an edge of
F

, we
form from ò x 9�N�@ and

F
a simple polygon X ¥ in two steps. We first trim the halfplane above

F
to

a bounded region, using two vertical segments and one horizontal segment, placed sufficiently far.
Next we ‘hook’ ò x 9�N�@ to the ceiling of the new region by a vertical segment í that connects an
endpoint of ò x 9�N'@ to the ceiling. This yields the desired simple polygon X ¥ , in which í and ò x 9�N�@
are regarded as double edges. See Figure 9.

Applying the algorithm of [6] (see also [13]) to X ¥ , we obtain, in ^_9`MmcedgfnMb@ time, the visibility
structure of X ¥ from ò x 9�N'@ . This is not quite what we want, though, because í may block some
visibility rays that emanate from ò x 9�N'@ and otherwise reach

F
. We can overcome this problem by

creating a second simple polygon X ¥ ¥ , by hooking the other endpoint of ò x 9�N�@ to the ceiling, and by
computing the visibility structure from ò x 9�N�@ in X ¥ ¥ . Merging the two resulting visibility structures,
we obtain the visibility of

F
from ò x 9�N'@ . More specifically, this involves a partition of ò x 9�N'@ into

^a9`Mb@ intervals, delimited by points that see two vertices of
F

along a common ray. We extend each
such ray to the point where it first crosses

F
and enters the region below it. The sequence of all

these crossing points that lie on a specific edge � of
F

is denoted by �Ø9�ò x T��~@ . If the line containing
ò x intersects

F
on � , we add this intersection point to �Ø9�ò x T��~@ . (This adds at most two points to the

union of �Ø9�ò x T��~@ over all ��H F
.)

As the point � moves along ò x from left to right, the corresponding tower top traces the segment
ò x 9�N�@ . For each value ö of the B -coordinate of � , denote the point � as �y9�ö�@ , and the corresponding
tower top as ��9�öÐT¸N'@ . Let � be another edge of

F
. The point ��9�öÐT¸N'@ sees a portion of � which, if not

empty, is delimited by the endpoint of � farthest from ò x , and by a point ´�9�ö-@ ��´	�Ð9�ö�@ that moves
continuously with � . As long as ��9�ö|T¸N�@ does not cross a critical point of the visibility structure,
´�9�ö-@ is either the endpoint of � nearest to ò x , or is the intercept of a visibility ray that emanates
from ��9�ö|T¸N�@ and passes through a fixed vertex U of

F
. When �y9�ö|T¸N�@ crosses a critical point, and

´��Ð9�ö-@ crosses the matching point in �m9�ò x T��~@ , the ‘pivot’ vertex U may change, but the motion of
´�9�ö-@ remains continuous.

The motion of ´	�Ð9�ö�@ is also monotone. The direction of motion of ´�9�ö-@ depends on whether �
13



lies to the left or to the right of ò x , and on whether the pivot vertex through which the segments
��9�öÐT¸N'@ ´ �Ä9�ö�@ pass lies above or below the line containing ò x 9�N'@ . It is easily seen that when the pivot
vertex changes, the new vertex continues to lie on the same side of the line through ò x 9�N'@ , and thus
the motion of ´	�Ð9�ö-@ continues in the same direction. See Figure 10 for some examples.
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Figure 10. As $~�&%���àg� traces � 
 ��àg� from left to right, the corresponding point ' # �&%·� moves to the right in (a), and to the
left in (b).

Abusing the notation slightly, let us denote by ´(�Ð9�ö-@ the B -coordinate of this point. Then the
collection of functions ´	�+9�ö�@ , over all edges � of

F
, is a collection of continuous piecewise linear

rational functions of ö .

To see this, refer to Figure 11. Let È and Æ be two points on ò x 9�N�@ , and let ) and : be the
endpoints of the two corresponding visibility subintervals on � , where the visibility segments È*)
and Æ�: pivot about the same vertex + of

F
. Regarding + as the origin, we can write )��ë< � È ,

:�� <-,~Æ , for positive scalars
� T�, . Take a point �#� ��9�öÐT¸N'@ on ò x 9�N'@ , and let ´?� ´ �Ð9�ö-@ be

the corresponding endpoint of the subinterval of � visible from � . Write �Å�ê©�È�qç9p>�<á©�@pÆ , for
©?H�9;Q~T³>�@ , and ´¶�/.0)Kq�9p>Ø<1.b@ : , for .úHø9;Q~T³>�@ . Since � , + , and ´ are collinear, the vectors
©�È�q�9p>K<�©�@pÆ and .0)Lq�9p>]<2.b@ :=�ú<3. � È¦<P9p>]<2.b@�,¬Æ are parallel and, since È and Æ are affinely
independent, we must have . �

© � 9p>ä<2.b@�,
>D<�© T

or . � 9p>D<�©�@n�#9p>]<4.b@�,¬©�T
or .W� ,�©� 9p>]<Å©'@\q5,�©-6
Since © is a linear function of ö and . is a linear function of ´ , it follows that ´7�Ä9�ö-@ is indeed a linear
rational function of ö , for the subinterval 8 È'T¸Æ"9 of ò x 9�N�@ .

The overall number of linear rational portions of these functions, over all edges � , is ^_9`Mb@ .
Indeed, such a portion ends either at an endpoint of ò x 9�N'@ , or at a critical visibility point on ò x 9�N�@
that sees two vertices of

F
along a common ray, and the number of such points on ò x 9�N�@ is only

^a9`Mb@ .
We apply an analogous construction to the edge ò A , denote the point that moves along ò A by

¯���¯~9:�·@ , the corresponding tower top by ¯¬9:��T¸N�@ , and the collection of functions that trace the ( B -
coordinates of the) endpoints of the visibility subsegments of edges � of

F
, as seen from ¯~9:��T¸N'@ ,

by ;³G � 9:�·@=< . Let > denote the rectangle ò � x æ×ò �A in the ö�� -plane, where ò � x T¸ò �A denote respectively
the B -projections of ò x T¸ò A . Partition > , only for the purpose of analysis, into ^a9`M A @ subrectangles,
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by the vertical and horizontal lines corresponding to the B -coordinates of the critical points of the
visibility structures on ò x 9�N'@ and ò A 9�N'@ , respectively.

Fix an edge � of
F

, different from ò x T¸ò A . Let ?@� denote the curve ´	�+9�ö�@]�úGA�Ð9:�·@ , drawn in > .
Within each subrectangle of > that ?B� crosses, it is a hyperbolic arc. Indeed, by what we have just
argued, the equation of ?C� is of the form

s x öDq5? x§ x öDq$± x
� s A ��q5? A§ A ��q$± A

T
for appropriate coefficients sED T�? D Tp§ D T¸± D , F�� >-T=G . This equation can be rewritten as H�ö��¤qI��ö q>J��q�ï �?Q , and this defines a hyperbola in the ö�� -plane.

Ì Í

K¨

L7 �¿


 
 Ú�Û Ý

Figure 11. The relation between the point $~�&%��;àg� on � 
 ��à-� and ' # �&%·� on M . Here N is the pivot vertex of Þ .

Moreover, ?C� is a connected curve which is both ö - and � -monotone, and its endpoints lie on
ÔO> . Indeed, for each fixed ö , there is at most one point � for which GJ�Ä9:�·@��ê´ �Ð9�ö�@ , because the
monotonously moving point G � 9:�V@ can sweep at most once through the stationary point ´ � 9�ö�@ . A
symmetric argument applies to any fixed � . It is also easily seen that ?0� cannot have an endpoint in
the interior of > and that it remains connected when crossing from one subrectangle of > to another
subrectangle.

The preceding argument implies that the number of hyperbolic arcs that constitute the curves?P� , over all edges � of
F

, is only ^a9`Mb@ . Indeed, an endpoint of such an arc that lies in the interior
of the corresponding rectangle > is such that either its ö -coordinate or its � -coordinate represents a
critical visibility event on either ò x 9�N'@ or on ò A 9�N'@ , and the overall number of such events is ^_9`Mb@ .
Moreover, only one curve ? � can have such a transition point at the same ö or � -coordinate, namely,
the curve ?@� whose edge � is hit by the critical visibility ray corresponding to the critical event. This
implies the asserted linear bound on the number of pieces.

Each curve ?@� thus partitions > into two portions, one of which, denoted Qç�R� , consists of
all points 9�ö|T��·@ that represent placements of two towers on ò x and ò A that guard � , whereas the
complement of Q#�@� consists of points representing placements of towers where not all of � is
visible. Figure 12 exhibits four types of such portions of > . The classification depends (i) on the
left-to-right order of the edges ò x T¸ò A T�� , (ii) on whether the pivot vertex through which the segments
��9�öÐT¸N'@ ´ �Ä9�ö�@ pass lies above or below the line containing ò x 9�N'@ , and (iii) on whether the pivot vertex
through which the segments ¯¬9:��T¸N'@(GS�+9:�·@ pass lies above or below the line containing ò A 9�N�@ . As
already remarked, when either of these pivot vertices changes, the new vertex continues to lie on
the same side of the line through ò x 9�N�@ or ò A 9�N�@ .
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Figure 12. The four types of mutual visibility of an edge M from a pair of moving towers, and the corresponding %WV -regions
where the entire M is guarded.

The decision procedure then continues as follows. Keeping the pair of edges ò x T¸ò A fixed, we
first construct, in linear time, the regions Q#� � , or rather the curves ? � , over all the edges � of

F
.

This is done by merging the sequences �Ø9�ò x T��~@ and �Ø9�ò A T��~@ into a common sequence �Ø9�ò x T¸ò A T��~@ .
We then process the subintervals of � delimited by the points of �Ø9�ò x T¸ò A T��~@ . Each such interval
ì defines a piece of ?C� , in which the common visible point ´X�Ä9�ö-@�� GA�Ð9:�·@ moves in ì . Clearly,
only intervals ì that lie in the range of both functions contribute nonempty portions to ?Y� . The
computation of all the regions Qç�B� takes ^_9`MmcedgfnMb@ time for fixed ò x and ò A .

Next, we compute the intersection Z � Qç�P� of these regions. If this intersection is nonempty,
any point 9�ö|T��·@ in it represents a placement of two towers on ò x and ò A that guard

F
. Conversely, if

the intersection is empty, no such placement exists. Since each region is bounded by a curve that is
ö -monotone, Z � Qç�P� is a sandwich region between the upper envelope of the curves ?0� , for whichQ#�[� lies above ?@� (in the � -direction), as depicted in Figure 12(b,c), and the lower envelope of the
curves ?@� , for which Q#�P� lies below ?@� , as depicted in Figure 12(a,d). Since any pair of hyperbolic
arcs, with equations of the form H ö ��qI�=öKq\>J��qrï � Q , intesect at most twice, it follows that
the complexity of either envelope, and thus also of the sandwich region, is ^a9 © h 9`Mb@V@ , and that it
can be computed in time ^a9 © C 9`Mb@+cedgfLMb@ , using the algorithm of Hershberger [15, 22]. We repeat
this procedure for every pair ò x T¸ò A of edges of

F
. We stop as soon as we find a pair for which the

intersection Z � Qç�P� is nonempty, and then report a corresponding placement of the two towers. If
all these intersections are found to be empty, we report that no pair of towers of height N can see the
entire

F
. Hence, the overall cost of the decision procedure is ^a9`M Cts 9`Mb@+cedgf�Mb@ .

3.2 Plugging the parametric search

As in the preceding discrete and semi-continuous problems, we solve the optimization problem by
applying the parametric searching paradigm to the decision procedure just described. That is, we
run it generically at the unknown optimal height N � , parallelizing as much as possible comparisons
that depend on N , and resolving them by binary search over the corresponding list of critical values
of N at which some comparison outcome changes. While running the generic simulation, we pro-
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gressively narrow down the range that contains the optimum N � , and N � is output either during one
of the comparison resolution stages, or as the minimum of the final range.

For each vertex U of
F

, we compute the visibility structure from the vertical ray ] � emanating
upwards from U . This takes a total of ^a9`M A @ time [13]. For each edge òa�#S'U of

F
, let J 
 denote

the semi-unbounded trapezoid bounded by ò , ] Ù and ] � . There are only ^a9`Mb@ critical visibility
rays, namely rays that pass through two vertices of

F
, which cross either ] Ù or ]*� , and thus J 
 .

We construct the arrangement of these rays, and clip it to within J 
 . With each vertex ¯ of the
arrangement we associate a critical height N , equal to the vertical distance of ¯ from ò . Repeating
this procedure to each edge ò , we obtain a collection of ^a9`M C @ critical heights. We add to these
heights ^_9`M�A³@ additional critical heights, at which a shifted edge òÐ9�N�@ becomes collinear with a
vertex of

F
. We run a standard binary search, guided by the decision procedure, through these

critical heights, to locate an initial interval ì-º between two successive critical heights that contains
the optimum height N � . This step takes a total of ^_9`MbC s 9`Mb@+cedgf A Mb@ time. The visibility structure of
òÐ9�N�@ , for any edge ò , is now combinatorially determined, for any N�H�ìgº . That is, the nature of each
critical event along òÐ9�N � @ , and their left-to-right order, are now determined and are the same for all
N�HÖì®º .

In addition, for any pair of edges ògT�� , the critical visibility rays that emanate from points on
òÐ9�N�@ , pass through a pivot vertex of

F
, and then hit � , are all determined combinatorially, and the

order of their intercepts with � is fixed, for any N#H�ì º . As above, we denote the sequence of
these intercepts by �Ø9�ò|T��~@ . In the next step, we take each edge � , and collect the intercepts along �
with the critical rays from all shifted edges òÐ9�N�@ . For each pair ò x T¸ò A of edges, we merge the two
sequences �Ø9�ò x T��~@ , �Ø9�ò A T��~@ into a common sequence �Ø9�ò x T¸ò A T��~@ . We implement this step by a
sorting network of depth ^_9;cedgfLMb@ . The total number of processors that are needed is^
 
 ! 
 [ ! � _ �`�Ø9�ò x T��~@®� q��`�Ø9�ò A T��¬@®� acb�G�Med ^
 
 ! � �`�Ø9�ò x T��~@®�Ð��^_9`M C @ 6
Hence, using Cole’s improvement of the parametric searching method [9], this step takes a total of
^a9`M�C s 9`Mb@+cedgf A Mb@ time.

In the next step, we process in parallel all pairs of edges of
F

, and construct, for each such pair
ò x T¸ò A , the curves ? � , for all other edges � of

F
. Given ò x T¸ò A , and � , we process the subintervals of� delimited by the points of �Ø9�ò x T¸ò A T��~@ . Each such interval ì defines a piece of ?O� , in which the

common visible point ´X�Ð9�ö�@n�?GA�Ð9:�V@ moves in ì . We construct in parallel all these pieces, each with
its explicit linear rational equation. Since � 
 
 ! 
 [ ! � �`�Ø9�ò x T¸ò A T��~@®�y� ^_9`M C @ , this step takes ^a9`M C @
time, and is in fact non-parametric.

In the next step, we process in parallel all pairs of edges of
F

, and construct, for each such
pair 9�ò x T¸ò A @ , the sandwich region between the upper envelope of an appropriate subcollection of the
curves ?@� and the lower envelope of the complementary subcollection.

We compute the lower envelope of Y hyperbolic arcs by running in parallel the standard divide-
and-conquer algorithm for constructing envelopes (see [22]). The divide-and-conquer process has
^a9;c�dgfLMb@ parallel depth, and each stage of it requires merging two sequences of envelope break-
points into a common sequence, which can be done in ^a9;cedgf8Mb@ parallel steps. Overall, the parallel
depth is ^a9;cedgf A Mb@ , so this simulation, enhanced with Cole’s technique [9], entails an overall cost
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of ^a9`M C�s 9`Mb@+cedgf C Mb@ . This also subsumes the cost of the subsequent stage that ‘merges’ the upper
and the lower envelopes to produce the sandwich region between them.

This completes the description of the generic parallel simulation of the decision procedure, and
thus yields the following result:

Theorem 3.1. The continuous two-tower problem, for a planar terrain with M edges, can be solved
in ^_9`M�C s 9`Mb@+cedgf C Mb@ time.

4 Guarding a Fixed Set of Points

Let
F

be a terrain with M vertices, and let X �f;V� x T 6g6g6 T;�@hi< be a set of Y points, all lying onF
, and sorted in this left-to-right order along

F
. We assume that Y is polynomial in M , so that

cedgf8Y �ë^_9;cedgfLMb@ . The goal is to place two towers Sy9�N'@�TVU
9�N'@ of the smallest possible height
anywhere on

F
, so that they guard the entire set X . We show that this problem can be solved in time

close to ^a9`YwMb@ .
We first develop a decision procedure that for a fixed N finds placements for two towers of height

N over a terrain that together cover the entire set X , or determines that no such pair of towers exists,
and then apply the paramatric search technique.

We denote by
F Û the terrain

F
shifted up by distance N in the E -direction, such that each point

9`B�TVE�@ on
F

maps to the point 9`B�TVE¦q$N'@ on
F Û .

4.1 The decision procedure

For each point S�H F Û , let j�9`S\@ (resp., �t9`S\@ ) denote the leftmost (resp., rightmost) point ��HWX that
lies to the right of S and is not visible from S , or qm» (resp., < » ) if there is no such point. For each
point SWH F Û , let X Ù u°X be the set of points that S does not see.

Lemma 4.1. Let S�TVUwH F
with S to the left of U . Then S�9�N'@ and U�9�N�@ guard the set XlkÅõ?X of all

points of X to the right of U if and only if j�9`U~@�O1�t9`S\@ .
m�Ú � Ý

seen by ÙgÚ�Û�Ýseen by � Ú�Û�Ý T Ú�Ù Ý m�Ú � Ý T Ú�Ù�Ý
Ù �
ÙgÚ�Û Ý � Ú�Û�Ý

(i) (ii)

Figure 13. (i) Proof of the “if” part. (ii) The case n �o���BplVp�eßg� .
Proof: The ‘if’ part is trivial; see Figure 13 (i). Suppose then that j�9`U~@ is not to the right of�®9`S
@ . The case j¬9`U¬@_�q�®9`S
@ is also trivial: neither S�9�N�@ nor U�9�N'@ sees this common point in X .
Assume then that j�9`U~@sr/�®9`S
@ . If S�9�N�@ does not see j�9`U~@ or if U�9�N'@ does not see �®9`S
@ then we
are done: one of j�9`U~@�T��®9`S
@ is not guarded. Hence we may assume that S�9�N�@ sees j�9`U~@ and U
9�N'@
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sees �®9`S
@ ; see Figure 13 (ii). Since U�9�N�@ and j�9`U~@ are not mutually visible, it easily follows that
U�9�N�@��t9`S\@ lies counterclockwise to U
9�N'@�j�9`U~@ , and j¬9`U¬@(S�9�N�@ lies clockwise to j�9`U~@(U
9�N'@ . Hence the
segments Sy9�N'@�j�9`U~@ and U�9�N�@��t9`S\@ must intersect, from which it easily follows that Sy9�N'@ sees �®9`S
@ , a
contradiction that completes the proof. å

For each point � D H#X , let Ó D � Ô
ÓR9�� D @ denote the boundary of the visibility polygon of
�@D with respect to the terrain

F
. As discussed above, ÓtD is a sequence of connected portions ofF

, interleaved with segments ¯Xj , where ¯ is a vertex of
F

, jWH F
, and the ray emanating from � D

towards ¯ sees both ¯ and j and crosses
F

at j . See Figure 14.

¨�u L
¨=v

Figure 14. Two points $ u , $ v and their visibility polygons w u and w v . Only the right portions of these polygons are
drawn. The portions w u , w v of the boundaries of these polygons that lie strictly above Þ are drawn as dashed-dotted
and solid, respectively.

Lemma 4.2. Let ö be a segment that lies fully above
F

. Then ö intersects Ó D at most once to the
left of � D and at most once to its right.

Proof: Suppose without loss of generality that ö lies fully to the left of � D , and let ¯ be a point in
ö\ª¦Ó D . Then any point on ö that lies above the line � D ¯ must be visible from � D , as is easily checked.
This implies that assertion of the lemma. å

Let è D be the set of points where
F Û intersects Ó D . By Lemma 4.2, each edge of

F Û intersects
ÓxD at most once, with the possible exception of the edge that lies directly above �YD , which may
intersect Ó D twice. It thus follows that � è D �3bêM�q#> . Let èv�fy hD{z x è D . Let S and U be two
consecutive points of è along

F Û . Clearly, from any point ´ on
F Û that lies between S and U , we see

the same subset of X . Therefore if there are two tower-tops on
F Û that guard X , then there are two

points in è that do the same. Our algorithm will therefore determine whether there exist two points
S�TVU�H�è that guard X .

The algorithm first computes Ó2D , for Fm� >-T 6g6g6 TVY using the algorithm of [13]. This takes a
total of ^a9`YwMb@ time. Then we compute the sets è D , for >|b}Fib#Y , by traversing in parallel Ó D
and

F Û from left to right, locating intersections between edges of
F Û and Ó D whose B -projections

overlap. Since both
F Û and Ó D are connected B -monotone polygonal chains with ^a9`Mb@ edges each,

this step takes ^a9`Mb@ time for each Ó D , for a total of ^a9`YwMb@ time. We organize è in a list sorted by
B -coordinate, represented as a balanced search tree è � .

We next compute the pointers j¬9`S\@ and �®9`S
@ for every S�H�è by traversing the points in è from
left to right along

F Û , while maintaining the subset X Ù õãX of points that are not visible from the
current point S . We start out from < » , with X�~C� � þ . When we advance from a point SrHrè
to the next point U on

F Û , we add and/or delete a point to/from X Ù to obtain X � as follows. Let �[�
be the point such that S is an intersection of Óx� with

F Û , and let �B� be the point such that U is an
intersection of Ó2� with

F Û . If to the right of S we cannot see �P� , then we add ��� to X Ù . Similarly if
to the right of U we see �O� then we delete �B� from X Ù . Note that if ����� and between S and U we
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cannot see �[� then X � �ãX Ù and we do not have to delete and add �P� . After these updates we have
the set X � , and we set j�9`U~@ (resp., �t9`U¬@ ) to be the leftmost (resp., rightmost) point in X � which is to
the right of U , or to qm» (resp., < » ) if X � is empty. We perform this computation in ^_9`YwMmcedgfnMb@
time, by maintaining X Ù in a search tree, sorted by increasing B -coordinate.

Let Ó mD (resp., Ó ÇD ) be the portion of Ó D that lies to the right (resp., left) of � D . It is easily
checked that Ó mD has the following order property: Let È'T¸ÆWHÕÓ mD , with È lying to the left of Æ .
Then the slope of � D È is smaller than or equal to the slope of � D Æ . (A symmetric property holds for
Ó ÇD , but we shall not use it.)

The core of our algorithm is based on the following lemma and its corollary.

Lemma 4.3. Let F�r5� , and let S be the leftmost intersection point of Ó mD and Ó m� . Then to the left
of S , Ó m� lies below Ó mD , and to the right of S , Ó m� lies above or overlaps with Ó mD .

Proof: Both segments � D S and ���tS are contained in the region of the plane bounded from below byF
. We refer to this region as the closed halfplane lying above

F
. This implies that �R� lies below � D S ,

unless ��� �rS . In the former case, �[� is invisible from � D and thus lies below Ó mD . The continuity of
Ó mD and Ó m� implies that the entire portion of Ó m� between ��� and S lies strictly below Ó mD .

It therefore remains to consider the portion of Ó m� to the right of S , and to show that this portion
lies above, or partially overlaps with, Ó mD . In other words, we need to show that every point ´aHÑÓ m�
to the right of S is visible from �OD . To see this we note that, by the order property of Ó m� , � � ´ must
lie counterclockwise to �P�tS , which is easily seen to imply that the segments � D S and ����´ intersect at
some point ¯ ; see Figure 15. But then the polygonal chain � D ¯-´ lies above

F
, and thus � D ´ also lies

above
F

, implying that ´ is visible from � D , as claimed. This shows that, to the right of S , Ó mD lies
below, or partially overlaps with, Ó m� .

The case when ��� �?S follows immediately from above. å

�"�
�=� ��t�

Figure 15. Points '���wx�v to the right of ß are visible from $ u .
As a consequence of Lemma 4.3, we obtain:

Corollary 4.4. Let � D 
 T 6g6g6 T;� D{� be a subset of the points of X , ordered from left to right. Then the
upper envelope of Ó mD 
 T 6g6g6 T�Ó mD{� is a concatenation of connected portions of Ó mD 
 T 6g6g6 T�Ó mDo� , such
that, for each F=� >-T 6g6g6 T=�Ö<Õ> , the portion of Ó mD v precedes the portion of Ó mD v�� 
 . Some of the
portions may be empty.

Proof: We use the convention that when a point ´ belongs to several of the chains Ó mD 
 T 6g6g6 T�Ó mD{� ,
we regard it as belonging to the chain with the largest index F�� . The assertion is now immediate
from Lemma 4.3. å
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For each point S�H?è , recall that X Ù uRX is the set of points that S does not see. As in the
computation of j�9`S\@ and �®9`S
@ , our algorithm traverses the points of è from left to right along

F Û ,
while maintaining the sets X Ù incrementally. For each point S that we traverse, we decide whether
there is another point UÖH×è to the right of S , such that all points in X Ù are visible from U . To that
end we also maintain the upper envelope �b9`S
@ of ;�Ó mD �-�@D]H$X Ù < . By definition, any point of è
on or above �b9`S
@ sees all the points of X Ù to its left. Let U�H�è be the point on or above �b9`S
@ that
lies to the right of S and has maximum j�9`U~@ . By Lemma 4.1, if j�9`U~@�O��®9`S
@ , then S and U cover the
entire set X , and otherwise there is no point in è that can sees the entire X Ù .

We maintain X Ù as a binary search tree � . A leaf in � corresponds to Ó mD , for some � D H$X Ù .
Each internal node B of � represents the upper envelope �R� of the chains Ó mD , for all points � D in
its subtree. It follows that if j is the root of � then � m ���b9`S\@ . For BãH�� , the envelope � � is
represented as a search tree ��� . Each node s H��Y� represents an edge ò	� of �P� . ��� is organized
such that if we traverse it in symmetric order we obtain the edges on the envelope from left to right.
We associate with each node s H4��� another search tree ��� ! � , that represents the points of è that
lie on or above the corresponding edge, ordered from left to right.

The representation of ��� ! � is as follows. Recall that the points of è are stored in a static search
tree, sorted from left to right along

F Û .
F Û intersects ò	� at points that belong to è . These points

delimit contiguous subsequences of è , which alternate between lying above ò*� and lying below it.
We collect the subsequences that lie above ò � , and represent each of them by a leaf of � � ! � , where
these leaves are sorted from left to right in ��� ! � . Each such leaf simply stores pointers to the two
nodes of the è -tree that delimit the corresponding subsequence. In addition, each leaf of ��� ! � stores
the maximum value j�9`U~@ of the points U in the subsequence of è that it represents, and the point U
where this maximum is attained. Each internal node

� H���� ! � stores the maximum value j�9`U~@ of the
points U�H$è which are above ò � in all the subsequences represented by the leaves of the subtree
rooted at

�
, as well as the point U where this maximum is attained.

We propagate points with maximum j�9`U~@ value further up in � � as well. Each node s H���� has,
in the root of �Y� ! � , the maximum value j�9`U~@ of the points U�HÅè above ò¡� . We also store in each
node s Hs�Y� the maximum j�9`U~@ value of a point U£HÑè which is above any of the edges of �R� that
reside in the subtree rooted by s .

To support updates, at each node of the tree representing all points in è , sorted along
F Û , we

also store the maximum j�9`U~@ value of a point U in its subtree, together with the point U where this
maximum is attained.

As we move from a point SPH°è to the next point U¶H°è to the right along
F Û , we update �

so that it stores �b9`U~@ — the upper envelope of the functions Ó mD , for � D HrX � , in the manner just
described. Let �[� be the point such that S is an intersection of Óx� with

F Û , and let �B� be the point
such that U is an intersection of Ó4� with

F Û . If to the right of S we cannot see �P� , then we have to
add Ó m� to the tree � . Similarly if to the right of U we see �0� then we delete Ó m� from � . Note that
if ����� and between S and U we cannot see �P� then we can just leave � unchanged since X � �?X Ù .

Consider � when we are at a point S as we move along
F Û . The root j of � stores in � m the

upper envelope �b9`S
@ of Ó mD for all point �CDyH�X Ù . Let U be the point of è that (i) lies to the right of
S , (ii) lies above all chains Ó mD , for � D HÑX Ù (which is equivalent to U seeing all the points of X Ù to
its left), and (iii) has the maximum value j�9`U~@ among all such points. Then U can be retrieved from
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� m as follows.

Search in � m with the B -coordinate of S . The node s where this search path ends stores the
edge ò � of �b9`S\@ that lies vertically above or below S . We examine each of the subtrees of � m that
hang to the right of the search path to s , and extract from each of them the point U with maximumj�9`U~@ among all the points of è that are stored in that subtree. Let U x be the point that attains the
maximum j -value among all these points. Finally, we go to the tertiary tree � � ! � , and find there the
leaf

�
that stores the subsequence è � of �b9`S\@ that lies above ò	� and contains S , if S does indeed lie

above ò � , or else the subsequence è � of �b9`S\@ that lies above ò	� immediately to the right of S . In
either case, we examine each of the subtrees of ��� ! � that hang to the right of the search path, extract
from each of them the point U with maximum j¬9`U¬@ among all the points of è that are stored in that
subtree, and let U A denote the point with largest j -value among these points. If the subsequence è �
lies above ò	� immediately to the right of S we extract the point U C H�è � with maximum j -value. If
the subsequence è � lies above ò � and contains S we search in the è -tree for the point U C of è � that
lies to the right of S and has maximum j -value. We now return the point U among U x TVU A TVU C that
attains the maximum j -value.

By what has been argued above, we test whether j�9`U~@DO��t9`S\@ . If so, S and U cover the entire set
X , and we stop and report them. Otherwise there is no point in è that, together with S , covers X ,
and then we move to the next point of è .

We now describe how to update � . That is, we describe how to add a chain Ó m� to the set of
chains that determine the upper envelope of � , or how to delete a chain from that set. To add a chain
Ó m� , we insert a new leaf into � using a standard INSERT operation for binary search trees. This
insertion requires to update the envelopes of the nodes on the path in � from the root to the new
leaf. We proceed to describe how to update these envelopes during an insertion. Deletion of a chain
Ó m� from � is carried out analogously.

Let B be the left child and E be the right child of a node ´ in � . To obtain � ¿ from �P� and �@¢ , we
first locate the leftmost intersection point Æ of � � and � ¢ . Then we split � � at Æ into two connected
pieces � Ç � and � m� , containing the portions of �C� that lie to the left and to the right of Æ , respectively.
Similarly, we split �C¢ at Æ into its left portion � Ç ¢ and its right portion � m¢ . By Corollary 4.4, � ¿ is
the concatenation of � Ç � and � m¢ .

We find the leftmost intersection Æ of the two envelopes �R� and �P¢ as follows. We first find the
edge ò of �@� that contains Æ . We start with the edge ò ¥ at the root of ��� , the tree that represents� � , and check whether its endpoints are above or below � ¢ . Each of these checks can be done in
logarithmic time. If both endpoints of ò ¥ are above �@¢ , we continue the search in the right child of
ò ¥ . If both endpoints of ò ¥ are below � ¢ we continue with the left child of ò ¥ . If the left endpoint
of ò ¥ is above �@¢ and the right endpoint of ò ¥ is below �@¢ then òµ� ò ¥ and we stop the search.
By Corollary 4.4, the symmetric positions of the endpoints of ò ¥ with respect to �@¢ are impossible.
Handling cases where one or both endpoints of ò ¥ lie on �@¢ is done similarly, by regarding those
endpoints as lying below �C¢ . We locate the edge íÑH2�C¢ such that Æ HWí analogously. After having
found ò and í , Æ is easily computed in constant time.

Next we describe how to split � � and � ¢ at Æ . We implement each of these splits using a standard
SPLIT operation on search trees. We also split at Æ the secondary trees ��� ! �(£ , �Y¢ ! �¥¤ associated with
the edges ò and í , respectively, that contain the points of è on or above these edges. The left part
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of the tree ��� ! �(£ is associated with the portion of ò on � Ç � , and the right portion of the tree ��¢ ! �¥¤ is
associated with the portion of í on � m¢ .

When we split a tertiary tree ��� ! � £ at Æ and Æ falls within the range of a leaf
�

of �E� ! � £ , we have
to split

�
into two leaves

�
x and

�
A . Let the leaf

�
represent the sequence of points of è above

F Û
from ò x to ò A . The leaf

�
x represents the subsequence of è from ò x to the point of è just before

Æ . The leaf
�
A represents the subsequence of è from the point right after Æ to ò A . The leaf

�
x is the

rightmost in the left tree produced by the split of ��� ! �(£ , and the leaf
�
A is the leftmost in the right

tree produced by the split of ��� ! � £ . We find the maximum j¬9`U¬@ value to store in
�
x by taking the

maximum among the j�9`U~@ values of the subtrees which are to the left of the search path to Æ and
to right of the search path to ò x in the tree containing all the points in è . Similarly, we find the
maximum j�9`U¬@ value to store at

�
A .

Finally we concatenate � Ç � and � m¢ to obtain � ¿ , using a standard CONCATENATE operation
on binary search trees. It is straightforward to maintain the maxima of the j -values while doing
rotations in binary search trees. Since split and concatenate of binary search trees change the tree
only via rotations, it is easy to maintain these maxima of the j -values during split and concatenate.

It is easy to see that each update (insertion or deletion of a chain Ó m� ) to � takes ^a9;c�dgf C Mb@ time:
(i) the search path in � visits ^a9;cedgfnMb@ nodes, (ii) for each such node the corresponding paths in ���
and � ¢ have ^_9;cedgfLMb@ nodes, and (iii) at each node in � � (or � ¢ ) we need ^a9;cedgf8Mb@ time to perform
the required computation (see above). Thus, the entire algorithm runs in ^_9`YwMmcedgf C Mb@ time. That
is, we have shown:

Theorem 4.5. Let
F

be a terrain with M edges in the plane, X a set of Y points lying on
F

,
and NáO�Q a parameter. We can determine, in ^a9`YwMmcedgf C Mb@ time, whether there exist two points
S�TVU�H F

such that each point of X is visible from either S�9�N�@ or U�9�N�@ .

4.2 Plugging the parametric search

Next we apply parametric searching to the decision procedure just described, to obtain an algorithm
that finds the smallest height N � of two towers that cover the entire set X . As usual, this is done
by running a parallel generic simulation of the decision procedure at the unknown optimal height
N � , resolving comparisons that depend on N � by finding their critical N -values and running a binary
search through them, thereby progressively shrinking the range where N � has to lie.

Fortunately, most of the steps in the decision procedure are independent of the value of N .
Specifically, after è has been computed and sorted along

F Û , all subsequent steps are independent
of N , since they mostly maintain structures that depend on the visibility polygons ÓR9�� D @ , which do
not depend on N . Hence, after the generic simulation reaches the stage where è has been computed
and sorted, we can stop, take the smallest N in the current range, which we know to be equal to N � ,
call the decision procedure with this specific N � , and output the two resulting towers.

Since the visibility polygons Ó D do not depend on N , we start the algorithm by computing them
explicitly, in a total of ^a9`YwMb@ time. We then process all the Ó D ’s in parallel. For each Ó D , we
merge the sequence of its vertices, sorted in left-to-right order, with the similarly sorted sequence
of the vertices of

F Û . Note that the B -coordinates of the vertices of
F Û coincide with those of the

vertices of
F

, and thus are independent of N , so all the merges can be done explicitly.
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Consider a fixed Ó D , and let ì be an interval between two consecutive vertices in the merged
sequence. ì is contained in the B -projection of a single edge � of Ó D and of a single edge ò of

F Û .
There are two critical values N ~D r N kD , so that ò and � intersect when N ~D b�N�b�N kD , and they
are disjoint when N lies outside that range. By binary search over all these critical values (using, as
usual, the decision procedure to guide the search), we identify all the points of è , each represented
as the intersection point of a specific edge of

F Û with a specific edge of some Ó D . The total cost of
this step is ^_9`YwMmcedgf h Mb@ .

Next, we need to sort the points of è from left to right. For this we use an ^_9;cedgfnMb@ -depth sorting
network with ^_9`YwMb@ processors, and apply the speed-up technique of Cole [9], to accomplish this
step also in ^_9`YwMmcedgf h Mb@ time. As argued above, we can terminate the parametric search after this
stage, and complete the algorithm with a call to the decision procedure with the concrete value of N
equal to the minimum of the feasible N -range.

In summary, we thus have:

Theorem 4.6. Given a terrain
F

with M edges in the plane, and a set Xêu F
of Y points, we can

find, in ^a9`YwMmc�dgf h Mb@ time, two towers of smallest height that can be placed anywhere on
F

and
together cover the entire set X .

5 The Discrete Two-Tower Problem in 3-Space

Let
F

be a polyhedral terrain in 6LC with M edges, and let N×OúQ be a real parameter. Without loss
of generality we can assume that each facet of

F
is a triangle. We wish to determine whether there

exist two vertices S�TVU of
F

, so that the watchtowers S�9�N�@�TVU�9�N�@ of height N erected at SbTVU guard the
entire terrain, as defined in the introduction. We call any such pair 9`S�TVU¬@ a guarding pair of

F
. Let

� denote the set of vertices of
F

. For each UwH×� and a facet í of
F

, let Ò � 9�í�@ denote the portion
of í that is invisible from U�9�N�@ ; we call it the invisibility region of U in í . The regions Ò��+9�í�@ can
be constructed as follows.

¦§ ¦�¨
§�©ª«�¬�­ ®«°¯¬�­ ®

Figure 16. The truncated wedge w²±"³ £ and the prism w4´±=³ £ .
For each vertex U�HW� and for each edge ò of

F
not adjacent to U , let Ó ��! 
 denote the truncated
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planar wedge that is the union of all rays emanating from U�9�N�@ and passing through ò , minus the
triangle spanned by U�9�N�@ and ò . Let µ �g! 
 denote the plane containing Ó �g! 
 , and let Ó ~�g! 
 denote the
unbounded prismatic region consisting of all points that lie vertically below Ó �g! 
 . The prism Ó ~��! 
 is
bounded by Ó �g! 
 , and by three vertical walls (semi-unbounded vertical strips) bounded from above
by the three edges of Ó��g! 
 . Informally, Ó ~��! 
 is the portion of 6LC that is invisible from U
9�N'@ if

F
degenerates to the single vertical wall bounded from above by ò (see Figure 16).

For each vertex UPHç� , let ¶ � denote the set of all wedges Ó �g! 
 , for edges ò of
F

that are
not adjacent to U . Let � � and ¶ ~� denote the set of all corresponding planes µ �g! 
 and prisms Ó ~�g! 
 ,
respectively. Put ¶ ÷ �cy � �¡·¸¶ � , � ÷ �cy � �¡·_� � , and ¶ ~ ÷ �¹y � �¡·l¶ ~� .

For each facet í of
F

and each vertex U°HÕ� not adjacent to í , we can construct Ò � 9�í�@ by
intersecting each prism Ó ~�g! 
 HI¶ ~� with í , and by taking the union of all the resulting regions.
The complement ílºDÒ»�Ð9�í�@ is the visibility region of U (in í ). The set of visibility regions, over all
facets í of

F
, is the so-called visibility map from U
9�N'@ ; its complexity is ¼=9`M A @ in the worst-case,

and it can be computed in ^a9`MbA�@ time [22].

It is easy to establish the following properties of Ò � 9�í�@ . The intersection of Ò � 9�í�@ with any
vertical halfplane bounded by the vertical line © � through U , is a (possibly empty) line segment
contained in í , and having one endpoint (the one nearer to U ) on Ô�í . As the halfplane rotates about
©P� , the other endpoint of the invisibility segment traces a polygonal path §B�Ä9�í�@�u í , which is
monotone with respect to the horizontal polar orientation ½ of the halfplane about © � . The edges of
Ò¸�Ð9�í�@ that lie in û�üÐý³9�í�@ are portions of intersections of wedges Ó4��! 
 with í . Moreover, §��Ä9�í�@ can
be interpreted as the upper envelope of these intersection edges, in an appropriate polar coordinate
system within the plane containing í . Hence, the combinatorial complexity of Ò � 9�í�@ is ^a9`M s 9`Mb@V@
[22]. The overall complexity of all these regions, for a fixed vertex U , is ^a9`M A @ , as each of its vertices
corresponds to a vertex of the visibility map of

F
from U�9�N�@ ; as noted above, all the invisibility

regions Òl�Ð9�í�@ , over all facets í of
F

, can be computed in ^_9`M�A³@ time.

By definition of Ò»�Ä9�í�@ , two vertices SbTVU of
F

form a guarding pair of
F

if and only if Ò Ù 9�í�@'ª
Ò � 9�í�@m�êþ for every facet í of

F
, or equivalently, Ò � 9�í�@ is fully visible from S�9�N'@ for every í .

Moreover, as is easily checked, Ò � 9�í�@ is entirely visible from S�9�N�@ if and only if S�9�N�@ sees every
point on its boundary Ô�Ò � 9�í�@ . ¾

Ú�Ù !;ù Ý ÙgÚ�Û Ý
Ù

ù

É
Figure 17. The segment ¿ �eß+�À%¸� .

For a pair S�T¸ö=H¶� , if ö is visible from S�9�N�@ , let Á¬9`S�T¸ö-@ be the segment whose endpoints are ö
and the first intersection point with

F
of the ray from ö in direction

<�<�<"ÂS�9�N'@pö , as illustrated in Figure 17.
If ö is not visible from Sy9�N'@ , Á¬9`S�T¸ö-@ is not defined.

Lemma 5.1. Let SbTVU×H$� , and let í be a facet of
F

. Ô�ÒÃ�Ä9�í�@ is entirely visible from S�9�N'@ if and
only if the following two conditions hold:
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(V1) S�9�N'@ sees every vertex of Ò � 9�í�@ .
(V2) There does not exist a vertex ö�H×� such that the segment Á~9`S�T¸ö-@ passes vertically above an

edge of Òl�Ä9�í�@ .
Ù
ÙgÚÜÛ�Ý ¨�Ä ³ £ÆÅ

�� 
¨ Ä ³ £ÈÇ Ä ³ £

(i) (ii)

É ´Ä ³ £ Ê�BË É ´Ä ³ £
Figure 18. (i) Intersection of M and a prism w ´Ä ³ £ . (ii) The vertical strip � and its intersection with the wedges w Ä ³ £ .

Proof. Indeed, if S�9�N�@ sees the entire boundary Ô�ÒÃ�+9�í�@ then (V1) and (V2) hold. Conversely,
suppose for the sake of contradiction that (V1) and (V2) hold but an edge � of Ò � 9�í�@ is not fully
visible from Sy9�N'@ . Let � be the vertical strip containing � and bounded by the vertical lines passing
through its endpoints. Since � is not fully visible from Sy9�N'@ it must intersect some prism Ó ~Ù ! 
 .
Moreover, the endpoints of � do not lie inside Ó ~Ù ! 
 because (V1) holds, therefore � intersects the
vertical boundaries of Ó ~Ù ! 
 ; see Figure 18 (i). Let � Ù ! 
 be the point Ó Ù ! 
 ª£� of the largest vertical

distance from � ; � Ù ! 
 lies on the ray emanating from an endpoint Ì Ù ! 
 of ò in direction
<³<¬<�<¬<�ÂS�9�N'@WÌ Ù ! 
 .

Among the prisms Ó ~Ù ! 
 intersecting � let Ó ~Ù ! 
 ­ be the one so that the (vertical) distance of � Ù ! 

from � is the largest; see Figure 18 (ii). Since no segments of Ó Ù ! 
 ª�� lies above � Ù ! 
 ­ , and thus

� Ù ! 
 ­ does not lie in any prism Ó ~Ù ! 
 , the ray
< <¬<�<¬<�<oÂSy9�N'@WÌ Ù ! 
 ­ intersects the terrain after the point � Ù ! 
 ­ .

Hence, the segment Á¬9`S�T"Ì Ù ! 
 ­ @ passes vertically above � , thereby violating (V2).

Conditions (V1) and (V2) are equivalent to the following respective conditions.

(V1’) There does not exist a wedge Ó Ù ! 
 , for an edge ò of
F

not adjacent to S , such that Ó ~Ù ! 

contains a vertex of Ò � 9�í�@ .

(V2’) There does not exist a vertex ö¦H�� such that the B�E -projections of the segment Á~9`S�T¸ö-@ and
of some edge of Ò � 9�í�@ intersect.

The equivalence of (V2) and (V2’) follows from the fact that the segments Á¬9`S�T¸ö-@ lie above
F

,
whereas all the edges of Ò � 9�í�@ lie on

F
. Recall that conditions (V1’) and (V2’) are formulated for

a fixed triple SbTVU�T¸í of two vertices and a facet of
F

. The algorithm has to determine whether there
exists a pair S�TVU for which (V1’) and (V2’) hold for every facet í of

F
.

The algorithm proceeds in two stages. The first (resp., second) stage reports the set Í x (resp.,Í A ) of all pairs 9`S�TVU¬@ H¶� æ�� for which condition (V1’) (resp., (V2’)) is violated for some facet
í . Any pair of vertices 9`S�TVU~@ÏÎHxÍ x �|Í A is a guarding pair of

F
, and thus constitutes a solution to

the decision procedure. If all pairs of vertices are disqualified, the decision procedure has a negative
answer.
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Computing Í x . We wish to report all pairs 9`SbTVU~@ H¶� æ�� for which there exist an edge ò�H F
and a facet í�H F

such that Ó ~Ù ! 
 contains a vertex of Ò � 9�í�@ . A vertex Ð°HµÒ � 9�í�@ lies in Ó ~Ù ! 
 if
and only if (i) the B�E -projection Ð � of Ð lies inside the B�E -projection Ó �Ù ! 
 of Ó Ù ! 
 , and (ii) Ð lies
below the plane µ Ù ! 
 containing Ó Ù ! 
 .

We fix a vertex U�H F
and report all pairs 9`SbTVU~@]H�Í x in two stages. Let Ñ be the set of vertices

in Ò¸�Ð9�í�@ , and let ¶ be the set of all wedges Ó Ù ! 
 , as defined in the beginning of the section. The
first stage reports all pairs in Ñµæ»¶ that satisfy (i). The second stage reports a pair 9`S�TVU¬@DHÑ�úæw�
if there is a pair 9:ÐLT�Ó Ù ! 
 @ reported in the first stage for which Ð lies below µ Ù ! 
 .

In more detail, let Ñ � � ;�Ð � �°ÐëHÒÑ�< , and let ¶ � � ;�Ó � �aÓ HÓ¶\< . We have
� Ñ � ��T � ¶ � �
�I^a9`M A @ . Each Ó � is an unbounded triangle in the B�E -plane. Using a triangle range-
searching data structure [17], we report, in ^_9`Myk z C { d|ce}~cedgf�9`Mb@V@ time, all pairs 9:ÐLT�Óç@aH\Ñ�æ2¶
such that Ð � H�Ó � , as the disjoint union of complete subgraphs. That is, we report a familyÔ �Õ;Ä9ÖÑ x T�¶ x @�T 6g6g6 T�9ÖÑ m T�¶ m @=< where (i) Ñ D õ×Ñ and ¶ D õ}¶ , (ii) for any 9:Ð8T�Óç@mH1Ñ D æx¶ D ,Ð � H�Ó � , and for every pair 9:Ð8T�Óç@DHxÑ°æe¶ such that Ð � H�Ó � , there is an index F with ÐÅHxÑ D
and Ó H�¶ D . Moreover, � D 9·� Ñ D �®q�� ¶ D � @n��^a9`M k z C
{ d|ce}~cedgf�9`Mb@V@ .

Fix a complete subgraph 9ÖÑ D T�¶ D @ H Ô
. We preprocess Ñ D , in ^_9·� Ñ D � cedgfØ� Ñ D � @ time, into a data

structure so that a halfspace-emptiness query (i.e., determine whether a query halfspace contains
any point of ÑED ) can be answered in ^a9;cedgfØ� Ñ�DV� @ time. This can be accomplished by constructing
the Dobkin-Kirkaptrick hierarchy [11] on the convex hull of Ñ D . For each Ó Ù ! 
 H�¶ D , we query the
data structure with the halfspace µ ~Ù ! 
 lying below µ Ù ! 
 . If µ ~Ù ! 
 ªØÑ�DÙÎ�çþ , we add the pair 9`SbTVU~@ toÍ x . The total time spent over all complete bipartite graphs of

Ô
is ^_9`M¤k z C { d|ce}~cedgf�9`Mb@V@ . Repeating

this procedure for all vertices U�H F
, we construct the set Í x in ^a9`M xVx(z C { d|ce}~cedgf�9`Mb@V@ .

Computing Í A . Let Ú be the set of segments Á~9`SbT¸ö�@ over all pairs S�T¸öWHP� where ö is visible
from S . We compute Ú as follows. We fix a vertex S?H?� and preprocess

F
in ^a9`Mmcedgf8Mb@ time

into a data structure, so that the first intersection point of
F

with a ray emanating from Sy9�N'@ can be
computed in ^a9;c�dgfLMb@ time [22]. For each vertex ö�Hr�ÛºÏ;³S�< , we determine the first point

�
hit

by the ray S�9�N'@pö . If
�

lies between ö and S�9�N'@ on the ray, Á~9`SbT¸ö�@ is not defined; otherwise we setÁ~9`SbT¸ö�@�� ö � . We repeat this procedure for all vertices S$H F
. The total time spent in this step is

^a9`M�A
cedgf8Mb@ .
Fix a vertex U°H�� . We compute in ^a9`MbA³@ time the visibility map of

F
from U�9�N'@ and thus

the set � of edges of all the regions Ò � 9�í�@ ; �Ü����� ^_9`M A @ . For a geometric object § in 6 C , let § �
denote, as above, its B�E -projection. Set Ú � �È;(Á � �BÁ£H4Úi< and � � �Ý;®§ � �+§ÅH1�R< . Each of Ú �
and � � is a set of ^_9`M A @ segments in 6 A . Using the algorithm described in [17], we compute, in
^a9`M�k z C { d|ce}~cedgf�9`Mb@V@ time, the set of all intersecting pairs 9�Á � T¸ò � @�HtÚ � æ4� � as the disjoint union
of complete bipartite graphs, so that the overall size of their vertex sets is ^a9`MLk z C\cedgf8Mb@ .

For each complete bipartite subgraph Ú �D æ�� �D õÞÚ � æß� � in the output, we output all pairs
9`S�TVU¬@ , such that Ú �D contains (the projection of) a segment Á¬9`S�T¸ö-@ , for some öaHµ� . The total cost
of this step is ^a9`M�k z C { d|ce}~cedgf�9`Mb@V@ , and we repeat it for each U�Hµ� , to obtain an output collectionÍ A of all pairs 9`S�TVU¬@ Hµ�Ræ�� , with the property that the projection of some segment of the formÁ~9`SbT¸ö�@ intersects the projection of an edge of some Ò � 9�í�@ . In view of the preceding discussion, no
pair 9`SbTVU~@ in Í A is a guarding pair of

F
. The total cost of this step is ^a9`M xVx(z C { d|ce}~cedgf�9`Mb@V@ .
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Putting everything together, we can find in ^_9`M8xVx(z C
{ d|ce}+c�dgf�9`Mb@V@ time whether
F

can be guarded
by two watchtowers of height at most N placed at two vertices of

F
.

The parametric search. To obtain the full algorithm, we apply parametric searching to the deci-
sion procedure just described. We briefly sketch the generic parallel implementation of this proce-
dure. We first construct the invisibility regions Ò|�Ä9�í�@ . Each such region is computed as the upper
envelope of ^a9`Mb@ segments, which is easy to do in polylogarithmic parallel time (see the parametric
searching steps for the 2-dimensional problems). Next we compute the segments ]
9`S�T¸ö-@ . This can
be done for each pair S�T¸ö in parallel, by considering a vertical planar cross-section of

F
through S

and ö (again, see the corresponding routines in the 2-dimensional problems). Both of these steps
can be implemented in near-cubic time, and are thus far from being bottleneck steps.

Next, we simulate the construction of the sets Í x and Í A . Each of these constructions uses a
collection of two-level range searching structures, each of which can be constructed in polylogarith-
mic parallel depth; we omit details of these standard constructions, which are mostly routine. We
can thus conclude the following.

Theorem 5.2. For a polyhedral terrain in 68C with M edges, the discrete version of the two-watchtower
problem can be solved in ^_9`MnxVx(z C
{ d|ce}~cedgf�9`Mb@V@ time.

6 Conclusion

In this paper we have presented efficient algorithms for many variants of the two-watchtower prob-
lem. There are of course many additional variants and extensions that could be studied, such as
guarding a terrain with three or more guards, guarding with various visibility constraints or costs,
maximizing the portion of the terrain that can be guarded by two (or any other number of) guards
of a fixed height, guarding more general 3-dimensional polyhedral scenes, and so on.

The obvious immediate open problems are to improve the running time of the algorithms. In
particular, (i) Can the 2-dimensional continuous version of the problem be solved in sub-cubic time?
(ii) Can the 3-dimensional problem be solved by a faster algorithm? say, by a near-cubic algorithm?

The bottleneck in improving the algorithm for the 3-dimensional problem seems to be in the
analysis of visibility along edges of the terrain: We have ^_9`Mb@ edges, and each of them has ^a9`Mb@
collections of invisibility intervals, where each collection is induced by some vertex of the terrain,
and consists of ^a9`Mb@ intervals. If we could find, in near-quadratic time, the set of all pairs of vertices
that have a common point of invisibility along a fixed edge of the terrain, then we could have solved
the whole problem in near-cubic time.

This 1-dimensional subproblem seems to be very basic, and is a special case of generalized (or
colored) intersection searching, as studied by Gupta et al. and others (see the survey [14]). Recent
progress on this problem has been made by Kaplan et al. [16], but it does not lead to an improved
solution in our special setting. (It yields an algorithm with running time ^ � 9`M Úáà kCâ Ý z A @Eã�^a9`M C�i jVkVk @ ,
where äårÈG 6Üæ¥ç¡è is the exponent for matrix multiplication, which is just slightly worse than our
solution.)

28



References
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