
Eliminating Depth Cycles among Triangles in Three
Dimensions∗

Boris Aronov† Edward Y. Miller‡ Micha Sharir§

July 20, 2016

Abstract

Given n non-vertical pairwise disjoint triangles in 3-space, their vertical depth
(above/below) relation may contain cycles. We show that, for any ε > 0, the triangles
can be cut into O(n3/2+ε) pieces, where each piece is a connected semi-algebraic set
whose description complexity depends only on the choice of ε, such that the depth
relation among these pieces is now a proper partial order. This bound is nearly tight
in the worst case. We are not aware of any previous study of this problem with a
subquadratic bound on the number of pieces.

This work extends the recent study by two of the authors on eliminating depth
cycles among lines in 3-space. Our approach is again algebraic, and makes use of a
recent variant of the polynomial partitioning technique, due to Guth, which leads to
a recursive procedure for cutting the triangles. In contrast to the case of lines, our
analysis here is considerably more involved, due to the two-dimensional nature of the
objects being cut, so additional tools, from topology and algebra, need to be brought
to bear.

Our result essentially settles a 35-year-old open problem in computational geometry,
motivated by hidden-surface removal in computer graphics.

∗Work on this paper by B.A. has been partially supported by NSF Grants CCF-11-17336, CCF-12-18791,
and CCF-15-40656, and by BSF grant 2014/170. Work by M.S. has been supported by Grant 2012/229
from the U.S.-Israel Binational Science Foundation, by Grant 892/13 from the Israel Science Foundation,
by the Israeli Centers for Research Excellence (I-CORE) program (center no. 4/11), and by the Hermann
Minkowski–MINERVA Center for Geometry at Tel Aviv University.
†Department of Computer Science and Engineering, Tandon School of Engineering, New York University,

Brooklyn, NY 11201, USA; boris.aronov@nyu.edu.
‡Department of Mathematics, Tandon School of Engineering, New York University, Brooklyn, NY 11201,

USA; em1613@nyu.edu.
§Blavatnik School of Computer Science, Tel Aviv University, Tel-Aviv 69978, Israel; michas@post.tau.ac.il.

1 Introduction

The problem. Let T be a collection of n non-vertical pairwise disjoint triangles in R3 in
general position. In particular, we assume that the xy-projections of the triangles are in
general position, in the sense that no pair of projected edges overlap, no vertex is projected
to a point that lies on a projected edge of another triangle, and no three projected edges are
concurrent. For any pair ∆,∆′ of triangles in T , we say that ∆ passes above ∆′ (equivalently,
∆′ passes below ∆) if any vertical line that meets both ∆ and ∆′ intersects ∆ at a point that
lies higher than its intersection with ∆′; this property is clearly independent of the choice of
the vertical line meeting both triangles. We denote this relation by ∆′ ≺ ∆. The relation ≺ is
a partial relation, and in general it may contain cycles of the form ∆1 ≺ ∆2 ≺ · · · ≺ ∆k ≺ ∆1.
We call this a k-cycle, and refer to k as the length of the cycle. Cycles of length three (the
minimum possible length) are called triangular. See Figure 1.

Figure 1: A triangular depth cycle among three triangles.

The problem of cycle elimination is to cut the triangles of T into a finite number of
connected pieces, each being semi-algebraic of constant description complexity (that is, defined
by a constant number of polynomial equalities and inequalities, each of degree bounded by
some constant), so that the suitably extended depth relation among the new pieces is acyclic,
in which case we call it a depth order.

The simpler case, in which the triangles are replaced by lines or line segments, has been
handled in the recent companion paper [5] (and in earlier papers, cited therein). We note
that eliminating cycles in a set of triangles adds, literally, a new dimension to the problem:
whereas lines are cut at a discrete set of points, triangles have to be cut into pieces along
curves, which makes the analysis considerably more involved—see below. We also observe
that the binary space partition (BSP) technique of Paterson and Yao [18] constructs a depth
order by cutting the triangles into Θ(n2) pieces,1 but, as in the case of lines, we would like to
use fewer cuts, ideally close to the lower bound of Ω(n3/2), which is an immediate extension
of a similar lower bound, noted in [5], for the case of lines.

A long-standing conjecture, open since 1980, is that one can indeed always construct a
depth order with a subquadratic number of cuts. See [8, Chapter 9] for a summary of the

1A significant feature of the BSP technique is that the cuts are made by straight lines and therefore the
resulting pieces can be taken to be triangular, whereas this is not the case in our construction.

1

state of affairs circa 1990. In the previous work [5] we have shown that O(n3/2 polylog n) cuts
suffice to eliminate all cycles among n lines in space. In this paper we obtain a similar, albeit
slightly weaker, bound for the case of triangles, settling this conjecture, in a strong, almost
worst-case tight manner (with a few technical reservations, discussed below).

Background. The main motivation for studying this problem comes from hidden surface
removal in computer graphics. A detailed description of this motivation can be found, e.g.,
in an earlier paper of Aronov et al. [3]. Briefly, a conceptually simple technique for rendering
a scene in computer graphics is the so-called Painter’s Algorithm, which places the objects
in the scene on the screen in a back-to-front manner, painting each new object over the
portions of earlier objects that it hides. For this, though, one needs an acyclic depth relation
among the objects with respect to the viewing point (which we assume here, without loss of
generality, to lie at z = +∞). When there are cycles in the depth relation, one would like
to cut the objects into a small number of pieces, so as to eliminate all cycles (i.e., have an
acyclic depth relation among the resulting pieces), and then paint the pieces in the above
manner, obtaining a correct rendering of the scene; see [3, 10] for more details. Assuming
that the input objects are all given as triangulated polyhedral approximations, as is the case
in most practical applications, we face exactly the problem addressed in this paper.2

The study of cycles in a set of lines or line segments in R3 goes back to Chazelle et al. [11],
who have shown that, if the xy-projections of a collection of n segments in 3-space form a
“grid” (of the form depicted in Figure 2), then all cycles defined by this collection can be

Figure 2: A collection of line segments that forms a grid, viewed from above.

eliminated with O(n9/5) cuts. Another significant development is due to Aronov et al. [3],
who have considered the problem of triangular cycles, and established the rather weak (albeit
subquadratic) O(n2−1/34 log8/17 n) upper bound on the number of elementary triangular cycles
(namely, cycles whose xy-projections form triangular faces in the arrangement of the projected
lines). They also showed that O(n2−1/69 log16/69 n) cuts suffice to eliminate all triangular
cycles. However, their results did not apply to general, non-triangular cycles.

In the recent companion work [5], we essentially settled the case of lines, by showing that
O(n3/2 polylog n) cuts are sufficient to eliminate all cycles, which is close to the best possible
due to a well known construction requiring Ω(n3/2) cuts.

In contrast, the case of triangles has barely been touched, except for the aforementioned
BSP technique in [18] and several subsequent studies of this technique, where improved

2That is, aside from our requirement that the triangles be pairwise disjoint and in general position. With
some extra care, which we avoid in this version, the analysis will also be able to handle the cases where the
triangles share edges, which is the case that arises in practice.

2

(subquadratic) bounds have been established for several special classes of objects in three
dimensions, such as axis-parallel two-dimensional rectangles of bounded aspect ratio [1,22] or
so-called uncluttered scenes [9]; see [12, 22] for surveys of the BSP literature.

Our contribution. In this paper we essentially settle the problem for the case of triangles,
and show that all cycles in the depth relation in a set of n triangles can be eliminated by
cutting the triangles into O(n3/2+ε) connected pieces whose (constant) description complexity
depends only on the choice of ε > 0. As noted, our bound is best possible in the worst case,
up to the O(nε) factor.

The proof of this bound follows the high-level approach in the previous analysis for the
case of lines [5], which uses the polynomial partitioning technique of Guth [14]. Roughly
speaking, this technique spreads the edges of the triangles more or less evenly among the
cells of the partition, which in turn provides a recursive divide-and-conquer mechanism
for performing the cuts. However, the fact that we are dealing here with two-dimensional
triangles, rather than with one-dimensional objects like lines or segments, raises substantial
technical problems that need to be overcome. The two most significant issues that arise are:

(i) In contrast with the case of lines, where the cuts are made at a discrete set of points, here
we need to cut the triangles into two-dimensional regions. Ideally, we would like to cut them
into triangular pieces (as does the BSP technique of [18]), but our technique does not achieve
this and instead cuts the triangles by a collection of constant-degree algebraic curves into
semialgebraic regions of constant description complexity.

(ii) Additional complications arise in controlling the recursive mechanism, to ensure that
not too many triangles are passed to a recursive subproblem. As alluded to above, we can
control the number of triangles that have an edge that crosses a cell, since the partition is
based on the triangle edges, but we do not have a good bound on the number of triangles
that “fully slice” through a cell; see below for the precise description. One therefore needs
to prune away the triangles that cross a cell in this slicing manner, in order to obtain a
recurrence relationship similar to the one in [5] for the case of lines, thereby achieving the
desired near-optimal bound for the overall number of cuts; see below for full details.

As in the case of lines, our proof is constructive, and leads, in principle, to an efficient
algorithm for performing the cuts (assuming a suitable model of algebraic computation). The
only ingredient currently missing is an efficient construction of Guth’s partitioning polynomial,
a step that we leave as a topic for further research. (As also noted in [5], the problematic
aspects of an efficient construction of a partitioning polynomial, for the simpler case of a set
of points, and techniques for overcoming these issues, are discussed by Agarwal et al. [2]; one
hopes that variants of these techniques could also be used for effectively partitioning space
with respect to higher-dimensional objects—the triangle edges in our case.)

Additional issues that arise here and were absent in the case of lines (and are strongly
related to item (ii) above) involve the analysis of the topology of the cells of the polynomial
partitioning, and the way it is modified by the triangles that slice through the cells. Handling
these issues constitutes a novel, non-negligible portion of our analysis.

We note that the previous study [5] proposes two other algorithmic approaches for

3

computing the cuts, one using the algorithms of Har-Peled and Sharir [16] or of Solan [20],
and the other using the (slower, albeit polynomial, but sharper) approximation algorithm
of Aronov et al. [4]. Unfortunately, neither of these alternative techniques seems (so far)
applicable to the case of triangles.

2 Eliminating cycles in a set of triangles

The setup and some notation. Let O be a collection of pairwise disjoint objects in three
dimensions, where each object is a path-connected set contained in a non-vertical plane; in
our analysis, these will be the triangles or the triangle pieces produced by our construction.
Clearly, each object in O is xy-monotone, that is, its intersection with any vertical line is a
single point or empty. We define a depth relation (O,≺) on the objects of O, in the following
natural manner: we say that o1 ∈ O lies (or passes) below o2 ∈ O (in which case we also say
that o2 passes above o1), and write o1 ≺ o2 or o2 � o1, if there exists a vertical line ` that
meets both o1 and o2, and the z-coordinate of its intersection with o1 is lower than that of
its intersection with o2. For general planar connected regions, this relation need not be well
behaved, but, for connected pieces of pairwise disjoint triangles, the relation is well defined,
in the sense that it is independent of the choice of the line `.

The final pieces into which the triangles of T will be cut will have constant description
complexity, as defined above. However, until the very end of the construction, we will
only generate certain constant-degree algebraic curves that are drawn on the respective
triangles. Only at the end we will use these curves to construct the desired output collection
of constant-complexity pieces with the desired properties.

A cycle in (O,≺) is a circular sequence of some k objects from O that satisfy o1 ≺ o2 ≺
· · · ≺ ok ≺ o1. We refer to k as the length of the cycle; a cycle of length k is a k-cycle. Note
that self-loops and 2-cycles are not possible in O under our assumptions (although they may
very well exist for more general objects), so we must have k ≥ 3.

The problem, restated. We are now ready to formally state the problem: Let T be a
collection of n non-vertical pairwise disjoint triangles in general position in R3. As already
mentioned above and illustrated in Figure 1, (T ,≺) may contain cycles. Our goal is to
cut the triangles of T into a small number of path-connected pieces of constant description
complexity, so that, for the collection O of the resulting pieces, (O,≺) is acyclic—a depth
order.3

There is a straightforward way of achieving this: Project all triangles of T orthogonally to
the xy-plane and form the resulting arrangement of triangles, which consists of at most O(n2)
faces. Extrude each face of this arrangement into an unbounded z-vertical prism, and cut
each triangle ∆ ∈ T into pieces along the polygonal curve of its intersection with the prism
boundary. It is easy to see that the number of resulting pieces is O(n3), and that the pieces

3Technically, we imagine cuts to have non-zero, albeit arbitrarily small, width, in order to keep the
resulting objects pairwise disjoint and their depth relation unambiguous. We will not mention hereafter the
requirement that cutting the triangles involves leaving small gaps of this sort.

4

corresponding to a single prism form a linear order under ≺, while the pieces from different
prisms are unrelated by ≺, so indeed there are no cycles. It is moreover easy to refine this
decomposition so that the resulting pieces are triangles, with no asymptotic increase in the
number of pieces.

The cubic number of pieces obtained by this naive approach is excessive. A better bound
on the number of pieces sufficient to eliminate all cycles is provided by the binary space
partition (BSP) technique of Paterson and Yao [18], which eliminates all cycles by cutting
the triangles into Θ(n2) (triangular) pieces. In fact, the construction in [18] has a much
stronger property: the resulting collection of triangular pieces has no cycles in the depth
relation corresponding to any viewing direction, or, more generally, to the perspective view
from an arbitrary point.

In this paper we show that cycles in the depth relation (for a fixed viewing direction,
which, as already stated, is taken to be the view from z = +∞) can be eliminated by creating
a significantly subquadratic number of pieces, while keeping the complexity of each piece
constant. As already mentioned, the number of pieces that our technique yields, which is
O(n3/2+ε), for any prespecified ε > 0, is nearly tight in the worst case.

Recall that we have assumed that the triangles of T are in general position. We will cut the
triangles by drawing curves on each triangle; this will be performed in a hierarchical manner,
by a recursive procedure. The triangle pieces will be defined implicitly as faces in the induced
arrangement of curves in each triangle. We will deliver our promise of constant-description-
complexity pieces at the very end of the argument, in Section 2.5. Ideally, we would like the
curves to be straight and the pieces to be triangular as in the BSP technique [18], but our
argument cannot achieve it, in its current form.

So let O denote the implicit collection of faces on the triangles. Let C be a cycle
o1 ≺ o2 ≺ · · · ≺ ok ≺ o1 in O (with k ≥ 3). We associate with C a continuum Π(C) = Π(C,O)
of closed paths (loops), where, informally, each path π in Π(C) traces the cycle along the
objects. Formally, each such π is defined in terms of k vertical lines `1, . . . , `k, such that,
for each i, `i intersects both oi and oi+1 (where addition of indices is mod k), at respective
points4 v+

i , v−i+1, so that v+
i lies below v−i+1. For each i, we connect the two points v−i , v

+
i ∈ oi

by a Jordan arc πi ⊂ oi. The path π is then the cyclic concatenation

π = π1 ‖ v+
1 v
−
2 ‖ π2 ‖ v+

2 v
−
3 ‖ · · · ‖ v+

k−1v
−
k ‖ πk ‖ v

+
k v
−
1 , (1)

which is an alternation between the arcs πi along the objects, and the (upward) vertical jumps
v+
i v
−
i+1 between them. As already said, there is a continuum of possible paths, representing

different choices of the vertical lines (and thus points) at which we decide to jump from object
to object, and of the paths along which the “landing” and “take-off” points are connected
along each object.5

To eliminate all cycles, it suffices to cut all the associated closed paths. The following
easy lemma states this precisely.

4The superscripts + and − are a bit misleading if interpreted in terms of z-values; they are intended to
indicate progress along π, in the sense that v−i precedes v+i along oi.

5This is in stark contrast to the case of lines, studied in [5], where each cycle corresponds to a unique
path of this kind.

5

Lemma 2.1. For each ∆ ∈ T , let Γ∆ be a collection of curves drawn on ∆, and let O∆

denote the relatively open two-dimensional faces of A(Γ∆); put Γ :=
⋃

∆ Γ∆ and O :=
⋃

∆O∆.
Then, to verify that the depth relation among the pieces in O is acyclic, it is sufficient to
ensure that, for each cycle C in (T ,≺), and for each path π ∈ Π(C, T), one of the arcs πi of
π has been cut by a curve in Γ.

Remark. Notice that we require that all cyclic paths in Π(C, T) be cut. For a specific path π,
a subpath πi may be cut in such a way that it first leaves and then reenters the same piece
of a triangle, thus keeping the cycle C alive. This would appear to be a problem, as πi can
be replaced by a rerouted subpath π′i that stays in the same piece. Replacing πi by π′i in π,
though, produces a different cyclic path in Π(C, T), which we also require to be cut, and all
these cuts will eventually eliminate C. The following proof handles this issue appropriately.

Proof. We proceed by contradiction: Assume that all cyclic paths in Π(C, T), for every cycle
C in (T ,≺), have been cut, but nonetheless there remains a cycle C ′ : o1 ≺ o2 ≺ o3 ≺ · · · ≺
ok ≺ o1 in (O,≺). In this case the set Π(C ′,O) of paths realizing C ′ is nonempty, and we
pick a path π ∈ Π(C ′,O), having the form (1), where each subpath πi is contained in the
corresponding piece oi ∈ O, and each vertical jump v+

i−1v
−
i moves from oi−1 to oi. Each oi

is contained in some (not necessarily distinct) triangle ∆i ∈ T , so πi is fully contained
in ∆i, the jump v+

i−1v
−
i can be viewed as a vertical jump from ∆i−1 to ∆i, and therefore

∆1 ≺ ∆2 ≺ · · ·∆k ≺ ∆1 is a cycle in (T ,≺) with a witness path π that has not been cut,
contradicting our assumption.

Our construction relies on the following result of Guth [14], which extends the earlier
polynomial partitioning theorem of Guth and Katz [15]. For a non-zero polynomial f ∈
R[x, y, z], of degree D, we let Z(f) := {(x, y, z) | f(x, y, z) = 0} denote its zero set. Removing
Z(f) from R3 creates O(D3) open connected cells (see, e.g., Warren [24]). The fact stated
below is a special instance, tailored to our needs, of the considerably more general result
in [14].

Fact 2.2 (Guth [14]). Given a set of N lines in R3 and an integer 1 ≤ D ≤
√
cN , for a

suitable absolute constant c, there always exists a non-zero polynomial f ∈ R[x, y, z] of degree
at most D, so that each cell of R3 \ Z(f) intersects at most cN/D2 of the given lines.

The first step of our construction resembles that of the case of lines in [5]. Specifically,
let E denote the set of the 3n edges of the triangles in T . Let f be a non-zero partitioning
polynomial, of sufficiently large but constant degree D, for the 3n lines supporting the
segments of E , as provided by Fact 2.2. That is, R3 \ Z(f) consists of k = O(D3) open
connected cells, each intersected by at most 3cn/D2 (lines supporting) segments of E , for an
absolute constant c > 0. We hereafter assume that Z(f) does not fully contain any vertical
line, which we can ensure (as in the case of lines, treated in [5]), by a sufficiently small generic
tilting of the coordinate frame; it can be argued (we skip the details) that the general position
assumption ensures that such a tilting can be made without destroying any existing cycle6 in

6This will hold if we regard the pieces in O as relatively open, as we have already indicated. This ensures
that if Π(C,O) is nonempty before the sufficiently small tilting, it will remain nonempty afterwards.

6

T . We also assume, without loss of generality, that f is square-free. For each of the k (open)
cells σ of R3 \ Z(f), let Tσ denote the set of triangles of T that intersect σ.

An overview of the cycle elimination procedure. The general strategy is to construct
a partitioning polynomial f as in Fact 2.2, to cut the triangles of T into pieces, using Z(f)
in a manner detailed below, and then to recurse within each cell of the partition. Each of the
latter two phases, especially the third one, is more intricate here than in the case of lines, as
detailed next.

The setup at each recursive step, at some node ξ of the recursion tree, is as follows. We
have a subset Tξ of T , and an open cell σξ, which is a connected component of R3 \ Z(fw),
where fw is the partitioning polynomial constructed at the parent step w. In fact, we have a
hierarchy of cells σξ1=root, . . . , σξk=w, each of which arises at some proper ancestor ξi of ξ; the
cell at the root is the entire 3-space. Note that these cells need not be contained within one
another.

The procedure generates, at step ξ, a constant number of constant-degree algebraic curves
(where the constants depend on the prespecified ε) on each triangle ∆ ∈ Tξ, and clips each

curve to the region σ
(0)
ξ :=

⋂k
i=1 σξk . This may break a curve into several connected arcs; the

number of such subarcs, and their pattern of intersection, will be examined in Section 2.4.
We now proceed to describe the process in full detail. As in [5], define the level λ(q)

of a point q ∈ R3 with respect to Z(f) to be the number of intersection points of Z(f)
with the relatively open downward-directed vertical ray ρq emanating from q. Formally, if
q = (x0, y0, z0), we consider the univariate polynomial F (z) = f(x0, y0, z), and the level λ(q)
of q is the number of real zeros of F in (−∞, z0), counted with multiplicity.

2.1 The procedure for cutting the triangles

The procedure is recursive. At each step of the recursion we have a subset of the triangles,
which we also call T , to simplify the notation, and which is processed as follows. (a) We
construct a partitioning polynomial f , as in Fact 2.2, for (the lines supporting) the edges
of the triangles of T ; the degree D of f is a sufficiently large constant that depends on the
prespecified ε (in a manner detailed later). (b) We generate curves on the triangles of T . For
each ∆ ∈ T , we generate up to O(D3) curves of degree D, and one curve of degree O(D2).
(c) We recurse within each cell σ of R3 \ Z(f) with the subset of those triangles that have at
least one edge that crosses σ.

In more detail, the procedure consists of the following steps. In this description, we
completely ignore the issue of clipping the curves. It is irrelevant to the main part of the
construction, and will be picked up only towards the end, when we construct the pieces into
which the triangles are to be cut.

(i) For each triangle ∆ ∈ T , not fully contained in Z(f), we draw ∆ ∩ Z(f) on ∆.

(ii) Consider the set of points p ∈ Z(f) that are either singular or have a z-vertical tangent
line. This set is contained in the common zero set S(f) := Z

(
f, ∂f

∂z

)
of f and ∂f

∂z
, which is

one-dimensional since, by assumption, f is square-free. Let H(f) denote the vertical “curtain”

7

spanned by S(f), namely, the union of all z-vertical lines that pass through points of S(f).
Since S(f) is an algebraic curve of degree O(D2) (see, e.g., [13]), H(f) is a two-dimensional
variety of the same degree.

We then draw, on each triangle ∆ ∈ T not fully contained in Z(f), the curve ∆ ∩H(f).

(iii) If ∆ ⊂ Z(f), that is, if the plane h∆ supporting ∆ is a component of Z(f), we do not
draw any curve on ∆. Note though that other triangles will be cut, in step (i), by h∆, which
will draw on each such triangle ∆′ the segment ∆′ ∩ h∆ (if nonempty).

(iv) We now want to proceed recursively, within each cell σ of the partition. Before doing so,
we first need to draw additional curves on the triangles, as described below.

Let us consider the interaction of the triangles ∆ 6⊂ Z(f) with the cells of the partition.
By construction, each cell σ meets the edges of at most O(n/D2) triangles. However, the
plane spanned by such a triangle ∆ (and therefore the relative interior of ∆) meets O(D2)
of the cells, a consequence of Warren’s theorem [24]. Therefore, each cell σ meets O(n/D2)
triangle edges and, on average, O(n/D) triangle interiors; in the worst case, the latter bound
is tight.

We say that a triangle ∆ pierces σ if one or more of its edges intersects σ, and that it
slices σ if only its relative interior meets σ. A face s of ∆ \Z(f) can be similarly classified as
piercing if it touches an edge of ∆, and slicing if it lies fully in the relative interior of ∆; the
cell σ that s pierces or slices varies, in general, with s.

Our plan now is to recurse, for each σ, only on the set T (p)
σ ⊂ Tσ of triangles that pierce σ

(that is, triangles ∆ with at least one face s of ∆ \ Z(f) piercing σ), and disregard, for
the purposes of recursion, the slicing triangles. However, we first want to ensure that the
slicing triangles do not participate in any depth cycle within σ, and for this we need to draw
additional curves, as described next.

Let s1, . . . , st be the slicing faces (or slices, for short) of all triangles of T . Consider the
effect of removing these slices from R3 \ Z(f), one at a time.7 The first slice s1 is contained
in some cell τ of R3 \ Z(f) and cuts it locally in two. However, the removal of s1 may or
may not disconnect τ : τ \ s1 may have either one or two connected components; see Figure 3.
Analogously, when we remove si from the current cell of R3 \Z(f)\

⋃i−1
j=1 sj containing it, this

τ

σ1

(a)

τ

σ1

(b)

τ

σ1
σ2

(c)

Figure 3: Several different ways the slice σ1 can cut the cell τ . In (a) and (b) two connected
components are produced, while in (c) σ1 does not separate τ and the resulting cell remains
connected; however, the subsequent removal of σ2 does disconnect the cell.

7To clarify, removing a slice s from R3 \ Z(f) means that we insert s as a “membrane” which locally
separates the two sides of R3 \ Z(f) near s.

8

may or may not disconnect the cell. We call si a disconnecting slice (resp., non-disconnecting
slice) in the former (resp., latter) case; notice that this classification depends on the ordering
of the slices. In Appendix B, we prove the following technical result, which is a crucial
ingredient in our analysis and has no analogue in the case of lines:

Lemma 2.3. There is an ordering of the slices s1, . . . , st, so that the number of non-
disconnecting slices is O(D3).

Returning to our construction, perform the following operation for every non-disconnecting
slice s: Let s+ denote the unbounded z-vertical cylinder spanned by s. For each triangle
∆′ ∈ Tσ, form the curve ∆′ ∩ ∂s+, and add it to the curves already drawn.

(v) We finally apply recursion, within each cell σ of the partition, with the subset T (p)
σ of the

piercing triangles of σ. Recall that σ, as a spatial entity, is also crossed by additional slicing
triangles, which will not be considered in the recursive subproblem; this should be kept in
mind when we address, in the next subsection, the correctness of the procedure.

As in the case of lines, the bottom of the recursion is at cells σ for which |T (p)
σ | < D2/(3c).

For such cells we apply the Paterson-Yao binary space partitioning [18], which cuts the

triangles into O(|T (p)
σ |2) = O(D4) triangular pieces, whose depth relation does not contain

cycles. Following our strategy, we do not really perform the cuts yet, but just add the straight
segments that perform these cuts to the collections of curves on the triangles.

2.2 All cycles are eliminated

Let Γ(0) denote the set of all curves that have been generated throughout the recursion. As
in Lemma 2.1, we write Γ(0) as the disjoint union

⋃
∆ Γ

(0)
∆ , where Γ

(0)
∆ is the set of curves

drawn on ∆, for each ∆ ∈ T .
Recall that each curve γ ∈ Γ is clipped to within the intersection of all the ancestral cells

of the cell τ associated with the recursive step at which γ is generated, starting with τ . As
already described, we clip each curve γ ∈ Γ(0) to within the intersection of all the ancestral
cells that lead to the recursive step at which γ has been generated. This clipping is needed
to control the number of pieces into which the triangles will eventually be cut.8 For each
∆ ∈ T , we let Γ∆ denote the collection of the clipped portions of the curves in Γ

(0)
∆ , and let Γ

denote the union of these collections.

Lemma 2.4. The procedure described above eliminates all the depth cycles in T , in the sense
that, for each cycle C in (T ,≺) and for each path π ∈ Π(C, T) of the form (1), at least one
of the “on-triangle” subpaths πi of π is crossed by a curve of Γ.

Proof. The clipping of the curves makes the analysis rather intricate, because whenever we
argue that some subpath of π is cut by one of the generated curves, we also need to ensure

8Informally, the crucial parameter that controls the number of pieces is the number of intersections between
pairs of generated curves. The clipping is performed to ensure that curves generated along unrelated branches
of the recursion tree do not cross each other, thus controlling the number of overall intersections; see below
for details.

9

that the cut point lies in all the ancestral cells of the node at which the cutting curve has
been generated. Fortunately, these two aspects of the analysis are rather independent of one
another, so we prove the lemma in two respective steps. We first suppose that the generated
curves are not clipped at all9 and show that in that case all paths π as in the lemma are
cut by the unclipped curves (that is, curves of Γ(0)). Then we show that each of the cuts
produced in the first step is made at a point that belongs to all the ancestral cells, implying
that the cut lies on the corresponding clipped curve (in Γ) as well.

Lemma 2.5. For each C and π as in the premises of Lemma 2.4, one of the subpaths πi
of π is cut by a curve of Γ(0).

Proof. The proof is by a bottom-up induction on the recursion tree. Specifically, let ξ
be a node of the tree, let Tξ be the set of triangles passed to the recursive step at ξ, let
C : ∆1 ≺ ∆2 ≺ · · · ≺ ∆k ≺ ∆1 be a cycle in (Tξ,≺), and let π be a path in Π(C, Tξ) of the
form (1). The inductive claim is that some subpath πi of π will be cut by an unclipped curve
generated at ξ or at some descendant thereof.

The claim clearly holds when ξ is a leaf, as the BSP constructed there eliminates all cycles
(in the sense of Lemma 2.1). Assume then that the claim holds at all proper descendants of
some node ξ, and consider the situation at ξ.

Assume first that π does not intersect Z(f). Then π is fully contained in some cell σ

of R3 \ Z(f), and therefore ∆1, . . . ,∆k ∈ Tσ. If each ∆i pierces σ, then ∆1, . . . ,∆k ∈ T (p)
σ ,

all these triangles are passed to the recursive problem at σ, and the cycle ∆1 ≺ ∆2 ≺ · · · ≺
∆k ≺ ∆1, and therefore the cyclic path π too, will be cut, by the inductive hypothesis, in the
above sense, by some unclipped curve generated at the recursive call within σ.

Consider then the case where some of the triangles ∆i are slicing triangles for σ; by
definition, for such a triangle ∆i, every connected component of ∆i ∩ σ is a slice, fully
contained in the relative interior of ∆i. Since π is fully contained in σ and visits each triangle
in the cycle, it must visit at least one of these slices. Assume first that it visits at least one
non-disconnecting slice, call it s. Then π intersects the (solid) vertical cylinder s+ erected
at step (iv). If it crosses the boundary ∂s+ of s+, then any such crossing point q must lie
along one of the subpaths πi (as the vertical jumps along π are vertical and cannot enter
or leave s+), and then πi will be cut at q, as desired. Otherwise, π is fully contained in the
interior of s+, but then, once it leaves s by a vertical jump upwards, it cannot return to the
portion of s+ below s, unless it crosses s again, from its top side to its bottom side, which
contradicts the definition of the paths representing cycles. More specifically, π either follows a
triangle, or travels between triangles, which are pairwise disjoint, by vertical jumps upwards,
which would make it impossible to return from the region above s back to s from below s, all
within s+, to complete the cyclic path π.

Since the above argument can be applied to any non-disconnecting slice belonging to
any of the triangles ∆1, . . . , ∆k, we can now assume that π meets no non-disconnecting
slices. Let s be the first, necessarily disconnecting, slice that π intersects, in the ordering

9We note that the clipping has not been used at all in the analysis up to this point, and in particular it
does not affect the recursive construction; it is only needed for the complexity analysis in Section 2.4.

10

provided by Lemma 2.3; without loss of generality, assume that s ⊂ ∆1. Let σ1 ⊆ σ be the
connected component containing s in the current state of refinement of the cell σ in that
order, immediately before inserting s (recall that π meets no slices of any kind that precede
s in the insertion order, so π ⊂ σ1), and put σ2 := σ1 \ s. As s is a disconnecting slice, σ2

consists of two connected components, σ+, lying locally above s, and σ−, lying locally below
it.

Recall that π is fully contained in σ1. By construction, π enters s from below by an
upward jump v+

k v
−
1 , follows it along π1, and exits it by another upward jump v+

1 v
−
2 ; so it

locally goes from σ− to s to σ+. Since π is a closed path, it must now go from σ+ back to
σ−, within σ1. But, using exactly the same reasoning as before, this is impossible: the only
way to return from σ+ to σ− within σ1 is to cross s again (as it separates σ− and σ+), from
its upper side to its lower side, which cannot be done by any part of π, as it either follows
triangles (which are pairwise disjoint, so none of them meets s, except for ∆1 itself) or jumps
between them in upward direction only. (Note that in general π may revisit the slice s. Then
it crosses from below s to above s more than once, and still has no way to return to the
bottom side, as previously argued.)

We can thus assume that π is contained within σ and does not use any slicing triangle,
so, by the induction hypothesis, it will indeed be cut by the recursive step at σ, as claimed.

This concludes the handling of the case when π avoids Z(f). Hereafter we assume that π
intersects Z(f).

Assume first that Z(f) does not fully contain any of the triangles ∆1, . . . ,∆k. If Z(f)
intersects one of the arcs πi, for i = 1, . . . , k, the arc has been cut and we are done (the
exceptional case when πi is partially or fully contained in Z(f) is addressed in the full version
of the paper).

Assume next that none of the triangles ∆1, . . . ,∆k is fully contained in Z(f), and that
none of the arcs πi ⊂ ∆i is crossed by (or contained in) Z(f). In this case, the crossing points
of π with Z(f) must all lie on the vertical edges of π. Recall that we have ensured that Z(f)
does not fully contain any such vertical segment.

Trace π in a circular fashion, as in its definition, and keep track of the level λ(q) in Z(f)
of the point q being traced. By our general position assumption, and by the tilting performed
above, λ(q) is well defined, and it can change only either at a vertical jump of π, in which
case it can only increase, or at a point q ∈ H(f) (see step (ii) for the definition of H(f)).
Since the level goes up at least once (at some vertical jump of π, where it crosses Z(f)), it
must also go down, so at least one arc πi of π must cross H(f), and the claim holds in this
case too.

Finally, consider the case where one (or more) of the triangles ∆1, . . . ,∆k is fully contained
in Z(f); say ∆1 is such a triangle. In this case, we have generated, in step (i) (see a comment
in step (iii)), for each of the other triangles ∆i, the straight segment of intersection of ∆i with
the plane h∆1 (if it exists). The path leaves ∆1 by a vertical jump into the upper halfspace
h+

∆1
bounded by h∆1 , and returns to ∆1 by a vertical jump from the complementary lower

halfspace h−∆1
. This however requires π to cross h∆1 again, from h+

∆1
to h−∆1

. This cannot be
done by a vertical jump, since it may only cross from h−∆1

to h+
∆1

, as it only moves upward, so

11

it must occur while tracing some subpath πi ⊂ ∆i (with ∆i 6= ∆1). But then πi must cross
the segment ∆i ∩ h∆1 , as asserted.

Having covered all cases, the lemma follows.

In summary, if we stick to the set Γ(0) of unclipped curves, the previous lemma shows
that every witness path π of any cycle C in (T ,≺) is cut by a curve of Γ(0) along one of its
on-triangle subpaths πi. The following lemma completes the picture by showing that this
also holds for the clipped versions of the curves.

Lemma 2.6. Let C be a cycle in (T ,≺) and let π be a path in Π(C, T). Let ξ be the highest
node of the recursion tree at which π has been cut by some unclipped curve of Γ(0) that has
been generated during the non-recursive processing of ξ, as in Lemma 2.5. Then any such
cutting point belongs to all the cells associated with the ancestral nodes of ξ, and thus belongs
to the clipped version of the cutting curve.

Proof. By construction and by the proof of Lemma 2.5, the fact that π has been cut at ξ
means that it was fully contained in each of the ancestral cells of ξ. In particular, any point
at which π has been cut belongs to all these cells.

In other words, if we actually draw all the (clipped) curves of Γ on their respective
triangles, all cycles will be eliminated. This completes the proof of Lemma 2.4.

This finishes the proof of correctness of our procedure. We still need to fill three gaps:
(i) We need an upper bound on |Γ(0)|, the number of (unclipped) curves that the procedure
generates. (ii) We need to bound the number of connected components of the clipped curves
and the number of their intersection points. (iii) We need to cut each triangle into pieces of
constant description complexity (and control their number). We now proceed to describe
each step in detail.

2.3 Bounding the number of curves

Let χ(T) denote the maximum number of (unclipped) algebraic curves that our procedure
generates on the triangles of T , for the fixed choice of D that we use throughout the recursion.
Put χ(n) := max|T |=n χ(T), where the maximum is taken over all collections T of n non-
vertical pairwise disjoint triangles in general position in R3. To estimate χ(T), we collect the
bounds from each step of our construction, and obtain the recurrence relation

χ(T) ≤ bD3χ(3cn/D2) +O(nD3),

where b and c are suitable absolute constants; the overhead term O(nD3) is due to the cuts
made by the O(D3) vertical cylinders erected over non-disconnecting slices, in step (iv) of
the construction, and subsumes all other non-recursive cuts made at the present node.

Maximizing over T produces the recurrence

χ(n) ≤ bD3χ(3cn/D2) +O(nD3),

12

for n > D2/(3c), and O(D4) otherwise. The solution of this recurrence is easily seen to be
χ(n) = O(n3/2+ε), where ε = ε(D). Specifically, we require ε and D to satisfy the inequality

D2ε ≥ 2bc3/2+ε,

so ε = O(1/ logD). Conversely, when ε is prescribed, we need to choose D = 2Θ(1/ε), with a
suitable constant of proportionality.

2.4 Drawing the curves

At any recursive step, within some cell σ, each triangle ∆ ∈ Tσ is a piercing triangle in at
most 3D subcells of σ. Before sending ∆ down the recursion, we generate on it one curve
of degree D from step (i) and one curve of degree O(D2) from step (ii), when applicable.
In addition, in the preliminary part of step (iv), we generate O(D3) curves, formed by the
cylinders erected over the non-disconnecting slices, each of degree D, and in step (iii), we
generate one segment for each of the at most D linear components of Z(f). Altogether, we
generate on ∆ up to O(D3) curves of degree at most D, and one curve of degree O(D2).

We recall though that these drawings are only formed within the intersection σ
(0)
ξ of

all cells associated with the ancestral steps of the current node ξ of the recursion. This
is important for controlling the complexity of the arrangement of the curves drawn on
each triangle. Concretely, upon termination of the entire recursive process, we take each
triangle ∆ ∈ T , and consider the planar map M∆ formed on ∆ by the hierarchy of drawings
constructed on it. That is, we take each curve γ, generated at some recursive node ξ, and
draw only its portions that lie in the corresponding intersection cell σ

(0)
ξ .

Each vertex of M∆ is either (a) an endpoint of a connected component of the clipped
portion of some curve γ, or (b) an intersection point between two curves γ, γ′, such that
either (i) both arcs are generated at the same recursive step, within the same cell σ, or (ii)
up to a swap between the arcs, γ, γ′ are generated within two respective cells σ, σ′, such
that the step that generated σ′ is an ancestor of the step that generated σ. These properties
follow from the hierarchical nature of our drawings. Note that most vertices of type (a) are
actually also vertices of type (b), because they are intersections of the full algebraic curve
containing γ with the boundary of some ancestral cell, which is an intersection point of this
curve with Z(f), for the corresponding partitioning polynomial f . Since we generate (in step
(i) of the construction) the curves ∆ ∩ Z(f) at each recursive step, the claim follows. The
exceptions are endpoints of curves that lie on the edges of the corresponding triangles; we
may ignore these vertices, as their overall number is only O(D|Γ(0)|), as is easily checked.

It therefore suffices to bound the number of intersection points of arcs with arcs constructed
at (proper and improper) ancestral recursive steps. For each arc γ, formed along some triangle
∆, within a cell σ at some recursive step, the number of the ancestral cells of σ is O(logD n),
and each of them generates on ∆ up to O(D3) curves of degree at most D, and one curve of
degree O(D2). For the present argument, treat these curves as drawn in their entirety—this
will only increase the number of intersection points on γ. The number of intersection points of
γ with a curve of the former (resp., latter) kind is O(D3) (resp., O(D4)); this is a consequence

13

of Bézout’s theorem, where we make the “worst-case” assumption that the degree of γ
is O(D2). It follows that the number of vertices that can be formed along γ is at most
O(D6 logD n), an obvious gross overestimate that we do not bother to optimize.

Multiplying this bound by the number of curves, we get that the overall complexity of
the maps M∆, over all triangles ∆, is

O(D6 logD n) ·O(n3/2+ε),

where, as we recall, the prespecified ε > 0 can be chosen arbitrarily small, and where
D = 2Θ(1/ε), with a suitable constant of proportionality. It then easily follows that, by slightly
increasing ε, but keeping it sufficiently small, we can still write the bound as O(n3/2+ε), with
D = 2Θ(1/ε) and slightly larger constants of proportionality.

2.5 Final decomposition into pseudo-trapezoids

Finally, we take the planar map M∆, for each triangle ∆, and decompose it into regions of
constant description complexity, by constructing the trapezoidal decomposition [10] of M∆

in some fixed, but arbitrarily (and generically) chosen “vertical” direction within ∆ (where
the complementary “horizontal” direction is chosen to be perpendicular to the vertical one
within ∆). Each resulting piece is a “pseudo-trapezoid,” with (at most) two vertical sides,
and “top” and “bottom” parts, each consisting of a monotone subarc of one of the curves we
have drawn on ∆, and thus having degree at most O(D2).

The number of trapezoids is proportional to the complexity of M∆, which in turn is
proportional to the number of its vertices and the number of points on the drawn curves that
are “horizontally” extreme (as the curves have bounded complexity, each has only a constant
number of such extreme points).

Using the analysis from the preceding subsection, this brings us to the main result of the
paper.

Theorem 2.7. Let T be a collection of n pairwise disjoint non-vertical triangles in R3. Then,
for any prescribed ε > 0, we can cut the triangles of T into O(n3/2+ε) pseudo-trapezoids,
bounded by algebraic arcs of constant maximum degree δ, whose depth relation is acyclic; here
δ, and the constant of proportionality, depend on ε.

Remark. Our bound is slightly larger than that in [5] due to our choice of a constant value,
rather than a function of n, for the degree D of the partitioning polynomials.

3 Discussion

In this paper we have essentially settled the long-standing problem of eliminating depth
cycles in a set of triangles in R3. On the positive side, our solution is almost optimal in the
worst case, in terms of the number of pieces, as this number is only slightly larger than the
worst-case lower bound Ω(n3/2). Less impressively, the cuts are by constant-degree algebraic
arcs, rather than, ideally, by straight segments. It is a natural open problem to determine

14

whether a similar bound can be achieved with straight cuts (as in the BSP technique of [18]).
Even a weaker bound, as long as it is subquadratic and generally applicable, would be of
great significance.

Another direction for further research is to further tighten the bound, removing the ε in
the exponent and replacing it by a poly-logarithmic factor, as in [5] (while keeping the shape
of the cut pieces simple).

It seems likely that, with some care, our technique can be extended to collections of
triangles that are only pairwise openly disjoint but may share edges, and to situations where
the triangles are not in general position. Extending the technique to curved objects (e.g.,
spheres or spherical patches) is also a major challenge.

Finally, as noted above, the BSP partition of [18] has the stronger property that the
depth relation of the resulting pieces is acyclic with respect to any viewing point or direction.
Our solution does not seem to have this property, so one could ask whether one can cut the
triangles into a subquadratic number of simple pieces that have this stronger property, or
whether Ω(n2) pieces are required, in the worst case.

15

References

[1] P.K. Agarwal, E.F. Grove, T.M. Murali, and J.S. Vitter, Binary space partitions for fat
rectangles, SIAM J. Comput. 29(5) (2000), 1422-1448.

[2] P. K. Agarwal, J. Matoušek, and M. Sharir, On range searching with semialgebraic
sets II, SIAM J. Comput. 42 (2013), 2039–2062. Also in arXiv:1208.3384.

[3] B. Aronov, V. Koltun, and M. Sharir, Cutting triangular cycles of lines in space, Discrete
Comput. Geom. 33 (2005), 231–247.

[4] B. Aronov, M. de Berg, C. Gray, and E. Mumford, Cutting cycles of rods in space:
Hardness results and approximation algorithms, Proc. 19th Annu. ACM-SIAM Sympos.
Discr. Alg., 2008, 1241–1248.

[5] B. Aronov and M. Sharir, Almost tight bounds for eliminating depth cycles in three
dimensions, Proc. 48th ACM Sympos. Theory of Computing, 2016, 1–8. Also in
arXiv:1512.00358.

[6] B. Aronov and M. Sharir, On translational motion planning of a convex polyhedron in
3-space, SIAM J. Comput. 26(6) (1997), 1785–1803.

[7] S. Basu, R. Pollack, and M.-F. Roy, On the Betti numbers of sign conditions, Proc. AMS
133 (2005), 965–974.

[8] M. de Berg. Ray Shooting, Depth Orders and Hidden Surface Removal. Lecture Notes in
Computer Science 703, Springer-Verlag, Berlin, 1993.

[9] M. de Berg. Linear size binary space partitions for uncluttered scenes. Algorithmica 28
(2000), 353–366.

[10] M. de Berg, O. Cheong, M. van Kreveld, and M. Overmars, Computational Geometry:
Algorithms and Applications, 3rd Ed., Springer-Verlag, Berlin-Heidelberg, 2008.

[11] B. Chazelle, H. Edelsbrunner, L. J. Guibas, R. Pollack, R. Seidel, M. Sharir, and
J. Snoeyink, Counting and cutting cycles of lines and rods in space, Comput. Geom.
Theory Appls. 1 (1992), 305–323.

[12] A. Dumitrescu, C.D. Tóth, Binary space partitions, in Encyclopedia of Algorithms, M.-Y.
Kao, Ed., Springer, 2016, 220-223.

[13] W. Fulton, Introduction to Intersection Theory in Algebraic Geometry, Expository
Lectures from the CBMS Regional Conference Held at George Mason University, June
27–July 1, 1983, Vol. 54. AMS Bookstore, 1984.

[14] L. Guth, Polynomial partitioning for a set of varieties, Math. Proc. Cambridge Phil. Soc.
159 (2015), 459–469. Also in arXiv:1410.8871.

16

[15] L. Guth and N. H. Katz, On the Erdős distinct distances problem in the plane, Annals
Math. 181 (2015), 155–190. Also in arXiv:1011.4105.

[16] S. Har-Peled and M. Sharir, Online point location in planar arrangements and its
applications, Discrete Comput. Geom. 26 (2001), 19–40.

[17] A. Hatcher, Algebraic Topology, Cambridge University Press, 2001. See also http:

//www.math.cornell.edu/~hatcher/AT/ATpage.html.

[18] M. S. Paterson and F. F. Yao, Efficient binary space partitions for hidden-surface removal
and solid modeling, Discrete Comput. Geom. 5 (1990), 485–503.

[19] M. Sharir and P. K. Agarwal, Davenport-Schinzel Sequences and Their Geometric
Applications, Cambridge University Press, New York, 1995.

[20] A. Solan, Cutting cycles of rods in space, Proc. 14th Annu. ACM Sympos. Comput.
Geom., 1998, 135–142.

[21] E. Spanier, Algebraic Topology, McGraw Hill, New York, 1966.

[22] C.D. Tóth, Binary space partitions for axis-aligned fat rectangles. SIAM J. Comput.
38(1) (2008), 429-447.

[23] C.D. Tóth, Binary space partitions: recent developments, in Combinatorial and Com-
putational Geometry, vol. 52 of MSRI Publications, Cambridge University Press, 2005,
529-556.

[24] H. E. Warren, Lower bound for approximation by nonlinear manifolds, Trans. Amer.
Math. Soc. 133 (1968), 167–178.

17

Appendix

We will start, in Section A, by proving a technical topological fact, and then use to prove
Lemma 2.3 in Section B.

A A topological fact

In this section we prove a technical result, namely Lemma A.1. It is a special case of a more
general statement, but we only prove a version sufficient for our purposes.

Consider a finite simplicial complex K = K1∪K2∪· · ·∪Kn which is a union of non-empty
connected subcomplexes Ki. Let |K|, |Ki| denote the associated topological spaces.

Consider the simple intersection graph G of {Ki}. More formally, let V = {vi}, i =
1, . . . , n, be a set of distinct vertices (points) of G, with vi associated with Ki, and let {vi, vj}
be an edge of G whenever |Ki|∩|Kj| 6= ∅. Put E = {(i, j) | 1 ≤ i < j ≤ n and |Ki|∩|Kj| 6= ∅},
the set of ordered pairs corresponding to edges of G.

Consider the graph G′ obtained by subdividing each edge of G once (G′ is directed for
convenience, it does not affect the rest of the argument). Formally, let W := {wij} be a new
set of distinct points wij , one for each (i, j) ∈ E. The vertex set of G′ is V ∪W and the edge
set is {aij, bij | (i, j) ∈ E}, where aij := (vi, wij) and bij := (wij, vj).

Since each Ki is connected, we define a continuous mapping f : G′ → |K|, as follows: For
each space |Ki| fix a point pi ∈ |Ki| and for each pair (i, j) ∈ E pick a point qi,j ∈ |Ki| ∩ |Kj|.
Now let f send vi to pi and wi,j to qi,j. Viewing G′ as a one-dimensional simplicial complex,
extend f to all of G′ by choosing for each (i, j) ∈ E a continuous directed path from pi to qi,j
in |Ki| and a continuous directed path from qi,j to pj in |Kj|. Let (vi, wi,j) ∈ G′ be mapped
to |Ki| ⊂ |K| by the first choice and (wi,j, vj) to |Kj| ⊂ |K| by the second choice.

We are now ready to state our topological fact:

Lemma A.1. Suppose that the simplicial complex K is a union of non-empty connected
subcomplexes Ki, i = 1, . . . , n, and that any triple intersection Ki ∩Kj ∩Kk is empty for any
choice of pairwise distinct indices i, j, k. Then the induced mapping on first homology

H1(G;F) = H1(G′;F)
f?→ H1(|K|;F),

with coefficients in any field F , is one to one. In particular, rank(H1(|K|;F)) ≥ rank(H1(G;F)).

Proof. The first equality is standard; so it suffices to show that f? is one to one. The case
n = 1 is vacuously true, so we will assume n > 1 hereafter.

Our proof proceeds as follows. One embeds |K| into a suitable topological space M [n], by
an inclusion in : |K| ⊂M [n], and proves that the composite mapping

in ◦ f : G′
f→ |K|

in⊂M [n]

induces an isomorphism in homology in all dimensions. That is, the composite on homology
(in ◦ f)? = (in)? ◦ f? induces an isomorphism on homology in each dimension. So in particular,
f? is one to one for induced mapping on the first homology H1(·;F) as desired.

18

Recall that, for a topological space X, the cone on X with cone point u 6∈ X, Cu(X), is
obtained from the topological product X × [0, 1] = {(x, t) | x ∈ X, 0 ≤ t ≤ 1} by identifying
the subspace X×{1} to the point u and giving the quotient space the quotient topology. The
mapping x 7→ (x, 0) defines a continuous embedding of X into the cone Cu(X): X ⊂ Cu(X).

The main proof will proceed by induction. Before defining M [a], for 1 ≤ a ≤ n,
we construct an intermediate topological space, L[a], as follows. Fix distinct n points
x1, x2, . . . , xn disjoint from |K| and form the identification space

L[a] = (∪a1|Ki|) ∪ (∪ai=1Cxi(|Ki|) / ∼,

where |Ki| ⊂ ∪a1|Ki| is identified by ∼ with |Ki| × {0} ⊂ Cxi(|Ki|) via x 7→ (x, 0) for each i.
That is, to form L[a], we “cone off” independently the subspace |Ki| of ∪a1|Ki| by using the
cone point xi for each i = 1, . . . , a.

Put E[a] = {(i, j) ∈ E | 1 ≤ i < j ≤ a} ⊂ E.
Note that, for each (i, j) ∈ E[a], two cones on |Ki| ∩ |Kj| given by Cxi(|Ki| ∩ |Kj|) ∪

Cxj (|Ki| ∩ |Kj|) are identified along (|Ki| ∩ |Kj|)× {0} (this is often called the suspension of
|Ki| ∩ |Kj|) and so includes into L[a] via

Cxi(|Ki| ∩ |Kj|) ∪ Cxj(|Ki| ∩ |Kj|)/ ∼ ⊂ Cxi(|Ki|) ∪ Cxj(|Kj|)/ ∼ ⊂ L[a].

For each pair (i, j) ∈ E[n], fix a distinct point yi,j 6∈ L[n] with all these choices distinct.
We now form the space M [a], for a = 1, . . . , n, from L[a] by “coning off” independently the
suspension subspaces Cxi(|Ki| ∩ |Kj|) ∪Cxj (|Ki| ∩ |Kj|)/ ∼ ⊂ L[n] by using the cone point
yi,j for each (i, j) ∈ E[a]. This process defines M [a] and the inclusions

ia : ∪a1|Ki| ⊂M [a] = (∪a1|Ki|) ∪ (∪ai=1Cxi(|Ki|)∪(∪(i,j)∈E[a] Cyi,j(Cxi(|Ki|∩|Kj|)∪Cxj(|Ki|∩|Kj|)))/ ∼ .

Now introduce the subgraphs G′[a] of G′, for 1 ≤ a ≤ n, defined as follows: G′[n] = G′;
while for 1 ≤ a < n let G′[a] be the induced subgraph of G′ with vertices {vi | 1 ≤ i ≤ a}
union {wi,j | 1 ≤ i < j ≤ a+ 1}. The edges aij, bij, with 1 ≤ i < j ≤ a, are mapped by f to
the union ∪a1|Ki|, by construction. The edges ai,a+1 for (i, a + 1) ∈ E are also mapped to
paths contained in |Ki|, by our selection of the points qi,a+1 and connecting paths. Hence,
restricted to |G′[a]| the map f sends this larger subgraph to the subset ∪a1|Ki| also. Let the
induced mapping be called fa:

fa : |G′[a]| → (∪a1|Ki|).

The proof that in ◦f : G′[n]→M [n] induces an isomorphism on homology is accomplished
by induction on a, showing that ia ◦ fa : G′[a]→M [a] induces an isomorphism on homology
for a = 1, . . . , n.

The base of the induction corresponds to a = 1. G′[1] = {v1} is a single point, which
under f is mapped to (p1×{0}) ∈ |K1| ⊂M [1] = Cx1(|K1|). This last cone has the homology
of a point, so as desired i1 ◦ f1 induces an isomorphism on homology.

19

Now assume that ia ◦ fa induces an isomorphism on homology with 1 ≤ a < n. Then
G′[a+ 1] = G′[a] ∪X[a+ 1] where X[a+ 1] is the subgraph of G′[a+ 1] induced by vertices
{va+1} ∪ {wi,a+1 | (i, a + 1) ∈ E[a + 1]}. X[a + 1] is a tree and as such contractible to the
point va+1 and has homology of a point.

Now in an analogous fashion, M [a+ 1] = M [a] ∪ Y [a+ 1], where

Y [a+ 1] = Cxa+1(|Ka+1|) ∪ Z[a+ 1]/ ∼, where

Z[a+ 1] =
⋃

(i,a+1)∈E[a+1]

[
Cyi,a+1

(Cxa+1(|Ki| ∩ |Ka+1|)) ∪ Cxi(|Ki| ∩ |Ka+1|)
]
/ ∼ .

Note that by the empty-triple-intersection assumption, the union over pairs (i, a+1) ∈ E[a+1]
is a union of cones which all contain the cone point xa+1 and the intersection of any two
such is precisely this single point xa+1. Hence, Z[a+ 1] is a union of cones all meeting at the
single point xa+1 and has the homology of a point.

From this fact, one may deduce that Y [a + 1] has the homology of a point as follows:
The exact sequence for pair (Y [a+ 1], Z[a+ 1]) in reduced homology gives the short exact
sequence, H̃?(Z[a + 1]) → H̃?(Y [a + 1]) → H?(Y [a + 1], Z[a + 1]) [21]. Now by the above,
H̃?(Z[a+ 1]) = 0, so by exactness H̃?(Y [a+ 1]) = 0 will follow if one shows H?(Y [a+ 1], Z[a+
1]) = H̃?(Y [a+ 1]/Z[a+ 1]) = 0. But the quotient space Y [a+ 1]/Z[a+ 1] is identified with
the cone Cxa+1(|Ka+1|/(∪(i,a+1)∈E[a+1] |Ki| ∩ |Ka+1|)) which has vanishing reduced homology.
Hence, H?(Y [a+ 1]) has vanishing reduced homology; that is, Y [a+ 1] has the homology of
a point.

The mapping ia+1 ◦ fa+1 carries G′[a] to M [a] by ia ◦ fa; it carries X[a + 1] which has
the homology of a point to Y [a + 1] which has the homology of a point, and it carries
G′[a] ∩X[a+ 1] to M [a] ∩ Y [a+ 1].

By the induction hypothesis, the first map ia ◦ fa induces an isomorphism on homology;
by the above the second mapping induces an isomorphism on homology since both terms
have the homology of a point. The third mapping is the inclusion of the intersection
G′[a] ∩ X[a + 1] = {wi,a+1 | (i, a + 1) ∈ E[a + 1]} into the intersection M [a] ∩ Y [a + 1] =
∪(i,a+1)∈E[a+1]Cxi(|Ki| ∩ |Ka+1|). Note that by the triple intersection property these cones are
mutually disjoint and fa+1 restricted to this intersection decomposes into a disjoint union of
inclusions of points into cones, {xi} ∼= {pi} ⊂ Cxi(|Ki| ∩ |Ka+1|) for each (i, a+ 1) ∈ E[a+ 1].
Hence, the induced mapping G′[a] ∩X[a+ 1]→M [a] ∩ Y [a+ 1] induces an isomorphism on
homology.

Recall [21] that, if A and B are cell complexes with intersection A ∩B a cell subcomplex,
the Mayer-Vietoris sequence is a long exact sequence relating the homologies of A ∩ B, A,
B, and A ∩ B. Moreover, if A′ and B′ are cell complexes with intersection A′ ∩ B′ a cell
subcomplex and F : A ∪B → A′ ∪B′ is a continuous mapping of topological spaces carrying
A to A′ and B to B′ and so necessarily A∩B to A′ ∩B′, then there are associated mappings
of the homology groups which are compatible with the Mayer-Vietoris sequences of A ∪B
and A′ ∪B′.

Applied to the union G′[a + 1] = G′[a] ∪X[a + 1] mapping compatibly by fa+1 to the
union M [a+ 1] = M [a]∪ Y [a+ 1], one obtains the following commutative diagram with rows

20

long exact [21] sequences on homology with field coefficients F :

H?(Γ[a]′ ∩X[a+ 1]) −−−→ H?(Γ[a]′)⊕H?(X[a+ 1]) −−−→ H?(Γ[a+ 1]′) −−−→ H?−1(Γ[a]′ ∩X[a+ 1]) −−−→ H?−1(Γ[a]′)⊕H?−1(X[a+ 1])y y y y y
H?(M [a] ∩ Y [a+ 1]) −−−→ H?(M [a])⊕H?(Y [a+ 1]) −−−→ H?(M [a+ 1]) −−−→ H?−1(M [a] ∩ Y [a+ 1]) −−−→ H?−1(M [a])⊕H?−1(Y [a+ 1]).

By the above discussion and inductive assumption, all the vertical arrows are isomorphims
except possibly for the middle mapping H?(Γ[a + 1]′) → H?(M [a + 1]). Therefore, by the
standard 5-lemma [21], one concludes that this mapping is also an isomorphism, thereby
completing the induction step and the proof of Lemma A.1.

B The proof of Lemma 2.3

Proof of Lemma 2.3. Our goal is to deduce Lemma 2.3 from Lemma A.1. The high-level
idea is the following: Consider the set R3 \ Z(f) and cut it by all the slices s1, . . . , st into
smaller subcells. Now examine the intersection graph of these subcells and observe that
(a) the number of non-disconnecting slices is related to the number of “independent cycles”
in this graph (see precise definitions below) and (b) by Lemma A.1, the latter number is
upper-bounded by the number of handles in R3 \Z(f), which in turn can be estimated based
on the fact that f has degree D.

Unfortunately, there are some technical obstacles along this route. We will mention only
two: (i) Lemma A.1 is formulated for simplicial complexes, in particular for compact spaces,
while R3 \ Z(f) is open and unbounded. (ii) One has to be careful in how one defines the
intersection graph. The easiest way to define the subcells produces open, disjoint subcells, so
no intersections are present. Encoding interactions of subcells along the slices that were used
to separate them produces a more natural intersection graph, but allows multiple edges and
self-loops, which are not permitted in Lemma A.1.

We now supply the somewhat tedious technical details used to finesse the above issues.
We start by observing that our input triangles occupy some bounded region of space, so

we can perform all of our reasoning in a sufficiently large bounding box B that fully contains
all the triangles in its interior, in order to avoid dealing with unbounded sets (alternatively,
we could add some points to R3 to compactify it).

Secondly, we replace Z(f), which is a two-dimensional algebraic variety, with a “thickened”
version Z := {(x, y, z) | |f(x, y, z)| < δ}. It is well known that, for a sufficiently small δ, Z
is an arbitrarily good approximation of Z(f), within B. So we replace B \ Z(f) by B \ Z,
which is a compact semi-algebraic set and can be triangulated and represented by a simplicial
complex that is a subcomplex of a suitable triangulation of B.

We now redefine the slices s1, . . . , st, as the faces of ∆ \ Z fully contained in the relative
interior of ∆, for any ∆ ∈ T . Refine our triangulation of B so that each slice appears in it as
a subcomplex.

Our goal is to apply Lemma A.1 along the following lines: Let K be the complex
corresponding to B \ Z. Cut it into pieces by the slices and let the subcomplexes Ki be
(the closures of) the resulting pieces. We will need to work a little harder for the lemma to

21

be applicable, as it requires that (a) the pieces be closed and connected, (b) they must not
intersect in triples, and (c) the resulting intersection graph must be simple.

To achieve this, we make some further technical modifications. They can be achieved
by a formal transformation of the complex representing B \ Z, but are easier to visualize if
described purely geometrically. Replace each triangle ∆ ∈ T by a “puffy triangle” ∆′: an
object that can be visualized as an arbitrarily thin pillow, which shares vertices and edges
with ∆, but has two bounding surfaces: one on top and one on the bottom (to realize this as
a simplicial complex, we may need to take a baricentric subdivision; we omit the standard
details). The effect of replacing ∆ by ∆′ locally is that each feature that intersected ∆ away
from its relative boundary is now duplicated: there is a “top” and a “bottom” version of it.
Similarly, now each slice si is transformed into a “puffy slice” s′i which has a top face s+

i and
a bottom one s−i and some (arbitrarily thin) volume in between.

We need another technicality: For reasons we will describe shortly, we cut every single
“puffy” slice s′i into two, by replacing it with two thinner “puffy” slices, sTi (top) and sBi
(bottom), separated by a two-dimensional membrane that is the original si. To summarize,
s′i is a three-dimensional “sandwich” of two subcomplexes: sTi delimited by si on the bottom
and s+

i on the top, and sBi — with s−i on the bottom and si on the top.
Now let σ1, . . . , σk be the connected components (“chunks”) of the closure of B \Z \

⋃t
1 s
′
i.

Consider the subcomplexes corresponding to σ1, . . . , σk, s
T
1 , . . . , s

T
t , s

B
1 , . . . , s

B
t . Their union is

the complex corresponding to B \Z. Now we are ready to invoke Lemma A.1. Each chunk is
connected by definition. Each half-a-thickened slice is as well (it is a thickened version of a
face of ∆ \ Z for some ∆ ∈ T). The graph G is defined as the intersection graph of sets σi,
sTj , and sB` . By construction, the bottom of sTj touches only the top of sBj (along sj), the top
of sTj is shared with some chunk σ`. Similar reasoning applies to the bottom parts sB` of the
slice “sandwiches.” Chunks, by definition, only intersect top faces of top slices, or bottom
faces of bottom slices. The graph is in fact tri-partite: objects from the same class do not
intersect. Hence the only danger of a triple intersection is one where a chunk, a top slice,
and a bottom slice intersect. But a top and a bottom slice only intersect if they are part of a
“sandwich” and their intersection is an original slice that is disjoint from any chunk (as it is
contained in the interior of a puffy triangle).

To summarize, Lemma A.1 is applicable now: the simplicial complex representing B \ Z
can be written as a union of connected subcomplexes representing the sets σi, s

T
j , and sB` ,

and the triple intersections are empty. The intersection graph G is a proper simple graph,
without multiple edges or self-loops (we introduced a separate complex for each slice in order
to eliminate self-loops, and had to replace each slice by a sandwich of two thinner slices to
eliminate multiple edges in G).

Finally, invoking Lemma A.1 with F = Z2, we conclude that rank(H1(G,Z2)) ≤
rank(H1(B \ Z),Z2).

As already mentioned, Z approximates Z(f) well for δ sufficiently small, so in particular
rank(H1(B \Z)) = rank(H1(B \Z(f))), which in turn is O(D3), by the following fact, which
is a special instance of the much more general bound of Basu et al. [7, Theorem 1].

Fact B.1. The first Betti number of R3 \ Z(f) is O(D3).

22

Therefore rank(H1(G,Z2)) = O(D3). This quantity is sometimes called the cyclomatic
number of the graph G; it is the dimension of the vector space with coefficients in Z2 formed
by sets of edges of G representing formal sums of cycles (or subgraphs of even degree, which is
the same). In a sense, it is the number of “independent cycles” in G, which we can compute
in the following way: let x be the number of connected components in G (it corresponds to
the number of connected components of B \ Z and therefore of B \ Z(f)), e be the number
of edges of G and v be the number of its vertices. Then rank(G,Z2) = e − v + x. Indeed,
construct a spanning forest F of G, it will have v − x edges. Intuitively, every additional
edge in G (and there are e− (v − x) = e− v + x of them) forms an independent cycle in G.

The above argument is independent of the choice of the forest F . We will constrain it, as
follows: Notice that each half-sandwich object sTi , sBi has degree two in G, with one edge
connecting it to the adjacent chunk and one to its twin half-sandwich object; the latter
corresponds to an adjacency across an original slice si. There always exists a spanning forest
F that includes all edges of the former type (such edges form an imperfect matching and one
can complete it to a spanning forest).

We will now explain why rank(G,Z2) a quantity relevant to us. Order the edges of G
in the following manner: First the edges of G \ F and then the edges of F . Every edge
corresponds to an intersection along (a copy of) a slice. Imagine “deconstructing” B \ Z,
incrementally, one edge of G at a time, in the order given above, by removing the adjacency
corresponding to that edge (or, equivalently, cutting along the corresponding copy of a slice).
It is easy to check that the edges not in F correspond exactly to non-disconnecting slices: the
number of connected components of the graph remains the same, as the spanning forest is
undisturbed. Once only forest edges remain, every edge removal leads to a disconnecting cut
(note that some of these correspond to adjacencies along a real slice si and some along its
shifted copies s+

i and s−i , but as we do not intend to count either type, this does not affect
our analysis).

To summarize, the number of non-disconnecting slices is exactly equal to the number of non-
spanning-forest edges of G, which is e−v+x = β1(G,Z2) ≤ β1(B\Z) = β1(B\Z(f)) = O(D3),
completing the proof of Lemma 2.3.

23

