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ABSTRACT
We present a simple randomized scheme for triangulating a
set P of n points in the plane, and construct a kinetic data
structure which maintains the triangulation as the points
of P move continuously along piecewise algebraic trajecto-
ries of constant description complexity. Our triangulation
scheme experiences an expected number of O(n2βs+2(n) log2 n)
discrete changes, and handles them in a manner that satisfies
all the standard requirements from a kinetic data structure:
compactness, efficiency, locality and responsiveness. Here s
is the maximum number of times where any specific triple
of points of P can become collinear, βs+2(q) = λs+2(q)/q,
and λs+2(q) is the maximum length of Davenport-Schinzel
sequences of order s + 2 on n symbols. Thus, compared
to the previous solution of Agarwal et al. [4], we achieve a
(slightly) improved bound on the number of discrete changes
in the triangulation. In addition, we believe that our scheme
is simpler to implement and analyze.

Categories and Subject Descriptors
F.2.2 [Analysis of algorithms and problem complex-
ity]: Nonnumerical algorithms and problems—Geometrical
problems and computations; G.2.1 [Discrete mathemat-
ics]: Combinatorics—Combinatorial algorithms

General Terms
Algorithms, Theory
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1. INTRODUCTION
Let P (t) = {p1(t), . . . , pn(t)} be a set of n moving points

in the plane. We assume that the motions of the points
are simple, in the sense that the trajectory of each point is a
piecewise-algebraic curve of constant description complexity,
meaning that it can be described as a Boolean combination
of a constant number of polynomial equalities and inequali-
ties of constant maximum degree.

Our goal is to devise a reasonably simple scheme for tri-
angulating P (t) at any fixed time t, and to maintain the tri-
angulation as the points move. That is, we wish to partition
the convex hull CH(P ) of P into pairwise openly disjoint tri-
angles whose vertices are the points of P , so that the interior
of each triangle is empty—it does not contain any point of
P . The scheme has to be kinetic, so that we can keep track
of the discrete combinatorial changes that the triangulation
undergoes as the points move, and update the triangulation
so that it continues to conform to the underlying scheme.
(That is, at any given time t the maintained triangulation
coincides with the one that would result in applying the
static scheme to P (t).)

The study of triangulations plays a central role in compu-
tational geometry because of their numerous applications in
such areas as computer graphics, physical simulation, colli-
sion detection, and geographic information systems [8, 13].
With the advancement in technology, many applications,
for instance, video games, virtual reality, dynamic simu-
lations, and robotics, call for maintaining a triangulation
as the points move. For example, the arbitrary Eulerian-
Lagrangian method [12] provides a way to integrate the mo-
tion of fluids and solids within a moving finite-element mesh.

In R2, the Delaunay triangulation DT (P ) of P produces
well-shaped triangles, and thus is a good candidate for such
a triangulation scheme. The problem, though, is that the
best known upper bound on the number of discrete changes
in DT (P (t)), as a function of time t, is only nearly cu-
bic in n; see [2, 14, 15, 21]. While it is strongly believed
that the maximum possible number of discrete changes that
DT (P (t)) can experience is only nearly quadratic in n, this
is one of the hardest open problems in computational and
combinatorial geometry (as recognized, e.g., in [11]). Un-
til this conjecture is established, one seeks alternative tri-
angulation schemes with a provable nearly-quadratic upper
bound on the number of discrete changes. (This is best pos-
sible, since the convex hull itself can change Ω(n2) times



during a simple motion of the points of P ; see [21].) More-
over, the scheme should be sufficiently simple to define, to
implement, and (as a secondary aesthetic virtue) to analyze.
Finally, the scheme should satisfy the four basic properties
of kinetic data structures [7] detailed below.

Agarwal et al. [4] have recently presented such a random-

ized scheme which experiences O(n22
√

log n log log n) discrete
changes. Their scheme, however, is fairly complicated, and
its analysis is also rather involved. It uses a hierarchy of
subsets ∅ = R0 ⊆ R1 ⊆ · · · ⊆ Rw = P , where each set Ri−1,
for 1 ≤ i ≤ w, is a random sample of roughly |Ri|1−1/i log n
points of Ri. The algorithm maintains an entire hierarchy
of triangulations ∅ = T0 ⊆ T1 ⊆ · · · ⊆ Tw = T , where each
Ti is a triangulation of Ri; it is a refinement of Ti−1 which
is obtained by a suitable variant of the fan triangulation,
introduced in [1].

Kinetic data structures. The Kinetic data structure (KDS)
framework, introduced by Basch et al. [7], proposes an al-
gorithmic approach, together with several quality criteria,
for maintaining certain geometric configurations determined
by a set of objects, each moving along a trajectory whose
graph, as a function of time, is a piecewise-algebraic curve
(in space-time) of constant description complexity. See [3,
7, 16] and references therein for more details.

Typically, a KDS operates by maintaining a set of cer-
tificates. As long as they are all valid, the structure being
maintained is guaranteed to be valid too. Each certificate
has a (first future) failure time, and we store these critical
times in an event priority queue. When a certificate fails, we
repair the KDS, update, if needed, the geometric structure
that we maintain, generate new certificates and insert their
failure times into the queue.

Generally, a good KDS is expected to possess the fol-
lowing four properties: (i) Compactness, meaning that the
storage that it requires is larger only by a polylogarithmic
factor than the space required for the structure being main-
tained. (ii) Efficiency, meaning that the number of events
that it processes (i.e., failure times of the certificates) is
larger only by a polylogarithmic factor than the maximum
possible number of discrete changes in the structure being
maintained. (iii) Responsiveness, meaning that repairing the
KDS at a certificate failure event takes only polylogarithmic
time. (iv) Locality, meaning that each input object is stored
at only a polylogarithmic number of places in the KDS, so
that an expected change in the motion of a single object can
be processed efficiently. See [5, 7] for more details.

Therefore, a good KDS for kinetic triangulation in R2

should have only nearly linear storage, process only a nearly-
quadratic number of events, each in polylogarithmic time,
and each moving point should be stored at only a polyloga-
rithmic number of places in the KDS.

Our result. In Section 2, we present a simple triangulation
scheme for a set P of n moving points in the plane. For the
sake of efficient kinetization we make the scheme random-
ized, and assume a (natural) model in which the flight plans
of the moving points are independent of the randomization
used by the algorithm. The basic idea of the (static) tri-
angulation is quite simple (some details are glossed over in
this informal overview): We sort the points of P by their x-
coordinates, split P at a (random) point p into a left portion
PL and a right portion PR, compute recursively the upper

convex hulls of PL ∪ {p} and of PR ∪ {p}, and merge them
into the upper convex hull of the whole set P .

This process results in a pseudo-triangulation of the por-
tion of the convex hull of P lying above the x-monotone
polygonal chain C(P ) connecting the points of P in their x-
order. Each pseudo-triangle is x-monotone, and consists of
an upper base and of a left and right lower concave chains,
meeting at its bottom apex. See Figure 1 for an illustration.
A symmetric process is applied to the portion of the hull
below C(P ), by computing recursively lower convex hulls of
the respective subsets of P . (In particular, we obtain a hier-
archical representation of CH(P ), similar to the one of Over-
mars and van Leeuwen [19]; see also [5]. See [1, 6, 22] for
additional applications of hierarchical pseudo-triangulations
to kinetic problems.)

To obtain a proper triangulation of (the convex hull of)
P , we partition each pseudo-triangle τ into triangles. We
accomplish this by chords drawn from its vertices in the
order of their random priorities; see Section 2 for details.

In Section 3, we prove that the expected number of events
that can arise during the motion is O(n2βs+2(n) log n) (with
s and β as defined in the abstract), and that the expected
number of discrete (also called topological) changes caused
in our triangulation by each such event is bounded by O(log n).

In Section 4, we show how to maintain this triangulation,
as the points of P move, using a kinetic data structure that
satisfies the criteria of [7], as listed above. There are several
kinds of critical events we need to watch for, in which pairs
of points are swapped in the x-order or triples of points
become collinear. We process each event of the former type
in O(log2 n) expected time, and each event of the latter type
in O(log n) expected time, for a total of O(n2βs+2(n) log2 n)
(expected) processing time. Our implementation encodes
the pseudo-triangulation as a treap on P [20].

The upper bounds that we obtain on the number of dis-
crete events, and on their overall processing time, are slightly
better than those of the scheme in [4], and we believe that
our scheme is simpler (and more “explicit”) than that of [4].

2. THE STATIC TRIANGULATION
In this section we describe a simple scheme for construct-

ing a static triangulation T (P ) of CH(P ). We fix a random
permutation π of the points of P . For each p ∈ P we de-
note its rank in π as priority(p). Let C(P ) denote, as above,
the x-monotone polygonal chain which connects the points
of P in their x-order, assuming that no two points of P
have the same x-coordinate. (In degenerate cases, which will
arise at discrete instances during the motion of the points
of P , C(P ) connects the points in the lexicographical order
of their coordinates.) Since the two points of P with ex-
treme x-coordinates are vertices of CH(P ), C(P ) partitions
CH(P ) into two components, CH+(P ) and CH−(P ), lying
respectively above and below C(P ). With no loss of gener-
ality, we only describe a triangulation T +(P ) of CH+(P ),
and obtain the triangulation T −(P ) of CH−(P ) in a fully
symmetric fashion. The overall triangulation T (P ) is the
union of T +(P ) and T −(P ).

A static pseudo-triangulation of CH+(P ). We first con-
struct a pseudo-triangulation of CH+(P ) and then refine it
into a triangulation by partitioning each pseudo-triangle into
triangles.

Each pseudo-triangle τ that we construct consists of a



left tail, a middle funnel, and a right tail (any of these
substructures may be empty; the tails were not mentioned
in the overview in the introduction). The funnel is an x-
monotone simple polygon, whose boundary consists of an
upper base, which is the segment connecting its leftmost
and rightmost vertices, and of a left and right lower con-
cave chains, which are denoted respectively as L(τ) and
R(τ). The point in which L(τ) and R(τ) meet is called
the apex of τ and denoted by apex(τ). The left chain L(τ)
extends from the left endpoint of the base to apex(τ), and
the right chain extends from apex(τ) to the right endpoint
of the base; see Figure 1. In addition, τ may have a left
tail1 L−(τ) and a right tail R+(τ), so that L−(τ) is an x-
monotone polygonal chain which extends from the left ver-
tex of the funnel to the left, till the left endpoint left(τ)
of τ , so that L−(τ) ∪ L(τ) is a concave chain, and sym-
mmetrically for R+(τ), which extends to the right till the
right endpoint right(τ) of τ . Again, see Figure 1. We con-

apex(τ)

R(τ)L(τ)

L−(τ)

base=bridge(τ)

τ

R+(τ)

Figure 1: A single pseudo-triangle τ in our pseudo-

triangulation of CH+(P ). In addition to its funnel (drawn

shaded), τ has two tails L−(τ),R+(τ).

struct the pseudo-triangulation of CH+(P ) recursively. At
each step of the recursion we have some subset Q ⊆ P of
points which are consecutive in the x-order of P , and we
construct a pseudo-triangulation PT +(Q) of CH+(Q). At
the topmost level of the recursion we have Q = P . The con-
struction of PT +(Q) proceeds as follows; see Figure 2. Let
left(Q) (resp., right(Q)) denote the point of Q with the min-
imal (resp., maximal) x-coordinate, and let mid(Q) be the
point p of Q \ {left(Q), right(Q)} with the minimum value
of priority(p). Set QL = {p ∈ Q | x(p) ≤ x(mid(Q))},
QR = {p ∈ Q | x(p) ≥ x(mid(Q))} (so mid(Q) belongs to
both sets). We add to PT +(Q) the following pseudo-triangle
τ . The base of τ is the portion of the upper common tangent
to CH+(QL) and CH+(QR) between the points of tangency.
We call this base the bridge of τ and denote it by bridge(τ).
The left (resp., right) chain L(τ) (resp., R(τ)) is the por-
tion of the upper hull of QL (resp., QR) below bridge(τ).
We take L−(τ) to be the portion of the upper hull of QL

to the left of L(τ), and define R+(τ) symmetrically as the
portion of the upper hull of QR to the right of R(τ). The
points left(Q) and right(Q) become the respective endpoints
left(τ), right(τ) of τ . We also have apex(τ) = mid(Q) which
belongs, by definition, to both chains. (The funnel of τ
may be empty, if mid(Q) is a vertex of the upper hull of
Q. In this case we can think of the funnel of τ as the sin-
gleton apex(τ) = mid(Q), and τ consists of the two tails
L−(τ),R+(τ), meeting at mid(Q), and forming together a
common concave chain. Similarly, a pseudo-triangle may
have an empty left tail and/or empty right tail.)

We then recursively pseudo-triangulate each of CH+(QL),
CH+(QR). The recursion terminates when |Q| ≤ 3 (by con-
1These tailed pseudo-triangles are a special case of so-called
geodesic triangles introduced in [9].

τ

QL right(Q)

bridge(τ)

QRleft(Q)
mid(Q)

Figure 2: The recursive pseudo-triangulation of CH+(Q).

We add to PT +(Q) the pseudo-triangle τ (whose funnel is

drawn shaded), with endpoints left(τ) = left(Q), right(τ) =

right(Q), and apex(τ) = mid(Q), and then recursively con-

struct PT +(QL),PT +(QR).

struction, |Q| ≥ 2). If |Q| = 3 then we output a single
pseudo-triangle τ , which is either a triangle, when the mid-
point lies below the segment connecting the endpoints, or,
in the opposite case, consists of the two segments L−(τ) =
left(τ)apex(τ) and R+(τ) = apex(τ)right(τ). If |Q| = 2, no
pseudo-triangle is output. In this case CH+(Q) is a single
edge of the chain C(P ).

Consider a pseudo-triangle τ such that left(τ) is not the
leftmost point of P and right(τ) is not the rightmost point of
P . Then one can show that the triple (left(τ), right(τ), apex(τ))
have the smallest priorities among all points whose x-coor-
dinate is between x(left(τ)) and x(right(τ)), inclusive (see
Lemma 2.1 below). To make this true for all pseudo-triangles,
we augment the initial point set P with two dummy points
p−∞ = (−∞,−∞) and p∞ = (∞,−∞), and assign to them
priorities −1 and 0. The upper hull of the augmented point
set is obtained from the upper hull of P by adding two ver-
tical downward-directed rays at the leftmost and rightmost
points of P . Hence, any triangulation of CH+(P ) is also a
triangulation of CH+(P ∪ {p−∞, p∞}), and vice versa. In
the rest of the paper denote by P the augmented point set.

Lemma 2.1. Let a, b, and c be three points in P , such
that x(a) < x(b) < x(c). Then PT +(P ) contains a pseudo-
triangle τ having endpoints left(τ) = a, right(τ) = c, and
apex(τ) = b, if and only if
(i) priority(b) > max{priority(a), priority(c)}, and
(ii) all points p ∈ P , such that x(a) < x(p) < x(c) satisfy
priority(p) ≥ priority(b).

Proof. To prove the “only if” part we proceed by in-
duction on our recursive construction. Recall that at each
recursive step we process some subset Q ⊆ P whose points
are consecutive in the x-order of P , and add to PT +(P ) a
pseudo-triangle τ with left(τ) = left(Q), right(τ) = right(Q),
and apex(τ) = mid(Q). To establish both asserted condi-
tions (i) and (ii) for τ , it is sufficient to observe that each
point p, such that x(left(Q)) < x(p) < x(right(Q)), sat-
isfies priority(p) > max{priority(left(Q)), priority(right(Q))}.
Indeed, the desired property holds initially for P by our
choice of the artificial points p−∞ and p∞ and their priori-
ties. Assuming that this holds when we process some subset
Q, and using the fact that mid(Q) is the point with smallest
priority in the range x(left(Q)) < x(p) < x(right(Q)), the
claim also holds for QL and QR.

For the “if” part, we observe that for every choice of b ∈ P
there is exactly one choice of a and c in P so that the triple
(a, b, c) satisfies (i) and (ii), and every point b ∈ P is an apex
of exactly one pseudo-triangle of PT +(P ) (and the apex of
each pseudo-triangle is distinct from each of p∞ and p−∞).



The latter is easy to establish by induction on the increasing
order of the priorities of the points. This, combined with the
arguments in the “only if” part, completes the proof.

The pseudo-triangulation tree. The pseudo-triangulation
PT +(P ) can be represented by a binary tree in which ev-
ery node v represents a pseudo-triangle τv ∈ PT +(P ), and
stores the point pv = apex(τv). The inorder of the tree is
the increasing x-order of the apices (i.e., the points of P ).
The subtree rooted at v represents the recursive pseudo-
triangulation of CH+(Pv ∪ {left(τv), right(τv)}), where Pv ⊆
P denotes the set of points stored at the nodes of the subtree
rooted at v. Note that left(τv) and right(τv) are not stored at
this subtree—they are the next points to the left and to the
right of the points of Pv. Abusing the notation slightly, we
denote by PT +(P ) both the pseudo-triangulation PT +(P )
and the tree representing it.

Remark: Let v be a node in PT +(P ), so that left(τv) 6=
p−∞. Then left(τv) is stored at the lowest ancestor of v
whose right subree contains v. If left(τv) = p−∞ then v
belongs to the path from the root of PT +(P ) to the leftmost
leaf. Symmetric properties hold for right(τv). We have:

Lemma 2.2. The tree representing PT +(P ) is a treap on
P \ {p−∞, p∞}. That is, PT +(P ) is a heap with respect
to the priorities, and a search tree with respect to the x-
coordinates of the points.

Triangulating a fixed pseudo-triangle. Let τ be a pseudo-
triangle of PT +(P ). Assume that the funnel of τ is not
empty, and is not already a triangle. We say that two ver-
tices p, q of the funnel of τ , where p belongs to L(τ) and q
belongs to R(τ), are visible from each other if pq does not
intersect ∂τ (except at its endpoints); in this case pq lies
inside the funnel of τ . Denote by ν(p) the rightmost point
on the right chain which is visible from p. Note that either
ν(p) is the rightmost vertex of τ or pν(p) is an upper tan-
gent to R(τ). Symmetic definition and properties hold for
points q on R(τ). This definition also applies when p is the
leftmost vertex of L(τ) and when q the rightmost vertex of
R(τ) (the endpoints of bridge(τ)), in which case ν(p) = q
and ν(q) = p. See Figure 3 (left).

apex(τ)

left(τ) q

τ+

bridge(τ)
ν(q) right(τ)

τ− left(τ)

apex(τ)

p

bridge(τ)
right(τ)

ν∗(p)
τp

Figure 3: Left: The first step of triangulating a single

pseudo-triangle τ ∈ PT +(P ). Right: During the recursive

construction of T (τ) every non-corner vertex p of the

funnel of τ generates exactly one edge ep = pν∗(p), thus

recursively splitting some sub-pseudo-triangle τp (drawn

shaded). Note that in this figure ν∗(p) 6= ν(p), which is

the left endpoint of bridge(τ).

The triangulation T (τ) of τ is obtained by recursively
splitting τ by chords into sub-pseudo-triangles, in the follow-
ing manner. Choose the minimum priority vertex q of the
funnel of τ , other than the leftmost and the rightmost ver-
tices and the apex. Assume, without loss of generality, that

q lies on L(τ). See Figure 3 (left). The segment qν(q) splits
τ into two sub-pseudo-triangles τ+ and τ−. The pseudo-
triangle τ+ has q as an apex and the same base as τ . Its left
chain is the portion of L(τ) from q to the left, and its right
chain is the concatenation of qν(q) with the portion of R(τ)
to the right of ν(q). The pseudo-triangle τ− has qν(q) as its
base, the same apex as τ , and its left and right chains are the
portions of L(τ) andR(τ) delimited respectively by q and by
ν(q). A symmetric situation arises when q ∈ R(τ). We add
the edge qν(q) to T (τ), and recursively triangulate each of
τ+ and τ−. We say that the edge qν(q) in T (τ) is generated
by q. In the further recursive steps, we redefine ν(p), for ver-
tices p of each of these sub-pseudo-triangles, restricting the
visibility to only within the respective pseudo-triangle. Note
that for any two vertices p, q that lie on the same chain of τ ,
the segments pν(p) and qν(q) do not intersect. Therefore, if
ν(p) changes after a recursive call then it must change to a
vertex of the base of the corresponding sub-pseudo-triangle.
See Figure 3 (right). The recursion bottoms out when the
interior of τ is a triangle. Note also that all the chords in
T (τ) cross the vertical ray above apex(τ), and so they are
totally ordered in the vertical direction.

Properties of T (τ). Every vertex p of the funnel of τ , other
than the leftmost and the rightmost vertices and the apex,
generates exactly one edge ep during the whole recursive
process. (For example, in Figure 3 (left), the vertex ν(q) will
not generate an edge in τ−, since it is an endpoint of that
funnel, but will still generate an edge within τ+, or within
some recursive sub-pseudo-triangle of τ+.) We denote by
τp the sub-pseudo-triangle in which ep is generated, and by
ν∗(p) the other endpoint of ep. Note that ν∗(p) is either the
original ν(p) or an endpoint of the base of τp.

3. NUMBER OF DISCRETE CHANGES
In this section we bound the overall expected number of

discrete changes that T (P (t)) experiences as the points of
P move along (continuous) pseudo-algebraic trajectories of
constant description complexity. The analysis is with re-
spect to a fixed random permutation π of P drawn ahead of
the motion, so that the motion is “oblivious” to the choice of
π. Thus, even though the x-order of the points may change
during the motion, each point retains its initial priority, and
the permutation π is still a random permutation of P , with
respect to the x-order of these points, at any fixed t.

Discrete changes in PT +(P ). For a fixed time instance
t ∈ R, each pseudo-triangle τ ∈ PT +(P (t)) is defined by its
endpoints left(τ), right(τ), and by its apex apex(τ). Given
such a triple of points, they define a valid pseudo-triangle
at time t if and only if they, and the points in-between in
the x-order, satisfy the conditions of Lemma 2.1 (at time t).
Thus, as long as the x-order of the points does not change,
PT +(P (t)) does not change either. That is, it consists of a
fixed set of pseudo-triangles, each defined by a fixed triple
of points. However, the geometric structure of a pseudo-
triangle may change during such a time interval, and we will
bound the number of these changes separately. Changes in
PT +(P (t)) occur only at discrete times when the x-order
of some pair of points in P (t) changes; we refer to these
changes as x-swap events.

We assume that each pseudo-triangle τ is present in
PT +(P (t)) at a maximal connected time interval I(τ), which
is associated with τ . That is, pseudo-triangles with the



same triple left(τ), right(τ), and apex(τ) that appear in
PT +(P (t)) at disjoint time intervals, are considered dis-
tinct. We emphasize that all the other features of τ , such
as bridge(τ), the chains L(τ) and R(τ), and the triangula-
tion T (τ) of its funnel, may undergo discrete changes dur-
ing the time interval I(τ). A pseudo-triangle τ is created
or destroyed only at a swap event when a point p ∈ P with
priority(p) < priority(apex(τ)) crosses one of the vertical lines
through its endpoints left(τ) and right(τ) (of course, this also
subsumes the cases where priority(p) is smaller than that
of an endpoint of τ), or when the x-order of the points
in the triple defining τ changes. In the former case, if
priority(p) > max{priority(left(τ)), priority(right(τ))} then τ
is replaced by another pseudo-triangle τ ′ with the same end-
points left(τ ′) = left(τ), right(τ ′) = right(τ) but with p as a
new apex.

If priority(p) < max{priority(left(τ)), priority(right(τ))} then
p replaces the endpoint it was swapped with. Thus, each
pseudo-triangle τ in our kinetic pseudo-triangulation
PT +(P (t)) is defined by at most five points: left(τ), right(τ),
apex(τ), and at most two additional points which determine,
by swaps with the endpoints of τ , the endpoints of the lifes-
pan I(τ) of τ in PT +(P (t)).

Discrete changes in T (τ). Fix a pseudo-triangle τ ∈
PT +(P (t)). For a fixed time instance t ∈ I(τ), the com-
binatorial structure of the triangulation T (τ) of τ depends
only on the discrete structure of the boundary of the fun-
nel of τ (i.e., the ordered sequences of the points along the
chains L(τ), R(τ), and the base bridge(τ)) and the visibility
points ν(p) of all the vertices of the funnel of τ , excluding
apex(τ) (of course, it also depends on π). Therefore, as the
points of P move during the time interval I(τ), T (τ) can
change combinatorially only at events where the boundary
or visibility structure of τ changes. These events fall into
the following three types:

(i) Envelope events, which occur at instances when one of
the chains L(τ), R(τ) contains three collinear vertices; see
Figure 4 (right). This happens when a vertex (which is not
an endpoint of bridge(τ)) is added to or removed from one
of the chains bounding τ . We denote the total number of
such events during the period I(τ) by Eτ .

ν(p0)

bridge(τ)

p0

τ0

`0

bridge(τ)

e0

p0

apex(τ)

q0

τ0

Figure 4: Left and right: visibility and envelope events

(respectively). The sub-pseudo-triangle τ0 contains all

edges which are inserted to or deleted from T (τ).

(ii) Visibility events, at which a vertex q of R(τ) becomes
collinear with an edge pr of L(τ)∪L−(τ), or vice versa. See
Figure 4 (left) (L−(τ) is relevant only for visibility events
that affect bridge(τ)). This happens when ν(q) changes from
p to r, or vice versa. In particular, each (discrete) change
of bridge(τ) corresponds to a visibility event in which the
bridge becomes collinear with an edge of L−(τ)∪L(τ) or of
R(τ) ∪R+(τ) that is incident to the respective endpoint of

the bridge. We denote the total number of visibility events
during I(τ) by Vτ .

A special case of this event occurs when bridge(τ) is cre-
ated (resp., destroyed), so that right before (resp., after) the
event, the funnel of τ is empty. Note that immediately after
(resp., before) the creation (resp., destruction) of bridge(τ),
the funnel of τ is a triangle.

(iii) Swap events, at which some point p ∈ P , satisfy-
ing priority(p) > priority(apex(τ)), crosses one of the vertical
lines through left(τ), right(τ) or apex(τ). Note that a single
swap event of this kind may cause massive discrete changes,
of highly unlocal nature, in the chains L(τ), R(τ), in the
visibility pointers ν(q) of the vertices of τ , and in bridge(τ).
See Figure 5 (left) for an illustration.

Note that a swap between any other pair of points p, q
within the x-range of τ can be ingnored in the present anal-
ysis, since the lower of the two points cannot belong to the
funnel of τ at the time of swap.

Assuming general position of the trajectories of the points,
the above events occur at distinct time instances (except
that the same event may show up, in different forms, in
several pseudo-triangles).

A visibility event happens when ν(p) changes for some
point p; we then say that p is involved in the visibility
event. An envelope event happens when a point p joins or
leaves one of the chains L(τ), R(τ); we then say that p is
involved in the envelope event.

Lemma 3.1. The only point p for which ν(p) changes in
an envelope event is the point p involved in the event.

Proof. The lemma follows since at the moment following
(resp., preceding) the appearance of p on (resp., disappear-
ance from) its chain, say L(τ), its two incident edges are
almost collinear. Thus, all vertices q on the opposite chain
satisfy ν(q) 6= p both before and after the event, and ν(q) is
not affected by the event.

The number of changes in T (τ). We define Pτ as the
set of points p ∈ P , other than apex(τ), that appear on
C(P ) between left(τ) and right(τ), at any time during the
life span I(τ), and put Nτ = |Pτ |. (Note that the points
of Pτ may enter or leave the interval between left(τ) and
right(τ) in the middle of I(τ), at x-swaps with either left(τ)
or right(τ).) As noted above, every point p ∈ Pτ satisfies
priority(p) > priority(apex(τ)). Clearly, our triangulation un-
dergoes O(Nτ ) swap events during I(τ) (recall that we only
consider swaps with left(τ), right(τ) or apex(τ)), and each of
them leads to O(Nτ ) edge insertions and deletions to T (τ)
(the maximum number of edges in the whole triangulation
T (τ)), for a total of O(N2

τ ) such updates. We next bound
the number of discrete changes in T (τ) caused by events of
the remaining two types.

Fix a set of at most five points that can potentially de-
fine a pseudo-triangle for some set of priorities. This set
has an associated time interval [t1, t2], and consists of three
points a, b, and c, such that, at all times t1 < t < t2,
x(a(t)) < x(b(t)) < x(c(t)), and of two additional points
d1 and d2 (each of which could be equal to b), so that
the x-coordinate of di swaps with either a or c at times
ti, for i = 1, 2. For some drawings of the random priori-
ties, τ appears as a pseudo-triangle, and for other drawings
it does not. For τ to appear in PT +(P ), the priorities of
a = left(τ) and c = right(τ) should be smaller than the pri-
ority of b = apex(τ). The priorities of d1 and d2 have to be



at most the priority of b = apex(τ), and the priorities of all
other points in Pτ should be larger than the priority of b.
The probability of this to happen, assuming a, b, c, d1, d2 are
all distinct, is easily seen to be O(1/N5

τ ) (for Nτ > 0).
When we condition on drawings in which τ indeed appears

in PT +(P ), the following holds.

Theorem 3.2. Let τ be a pseudo-triangle in the kinetic
triangulation PT +(P (t)). Then the expected number of dis-
crete changes in the triangulation T (τ) of τ , caused by any
single envelope or visibility event which happens during the
period I(τ), and conditioned on τ appearing in PT +(P ), is
O(log Nτ ) = O(log n).

Proof. Clearly, the chords of T (τ) (the additional edges
which partition τ into triangles) admit a total vertical or-
der, because they all cross the vertical line through apex(τ).
Consider a time instance t0 ∈ R when an envelope or a vis-
ibility event occurs, and let p0 ∈ L(τ) ∪ R(τ) be the point
involved in the event. Let t−0 (resp., t+0 ) be the time right
before (resp., after) the event. Note that p0 cannot be the
apex of τ (unless the funnel of τ is already, or is going to
become, a triangle). Note also that p0 is not a vertex of
bridge(τ), neither at t+0 nor at t−0 , unless p0 is involved in a
visibility event which changes bridge(τ). In the latter case,
T (τ) gains or loses its topmost triangle at time t0 and there
are no other changes in the triangulation. We may therefore
assume that bridge(τ) does not change at time t0, and that
p0 is not a vertex of bridge(τ).

With no loss of generality, we assume that p0 is a vertex
of R(τ) at time t+0 , and treat the remaining cases symmetri-
cally (for a visibility event, p0 belongs to R(τ) also at time
t−0 ). Consider the triangulation T (τ) at time t+0 (that we
would have obtained if we were to reconstruct T +(P ) stat-
ically at time t+0 ). Let τ0 be the sub-pseudo-triangle of τ
within which the edge p0ν

∗(p0) is generated during the con-
struction of T +(P ) (see Figure 4 (right)). Note that the
event at time t0 leaves unchanged the visibility vertex ν(p)
of each vertex p in τ other than p0. Indeed, this follows
from Lemma 3.1 for envelope events and is obvious for vis-
ibility events, using our assumption that bridge(τ) does not
change. The recursive construction of T (τ) is easily seen to
imply that τ0 appears as a sub-pseudo-triangle in the con-
struction also at time t−0 . Indeed, an easy inductive argu-
ment on the order of the ranks of the funnel vertices implies
that the modified visibility vertices ν∗(p), and the resulting
chords pν∗(p), also do not change, up to the point where τ0

is constructed. Right after this step, the chord from p0 is
drawn, so the rest of the construction of T (τ) might change
completely, but only within τ0. Hence, τ0 contains every
edge which is inserted to or deleted from T (τ) at time t0.
Therefore, the number of changes in T (τ) is bounded by
O(W0), where W0 denotes the number of vertices of τ0 at
the time of the event.

Note that W0 is a random variable depending (only) on
the permutation π(Pτ ) of Pτ , which is obtained by restrict-
ing π to Pτ . Recall that we condition the analysis on permu-
tations π such that τ indeed appears in PT +(P ). In these
permutations, the points of Pτ have to follow all the (at
most) five points defining τ , but as long as they obey this
restriction they can appear in any order. It follows that, in
our conditional probability subspace, the restriction of π to
Pτ is a random permutation of Pτ .

To bound the expected value of W0, we fix an arbitrary

threshold k ≥ 10 and prove that the event {W0 > k} occurs
with probability at most O(1/k). The expected value of W0

is then bounded by

log Nτ∑

i=0

2i+1Pr
{
W0 > 2i

}
= O




log Nτ∑

i=0

1


 = O(log Nτ ). (1)

To show that Pr {W0 > k} = O(1/k), we proceed through
the following cases. In each case, except for the last one,
we find a set S0 of Ω(k) points which does not depend on
π(Pτ ), so that all its elements must appear in π(Pτ ) after
p0. This readily implies the asserted bound. The last case is
more involved but it is still based on the same general idea.
Visibility event. If ν∗(p0) is a vertex of the base of τ0, both at
time t−0 and at time t+0 , then T (τ) does not change combina-
torially at time t0. Otherwise, as follows from the discussion
in Section 2, all three vertices that become collinear in the
event appear in τ0, both before and after the event, which
implies that ν(p0) = ν∗(p0) at both times t−0 and t+0 .

Suppose W0 > k. If τ0 contains at least k/2 vertices of
R(τ), then it also contains a sequence S0 of k/4 − 1 con-
secutive vertices of R(τ) either immediately to the left or
immediately to the right of p0. Otherwise, τ0 contains ν(p0)
together with at least k/2 − 1 other vertices of L(τ), so it
must contain a sequence S0 of k/4 − 1 consecutive vertices
of L(τ) lying either immediately to the left or immediately
to the right of ν(p0). In both cases, the key observation
is that S0 does not depend on π(Pτ ), and that p0 precedes
all the vertices of S0 in π(Pτ ) (except possibly for one ex-
tremal vertex which is a corner of τ0). As noted above, this
establishes the asserted bound.
Envelope event. Again, suppose that W0 > k. If τ0 contains
at least k/2 vertices of R(τ), the bound follows by exactly
the same argument as in the case of a visibility event. Oth-
erwise, if τ0 contains apex(τ) we set S0 to be the first k/2−2
points of L(τ) to the left of apex(τ). Again, S0 does not de-
pend on π(Pτ ), and all its elements must appear in π(Pτ )
after p0, so the bound follows.

We therefore assume that τ0 contains at most k/2 vertices
of R(τ), and that its apex q0 is distinct from apex(τ). Thus,
the edge q0ν

∗(q0) that q0 generates is the lowest edge of τ0

which is a chord of τ . We argue that ν∗(q0) = ν(q0) (before
and after t0; the definition of τ0 implies that q0 precedes
p0 in π(Pτ )). Indeed, otherwise, by the definition of T (τ),
ν∗(q0) is a vertex of the base of τ0, which happens only if
one of the chains of τ0 consists of the single edge q0ν

∗(q0).
Since p0 ∈ R(τ) and is involved in an envelope event, the
edge q0ν

∗(q0) must be the only edge of the left chain of τ0,
which contradicts the fact that L(τ) must contain at least
k/2 vertices of τ0 (for k ≥ 10). We distinguish between the
following two cases.

(i) q0 ∈ L(τ) (as depicted in Figure 4 (right)). Then
the entire left chain of τ0 is contained in L(τ). Let `0 be
the line passing through p0 and the other two vertices of
R(τ) participating in the envelope event, and let e0 be the
edge of L(τ) intersected by `. Clearly, e0 is contained in
τ0, because otherwise R(τ0) is not convex. If τ0 contains
k/4 − 1 consecutive vertices of L(τ) which lie immediately
to the left e0, we set S0 to be the set of these points, except
for the leftmost one (which may be the endpoint of the base
of τ0). Otherwise we set S0 to be the set of k/4 − 2 points
lying on L(τ) to the right of e0. Since the definition of e0

does not depend on π(Pτ ), so S0 also does not depend on
π(Pτ ).



(ii) q0 ∈ R(τ) (as depicted in Figure 5 (right)). In this
case we define at most k/2 sets, each consisting of Ω(1/k)
points and independent of π(Pτ ), such that the points in at
least one of these sets appear after both p0 and q0 in π(Pτ ).
We fix q0 on R(τ) to the left of p0 and define Sq0 as the set
of k/2−2 consecutive vertices of L(τ) which appear at time
t0 (along L(τ)) immediately to the left of ν∗(q0) = ν(q0).
By the current assumptions, if q0 is indeed the apex of τ0

then all points q ∈ Sq0 belong to τ0 and, hence, satisfy
priority(q) > priority(p0) > priority(q0). Since q0 is fixed, Sq0

is also fixed and is independent of π(Pτ ). Hence, the above
event happens with probability O(1/k2). Moreover, q0 is one
of the at most k/2 vertices of R(τ) that lie to the left of p0.
Hence, by the probability union bound, the total probability
of this scenario (over all the appropriate vertices q0 ∈ R(τ))
is O(1/k).

apex(τ)

q2p2

p1

q1

bridge(τ)

q3
τ

p

q0

ν(q0)

p0

apex(τ)

bridge(τ)

τ0

Figure 5: Left: Swap event. The funnel of τ immediately

before the x-swap between p and apex(τ), which causes

the vertices p1 and p2 to appear on L(τ), and the vertices

q1, q2, q3 to disappear from R(τ). Right: Envelope event.

The case in which q0 lies on R(τ).

We have proved for any k ≥ 10 that Pr (W0 > k) = O(1/k).
This implies Equation (1) and completes the proof of Theo-
rem 3.2.

Corollary 3.3. Let τ be a pseudo-triangle in the kinetic
pseudo-triangulation PT +(P (t)). Then the expected number
of edge insertions and deletions to T (τ) during the period
I(τ), conditioned upon the event that τ appears in PT +(P ),
is O((Eτ + Vτ ) log Nτ + N2

τ ).

For a fixed pseudo-triangle τ (including the choice of the
connected life span I(τ)), Vτ and Eτ are 2-valued random
variables: They are 0 if τ does not appear in PT +(P ), and
assume a fixed “deterministic” value if τ does appear. The
following theorem gives an upper bound on these values.

Theorem 3.4. For each pseudo-triangle τ we have Vτ =
O(N2

τ βs+2(Nτ )) and Eτ = O(N2
τ βs+2(Nτ )), where s is the

maximum number of times at which any fixed triple of points
of P becomes collinear.

Proof. We show the bound for visibility events. The
bound for envelope events is known (see [1, 5]) and can be
proved similarly.

We fix a point p ∈ Pτ and count the number of visibility
events where p is a vertex of L(τ) which is collinear with an
edge of R(τ). To do so, we define, for each q ∈ P ′τ = Pτ ∪
{right(τ)} \ {p}, a partially defined function ϕp,q(t) which
measures the angle between pq and the y-axis, and whose
domain consists of all t ∈ R at which x(left(τ)) ≤ x(p) ≤
x(apex(τ)) ≤ x(q) ≤ x(right(τ)). Clearly, each visibility
event under consideration corresponds to a breakpoint of the

lower envelope of {ϕp,q}q∈P ′τ . Since any pair ϕp,q1 , ϕp,q2 of
these functions can intersect in at most s points (these are
times at which p, q1, and q2 are collinear), and for each
q the domain of ϕp,q(t) consists of a constant number of
intervals (delimited by times at which either p or q swap with
left(τ), right(τ), or apex(τ)), it follows that the number of
breakpoints is O(Nτβs+2(Nτ )) [21]. A symmetric argument
holds for the number of visibility events where p is a vertex of
R(τ) which is collinear with an edge of L(τ). Repeating this
analysis for each p ∈ P yields the asserted overall bound.

Fix a pseudo-triangle τ . Conditioned on priorities that
cause τ to appear in PT +(P (t)), Corollary 3.3 and Theo-
rem 3.4 imply that the expected number of discrete changes
in T (τ) is O(N2

τ βs+2(Nτ ) log Nτ ). Let Pr(τ) be the proba-
bility that τ indeed appears in PT +(P (t)). Then the total
expected number of discrete changes in PT +(P (t)) is

O

(∑
τ

Pr(τ)N2
τ βs+2(Nτ ) log Nτ

)
=

O

(
βs+2(n) log n

∑
τ

Pr(τ)N2
τ

)
.

Lemma 3.5.
∑

τ Pr(τ)N2
τ = O(n2 log n), where the sum

is over all (possible sets of 1 ≤ h ≤ 5 points defining) possible
pseudo-triangles τ .

Proof. Without loss of generality, we only consider pseudo-
triangles τ with Nτ > 0, which are defined by five distinct
points of P \{p−∞, p∞}. (Pseudo-triangles defined by fewer
than 5 distinct points, or those whose defining 5-tuple in-
cludes p−∞ and/or p∞ are analyzed similarly, replacing the
exponent 5 by the appropriate 1 ≤ h ≤ 4.) Thus, as already
noted, Pr(τ) = O(1/N5

τ ), because τ appears in PT +(P (t))
if and only if the priorities of the five points that define τ
are smaller than the priorities of all other points in Pτ (and
apex(τ) has the largest priority among the defining points).

Therefore
∑

τ

Pr(τ)N2
τ = O

(∑
τ

1/N3
τ

)
.

In what follows, we call Nτ the level of τ . Let Mk(n) (resp.
M≤k(n)) denote the maximum number of pseudo-triangles
of level k (resp., of level at most k), defined by 5 points, in a
set of n moving points. We claim that M≤k(n) = O(n2k3).
To see this, consider all the pseudo-triangles τ (defined by
five points) whose birth time is determined by a fixed x-
swap event occurring at some time t0, between some pair
of points a, b ∈ P . Assume without loss of generality that
a = left(τ). Then apex(τ) and right(τ) are among the k + 2
points whose x-coordinates lie at time t0 immediately to
the right of x(a) = x(b). Similarly, the fifth point, which
is responsible for the destruction of τ , is one of the first
k + 1 points whose x-coordinates enter the interval between
x(left(τ)) = x(a) and x(right(τ)). Thus, each of the O(n2)
x-swap events defines the creation time of at most O(k3)
pseudo-triangles of level at most k, which readily implies
the asserted bound on M≤k(n). We thus have

∑
τ

Pr(τ)N2
τ = O

(∑
τ

1/N3
τ

)
= O


∑

k≥1

Mk(n)/k3




= O


∑

k≥1

M≤k(n)/k4


 = O


∑

k≥1

n2/k


 = O(n2 log n).



The combination of Corollary 3.3, Theorem 3.4, and Lemma
3.5 implies the following summary theorem.

Theorem 3.6. The total expected number of discrete changes
in the kinetic triangulation T (P (t)) is O(n2βs+2(n) log2 n).

4. KINETIC MAINTENANCE OF T (P )
In this section we describe a kinetic data structure which

supports efficient maintenance of T +(P (t)) under motion.
The structure satisfies2 the standard requirements of ef-
ficiency, compactness, responsiveness, and locality, as re-
viewed in the introduction.

The static structure. We store the pseudo-triangulation
tree PT +(P ) as a treap over P , as described in Theorem
2.2, whose inorder is the x-order of the points and where
the heap order is according to their random priorities. Each
node v in PT +(P ) corresponds to the pseudo-triangle τv

whose apex is the point stored at v. We also store at v, as
auxiliary data, the endpoints left(τv) and right(τv), which
are inherited from appropriate ancestors of v.

In addition, we also store at v the combinatorial descrip-
tion of the funnel of τv, and of its triangulation T (τv). This
includes bridge(τv), two ordered lists storing the vertices of
L(τv), and R(τv) in their left-to-right order, and the list of
the chords of T (τv), sorted in their vertical order (i.e., the
order of their intersections with the vertical line through
apex(τv)). We represent any sorted list of vertices or edges3

as a balanced binary tree supporting each of the operations
search, split, and concatenate, in O(log n) time [23]. To facil-
itate efficient kinetic maintenance of T +(P (t)), we also store
the vertices of the upper hull of P , in their left-to-right or-
der in a balanced search tree. Note that each edge of the
triangulation (not on C(P )) appears twice in our structure,
once as bridge(τv) for some pseudo triangle τv, and once on
L(τw) or R(τw) for some ancestor w of v or on the convex
hull of P .

Theorem 4.1. Let P be a set of n points in the plane.
The pseudo-triangulation tree PT +(P ), augmented with the
auxiliary data items, as above, uses O(n) space, and it can
be initialized in O(n log n) time.

Proof. The asserted bound on the overall storage fol-
lows from the easy observation that PT +(P ) contains O(n)
nodes, and every point p ∈ P appears as a non-corner ver-
tex on at most one chain L(τv), R(τv), over all nodes v of
PT +(P ).

We construct the pseudo-triangulation tree PT +(P ) (ex-
cluding the auxiliary items bridge(τv), L(τv), R(τv) and the
chords of T (τv)) in a single top-down pass, which imple-
ments the recursive construction given in Section 2. Clearly,
this can be done in O(n) time, after an initial sorting of the
points of P , by their x-coordinates and by their priorities;
sorting the points takes O(n log n) time.

We next compute the items L(τv), R(τv), and bridge(τv)
stored at the nodes v of PT +(P ), by a single bottom-up
traversal of PT +(P ), which computes for every node v the
upper hull U(v) of the set Pv∪{left(τv), right(τv)}. When we

2As in [5], all properties (except for compactness) hold in expec-
tation, with respect to the random permutation π.
3Note that we do not store explicitly the tails L−(τ),R+(τ),
because the overall storage that they would require could be too
large, as they can be shared by many pseudo-triangles.

process a new non-leaf node v, we have already visited its re-
spective left and right children v` and vr, so their hulls U(v`)
and U(vr) are already available. We compute bridge(τv) in
O(log n) time by a simultaneous binary seach over U(v`)
and U(vr), in the manner described in [19]. Then we use
bridge(τv) to split U(v`) (resp., U(vr)) into L−(τv) and L(τv)
(resp., R(τv) and R+(τv)). We store explicitly the chains
L(τv) R(τv) at v, and compute U(v) by concatenating the
three edge lists L−(τ), {bridge(τ)}, and R+(τ), in a similar
manner to that described in [5]. Overall, we spend O(log n)
time at each node of PT +(P ), for a total of O(n log n) time.

Finally, for each node v in PT +(P ), we compute the list
of chords of T (τv) using the recursive mechanism described
in Section 2. Recall that every non-corner vertex p of the
funnel of τv generates exactly one edge ep which recursively
splits the unique sub-pseudo-triangle τp of τv. We process
the non-corner vertices of T (τv) in the increasing order of
their priorities, and store the previously generated edges in
a list, in the order of their intersections with the vertical line
through apex(τv).

It takes O(log n) time to process a non-corner vertex p of
τv, for a total of O(n log n) time. Indeed, we can determine
the corners of τp in O(log n) time, by a binary search over the
list of the previously generated edges. In addition, we can
determine ν(p) by a binary search over the appropriate chain
L(τv) or R(τv), and then obtain ν∗(p) in O(1) additional
time.

The kinetic certificates. To ensure the validity of PT +(P )
and its triangulation T +(P ), we use three types of certifi-
cates, denoted as CT, CE and CV. Each certificate is a pred-
icate on a constant number of points. As long as all the
certificates remain true, the validity of PT +(P ) and T +(P )
is ensured. Each certificate contributes a critical event to
the global event priority queue Q, which is the first future
time at which the certificate becomes invalid (if there is such
a time).
CT-certificates. To ensure the validity of the tree PT +(P )
(ignoring the auxiliary data), each pair of points p, q ∈ P
with consecutive x-coordinates contributes a CT-certificate
asserting that the order of x(p) and x(q) remains unchanged.
This certificate fails at the first future moment of an x-swap
between p and q. According to Lemma 2.1, CT-certificates
(together with the chosen priorities) are sufficient to ensure
the validity of the “bare” tree PT +(P ).
CE-certificates. For each node v in PT +(P ), the edge
bridge(τv) = pq contributes a CE-certificate ensuring that
the (current) neighbors of p and q on L−(τv) ∪ L(τv) and
R(τv)∪R+(τv) remain below the line through p and q. This
certificate involves4 at most six points and fails at the first
future time of collinearity between p, q, and one of their four
neighbor vertices on L−(τv)∪L(τv) and on R(τv)∪R+(τv).

So far, we have ensured the validity of the tree PT +(P )
and of the edges bridge(τv) stored at its nodes v. Moreover,
the validity of all the chains L(τv),R(τv) is also ensured
because each one of their edges either belongs to C(P ) or
appears as bridge(τw) at some descendant w of v. Here a
collinearity between three consecutive points on L(τv) or on
R(τv) (an envelope event) will be detected as a change in
bridge(τw), for the appropriate descendant w. Similarly, the

4If bridge(τv) does not exist then we have an even simpler certifi-
cate which fails when the two edges of L−(τv),R+(τv) incident
to apex(τv) become collinear.



validity of the upper hull of P follows since each of its edges
either belongs to C(P ) or appears as bridge(τv) at some node
v. See [5] and [19] for more details.
CV-certificates. It only remains to ensure the validity of
the triangulations T (τv), over all nodes v ∈ PT +(P ). For
this we need the third type of certificates, denoted by CV.
Fix a node v in PT +(P ). Every internal point p of L(τv)
or R(τv) contributes a CV certificate ensuring the validity
of ν(p). This certificate involves p, ν(p), and the two points
adjacent to ν(p) on its chain. It fails when one of the points
adjacent to ν(p) becomes collinear with p and ν(p).

Clearly, all of the above certificates use O(n) storage, and
can be initialized, including the construction of the event
queue Q of their first failure times, by the algorithm of The-
orem 4.1, without increasing its overall assymptotic running
time, i.e., in O(n log n) time.

Handing critical events. We next describe the repair
operations required when an event, at which some certificate
fails, happens.
CT-certificates. Failure of a CT-certificate occurs at an
x-swap. That is, the order of the x-coordinates of two con-
secutive points along C(P ) switches, at some time t = t0.

With no loss of generality we assume that priority(p) <
priority(q), implying that q(t−0 ) is a descendant of p(t−0 ),
where t−0 , t+0 denote the time just before and just after t0,
respectively. To update PT +(P (t+0 )) we reconstruct from
scratch the subtree rooted at the node v containing p, and
recompute the kinetic certificates associated with its nodes
and the points that they contain. We remove the failure
times of the expired certificates from Q, and insert the new
ones. All this can be done in O(nv log nv) time using the
algorithm of Theorem 4.1, where nv = |Pv|. We prove
that E{nv} = O(log n) by applying a simplified version
of the analysis used in Theorem 3.2. As above, it suffices
to show that Pr{nv > k} ≤ 4/k, for any k ≥ 1. Indeed,
nv > k implies that either each of the k/2 points w whose
x-coordinates immediately precede x(p) or each of the k/2
points w whose x-coordinates immediately follow x(p) at
time t0 satisfies priority(p) < priority(w). This happens5 with
probability at most 4/k. Thus, we can reconstruct the sub-
tree rooted at v in O(log n log log n) expected time.

As can easily be checked, if neither p nor q is the leftmost
or the rightmost point of P (excluding the points at infinity
which we added) then no further updates outside the subtree
of v are needed, and no additional certificates need to be
created or destroyed. (That is because left(τv) 6= p−∞ and
right(τv) 6= p∞, so the upper hull U(v) contains at most
one of p, q, and it does not change as a result of the swap.)
We next describe the necessary modifications in the setting,
depicted in Figure 6, in which case we assume that (i) p
and q are the two points with the smallest x-coordinates,
(ii) x(q(t−0 )) > x(p(t−0 )), and (iii) the y-coordinate of p is
larger than at q when they swap; the other cases are treated
symmetrically. The x-swap between p and q causes q to
appear on the upper hull of P . We add q to the upper
hull in O(log n) time. Similarly, q becomes part of the tail
L−(τw) of every ancestor w of v (both w and v lie on the
leftmost path of the treap). If w is such an ancestor whose
bridge is incident to p (from the right), then we have to
incorporate q into the certificate of bridge(τw), and possibly

5We emphasize again that arguments of this kind are based on
the assumption that the motion of the points is oblivious to the
choice of priorities.

replace its old failure time in Q with a new one. Since the
expected number of ancestors w of v, in the treap PT +(P ),
is O(log n) (see, e.g., [20]), any swap event can be processed
in O(log2 n) expected time.

left(τw) = p−∞
apex(τw)

τw

right(τw)

p

q

bridge(τw)

Figure 6: The view after a swap event between a pair of

points p, q with the smallest x-coordinates stored in the

left subtree of a node w, whose CE-certificate has to be

updated.

CE-certificates. Consider a time t0 when a CE-certificate at
some node v fails. We assume without loss of generality that
at time t0 the leftmost vertex p of L(τv) becomes collinear
with the leftmost edge qr of R+(τv) (so that bridge(τv) was
pq before the event and is pr afterwards), and treat the
remaining cases symmetrically. As a result of this event,
the edge pr replaces pq as bridge(τv), the edge qr is added to
the end of R(τv), and the triangulation T (τv) gains the new
triangle 4pqr. We need O(log n) time to update the edge
lists of R(τv) and T (τv), and to compute the CV-certificate
of q (which ceases to be the endpoint of R(τv)) and add its
failure time to Q. (Note that the CV-certificate of q is part
of the former CE-certificate at v.)

To recompute the new certificate of bridge(τv), we have to
determine the next edge rr+ of R+(τv) that is incident to r
from the right. This edge is either stored in one of the lists
L(τw) or R(τw) at some ancestor w of v, or it belongs to the
upper hull of P . See Figure 7 (top). We find rr+ by doing a
binary search on the lists L(τw) and R(τw) for the ancestors
w of v, and if necessary also on the convex hull of P .

apex(τw)

τv

apex(τv)

q r

p

r+ τw

apex(τw)apex(τv)
apex(τu)

p

τu

τv

q r r+ τw

Figure 7: Failure of the CE-certificate at v (shown at

time t+0 right after the event). Top: The case where the

ancestor w that stores rr+ coincides with the ancestor u

that has lost q. Bottom: The case where u is distinct

from w.

If pq and qr were part of the upper hull at time t−0 , we



replace them by a single edge pr, in O(log n) time. Other-
wise, v has some ancestor u such that pq and qr are stored
in the edge list of L(τu) or R(τu). (There is exactly one
such ancestor u, which is equal to w unless r is incident to
bridge(τu); see Figure 7. In the terminology of Section 3,
τu experiences an envelope event at time t0.) We find u in
O(log2 n) expected time by searching the edge lists stored at
all ancestor nodes of v, whose expected number is bounded
by O(log n). We then replace pq and qr by pr in the edge list
of the respective chain L(τu) or R(τu), and remove from Q
the failure time of the CV-certificate of q (within τu). More-
over, we have to retriangulate a suitable sub-pseudo-triangle
τ0 of τu whose boundary, according to Theorem 3.2, has ex-
pected complexity O(log n) (see also Figure 5). To do so,
we determine τ0 by searching the edge list of T (τu), and
then recursively triangulate it, as described in the proof of
Theorem 4.1. All this can be done in O(log2 n) expected
time. Therefore, we can process any CE-certificate failure in
O(log2 n) expected time.
CV-certificates. We finally consider the case when a visi-
bility event, involving some point p within the funnel of τv,
for some node v of PT +(P ), causes the failure of the cor-
responding CV-certificate at some time t0. Since the failed
certificate is associated with an internal vertex of L(τv) or
R(τv), all the necessary updates are local to the funnel of τv,
and to its triangulation T (τv). We update the CV-certificate
of p and insert its new failure time to Q, in O(log n) time
(the new neighbor of ν(p) is easily obtained in O(log n) from
the respective edge list). In addition, we may have to deter-
mine and re-triangulate a suitable sub-pseudo-triangle τ0 of
τv, whose boundary has expected complexity O(log n) (see
Theorem 3.2). An in the case of a failure of a CE-certificate,
this can be done in O(log2 n) expected time, by searching
the edge list of T (τv).

We thus obtain our main theorem.

Theorem 4.2. Let P (t) be a collection of n moving points,
as above. We can maintain the triangulation T (P (t)) un-
der motion in a kinetic data structure of linear size, which
processes an expected number of O(n2βs+2(n) log n) events,
each in O(log2 n) expected time, where s is the maximum
number of times at which any single triple of points of P (t)
can become collinear.

Enforcing locality. As implied by Theorem 4.2, the pro-
posed data structure for maintaining T (P ) is compact, effi-
cient, and responsive (where the last two properties hold in
expectation). To make it also local (in expectation), it is suf-
ficient to ensure that at any moment of time the expected
number of kinetic certificates involving any single point is
O(log n). Clearly, each point is associated with at most
two CT-certificates. Since the expected depth of PT +(P )
is O(log n) and each pseudo-triangle of PT +(P ) defines a
single CE-certificate, each point participates in an expected
number of O(log n) CE-certificates. We can also achieve this
for CV-certificates by slightly modifying their definition; see
the full version [17] for details.
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