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Abstract. Given a set S of n points in R
3, a point x in R

3 is called center point of S if every closed
halfspace whose bounding hyperplane passes through x contains at least �n/4� points from S. We
present a near-quadratic algorithm for computing the center region, that is, the set of all center points,
of a set of n points in R

3. This is nearly tight in the worst case since the center region can have �(n2)
complexity.

We then consider sets S of 3n points in the plane which are the union of three disjoint sets consisting
respectively of n red, n blue, and n green points. A point x in R

2 is called a colored Tverberg point
of S if there is a partition of S into n triples with one point of each color, so that x lies in all triangles
spanned by these triples. We present a first polynomial-time algorithm for recognizing whether a
given point is a colored Tverberg point of such a 3-colored set S.
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1. Introduction

Given a set S of n points in R
d and a point x ∈ R

d , the depth of x with respect
to S is the minimum number of points of S contained in a closed halfspace whose
bounding hyperplane passes through x . The set of all points of depth k is called the
depth-k region of S. The region of points of depths at least k, which we denote by
ck(S), can be written as

⋂
h∈H≥n−k+1

h, where H≥ j = H≥ j (S) is the set of all closed

halfspaces that contain at least j points from S (for a proof, see Lemma 2.1 below).
Note that c1(S) = conv(S), where conv(S) denotes the convex hull of S.
If j > dn/(d + 1), then any d + 1 halfspaces in H≥ j have a point of S in

common, and thus Helly’s theorem (cf. Edelsbrunner [1987] and Matoušek [2002])
implies

⋂
h∈H≥ j

h �= ∅. That is, if n − k + 1 > dn/(d + 1), or equivalently, if k ≤
�n/(d + 1)�, the region ck(S) is nonempty (as was first observed by Rado [1947]).

Points of depth at least �n/(d + 1)� are called center points of S, and the re-
gion c�n/(d+1)�(S)—which we know is nonempty—is called the center region of S,
denoted by c(S). (see Figure 1.)

Relatively little progress has been made on the algorithmic issues related to
center points. Teng [1992] showed that if d is part of the input, the problem of
determining whether a given point is a center point of S is coNP-complete. Jadhav
and Mukhopadhyay [1994] gave a linear-time algorithm for computing a center
point in R

2. Matoušek [1991] later developed an O(n log4 n)-time algorithm for
computing the center region of a set of n points in R

2 (see Chan [2004, Remark pg.
427] for a possible improvement and Miller et al. [2003] for an O(n2)-time algorithm
that computes all depth regions). Naor and Sharir [1990] gave an O(n2 polylog(n))
algorithm for computing a center point in R

3. Recently, Chan [2004] supplied a
randomized O(n log n + nd−1) algorithm for this problem in R

d . For computing
the center region in R

3 there is a naïve cubic algorithm, that can be improved to
O(n5/2+ε) by running a k-level construction algorithm in the dual and computing the
convex hull of the obtained vertices; (this relies on an output-sensitive algorithm
by Agarwal and Matoušek [1995] for computing the k-level, and on a bound of
O(n5/2) on the complexity of a k-level in R

3 [Sharir et al. 2001]). Clarkson et al.
[1996] proposed a simple algorithm for computing an approximate center point of
a set of points in arbitrary dimensions.

A variation of center points are so-called Tverberg points. Let r be a positive
integer. A partition of S into r disjoint subsets S1, . . . , Sr is called a Tverberg
partition if

⋂r
i=1 conv(Si ) �= ∅, and a point lying in the intersection is called an

r-divisible point. Tverberg [1966] proved that if |S| > (d + 1)(r − 1), then a
Tverberg partition always exists; �|S|/(d + 1)�-divisible points, which therefore
always exist, are called Tverberg points of S. Subsequent to his original proof,
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FIG. 1. Sets of six points in the plane, with their center regions, the points of depth at least 2.
Equivalently, these are the intersections of all halfplanes containing at least 5 points. (The meaning
of the extra edges indicated will be explained later.)

FIG. 2. A non-convex region of colored Tverberg points in the plane, an example due to Csorba et al.
[2003].

several alternative proofs have been proposed; see the book [Matoušek 2002] and
the survey paper [Kalai 2000] for a history of the problem. Note that any halfspace
containing an r -divisible point contains at least r points of S, so we get that every
�n/(d + 1)�-divisible point (i.e., Tverberg point) of S is also a center point of S.
For d = 2 and n a multiple of 3, the converse is also true, that is, every center
point of S is also a Tverberg point of S (i.e., (n/3)-divisible), but it is not true for
d ≥ 3 [Avis 1983]. Teng [1992] showed that if d is part of the input, then the
problem of determining whether a given point is an r -divisible point of S is NP-
complete. In fact no polynomial-time algorithm is known even if d > 2 is fixed.
On the other hand, if d is fixed, a polynomial-time algorithm for finding a Tverberg

point (with running time nO(d2)) can be obtained by modifying Tverberg’s existence
proof. For d = 2 and n a multiple of 3, a Tverberg point can be computed in linear
time using the algorithm for computing a center point [Jadhav and Mukhopadhyay
1994], and we can determine in O(n log n) time whether a point is a Tverberg
point.

Bárány et al. [1990] suggested (and proved for d = 2) a colored version of
Tverberg’s theorem, which was then established by Zivaljević and Vrećica [1992]
in arbitrary dimensions. In this version, the points of S are colored by d + 1
colors, and we require that each of the sets Si in the partition contain at least one
point of each color. The planar case allowed a quantitative improvement, provided
by Bárány and Larman [1992]. They showed that given a planar set S, which is
the disjoint union of three sets R, B, G consisting respectively of n red points,
n blue points, and n green points (in general position), there exists a partition
of S into n pairwise-disjoint triples S1, . . . , Sn , where each triple consists of one
point of each of R, B, G, so that

⋂n
i=1 conv(Si ) �= ∅. In fact, their argument is

constructive and yields an O(n6)-time algorithm for computing such a partition.
However, no polynomial-time algorithm is known for determining whether a given
point is a colored Tverberg point of S, for this planar setting. We remark that,
unlike the uncolored case, the set of colored Tverberg points can be a proper
subset of the center region, and it does not even have to be convex, as is illustrated
in Figure 2.
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Our Results. We present two main results in this article. First, we describe, for
a given set S of n points in R

3, an O(n2+ε)-time1 algorithm for computing the
center region c(S) (cf. Section 2). In fact, we show that for any j , c j (S) has O(n2)

complexity, and that it can be computed in O(n2+ε) time. By performing a binary
search, we can compute the nonempty region of maximum depth in O(n2+ε) time.
We use the fact that the problem amounts to computing the convex hull of a k-level �
of the arrangement dual to S of n planes. Our approach is to first solve n subproblems
on the respective planes in time O(n1+ε) per problem, and the challenge is to find an
appropriate approximation of the obvious structures in these planar arrangements
(such as the intersection of the k-level with the plane, or the convex hull thereof),
since each individual planar structure might have prohibitively large complexity
(albeit their combined complexity is only O(n2)). We build heavily on Matoušek’s
algorithm [Matoušek 1991] for computing the convex hull of a level of lines in
R

2. As such, heavy algorithmic tools are used and we consider the method a more
theoretical contribution (although appropriate relaxations may lead to an effectively
implementable procedure).

Next, given a set S of 3n points in R
2, which is the disjoint union of three sets

R, B, and G consisting of n points each, we present a polynomial-time algorithm
to determine whether a point q is a colored Tverberg point of S (cf. Section 3). The
running time of the algorithm is O(n11). As far as we are aware, this is the first
polynomial-time algorithm for this problem.

2. The Center Region

We first make sure that the problem of computing the center region, or
⋂

h∈H≥ j
h

in general, is a finite discrete problem. Then we discuss the structure of the center
region in the dual, before we proceed to the description of the algorithm for its
construction. Most of the structural properties hold in any dimension, and we present
them for arbitrary d, before restricting ourselves to d = 3 for the algorithmic
construction.

2.1. THE CENTER REGION AND j-FACETS. We assume that |S| ≥ d + 1 and
that S is in general position, no d + 1 points lie in a common hyperplane. A j -facet
is an oriented simplex spanned by d points in S that has exactly j points of S on the

(open) positive side of its affine hull. H j is the set of closed halfspaces that contain
j points of S and have d points of S on their boundary. Clearly, these are exactly
the halfspaces induced by ( j −d)-facets. Figure 1 displays all 3-facets (orientations
omitted) of the respective point sets.

LEMMA 2.1. For any set S of n ≥ d + 1 points in general position in R
d and

any positive integer j ≤ n, we have:

(1) cn− j+1(S) = ⋂
h∈H≥ j

h = ⋂
h∈Hj

h.

(2)
⋂

h∈H≥ j
h is a convex polytope (not necessarily of full dimension) with at most

2
( n

d−1

)
facets, each of which is contained in some ( j − d)-facet of S.

1The meaning of bounds of this form, is that they hold for any ε > 0, where the constant of propor-
tionality depends on ε, and generally tends to ∞ as ε → 0.
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PROOF.
(1) For a proof of the left identity, note that if x �∈ h ∈ H≥ j , then the depth is

at most n − j since the complement of h contains a closed halfspace with x on its
boundary and containing at most n − j points from S. On the other hand, if x lies on
the boundary of a closed halfspace with at most n − j points, then the complement
contains a closed halfspace with at least j points and thus x �∈ ⋂

h∈H≥ j
h.

For the right identity, consider first the set H≥ j := ⋃
i≥ j Hi . Since H≥ j ⊆ H≥ j ,

the inclusion ⋂
h∈H≥ j

h ⊆
⋂

h∈H≥ j

h

readily follows. For each h ∈ H≥ j , there are halfspaces in H≥ j whose intersection
is contained in h (take the halfspaces containing S ∩h and bounded by hyperplanes
carrying facets of conv(S ∩ h)—we call these the facet-supporting halfspaces of

the polytope conv(S ∩ h)). It then follows that all h ∈ H≥ j\H≥ j are redundant.
Hence,

⋂
h∈H≥ j

h = ⋂
h∈H≥ j

h and
⋂

h∈H≥ j
h is a polyhedron whose facets are

determined by (i.e., lie in the boundary of) some of the halfspaces h ∈ H≥ j . On the
other hand, every halfspace h in Hi , for i > d, contains an intersection of halfspaces

in Hi−1; take the facet-supporting halfspaces of the polytopes conv((S ∩ h) \ {q})
for each of the d points q ∈ S that lie on the boundary of h. Therefore all halfspaces

in H≥ j\H j are redundant. Assertion (1) of the lemma follows.
(2) We have already shown that P := ⋂

h∈H≥ j
h is an intersection of a finite

number of halfspaces, and since it is contained in conv(S), it is bounded and thus

a polytope. We further reduce the number of constraints in H j that are needed to
determine P .

If P is empty, we are done since then it is the intersection of d + 1 ≤ 2
( n

d−1

)
halfspaces in H j (consult Helly’s Theorem). Otherwise, consider some set K of
d − 1 points in S. Either no ( j − d)-facet contains K , or all but two halfspaces in
H j with K on their boundary are redundant. Since the number of (d − 1)-element
subsets of S is

( n
d−1

)
, the asserted upper bound on the number of facets follows.

Now consider a halfspace h ∈ H j , and the ( j − d)-facet ϕ it contains in its
boundary. We slightly rotate the bounding hyperplane π of h about any d −1 of the
points of ϕ, while keeping ϕ in its halfspace. We obtain d halfspaces in H≥ j , whose
intersection with π is ϕ, implying that no portion of π outside ϕ can be part of P .

2.2. THE STRUCTURE OF THE CENTER REGION. Let S be a set of n points in
R

d in general position. A standard duality transform [Edelsbrunner 1987] maps
a point p in R

d to a nonvertical hyperplane p∗ in R
d and vice-versa, so that the

above/below relationships between the points and hyperplanes are preserved, that
is, if p lies below (respectively, above, on) a nonvertical hyperplane h, then the dual
hyperplane p∗ lies below (respectively, lies above, contains) the point h∗. Using
this duality transform, we map S to a set S∗ of n nonvertical hyperplanes in R

d . The
level of a point x ∈ R

d with respect to S∗ is the number of hyperplanes in S∗ lying
strictly below x . All points on the same (relatively open) face (of any dimension)
of A(S∗) have the same level. For a given integer 0 ≤ k < n, the k-level of A(S∗),
denoted as �k(S∗), is the union of the closures of all facets of A(S∗) whose level is
k. �k(S∗) is the graph of a continuous, piecewise-linear (d − 1)-variate function.
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By construction, the dual of a point x whose depth is k (1 ≤ k ≤ n/2) with respect
to S is a hyperplane that lies between �k−1(S∗) and �n−k(S∗). More precisely if
we let Lk (respectively, Uk) denote the lower (respectively, upper) convex hull of
�k(S∗), then x∗ (weakly) separates Uk−1 and Ln−k . Hence, the dual of the center
region c(S) is the region lying between U� n

d+1
�−1 and L� dn

d+1
�. In order to compute

c(S), it suffices to describe an algorithm for computing the upper or lower convex
hull of a level in A(S∗). Indeed, with U� n

d+1
�−1 and L� dn

d+1
� available, we map them

back to the primal space, and intersect the two resulting unbounded polyhedra to
obtain c(S).

The following lemma follows from the observation that the intersection line of
any d − 1 hyperplanes of S∗ intersects conv(�k(S∗)) in at most two points, unless
it overlaps the hull in an edge (the dual analogy of the argument in the proof of
Lemma 2.1(2)).

LEMMA 2.2. Let S∗ be a set of n hyperplanes in R
d . For any 0 ≤ k < n, the

convex hull of �k(S∗) has O(nd−1) vertices.

LEMMA 2.3. Let S be a set of n points in R
3. The combinatorial complexity of

c(S) is O(n2), and this bound is tight in the worst case.

PROOF. The upper bound follows directly from Lemma 2.1(2).
For the lower bound, let us first assume that n is of the form 12k2, for an integer

k ≥ 1. We are interested in c(S) = cn/4(S) = ⋂
h∈H3n/4+1

h, the intersection of

halfspaces induced by (3n/4 − 2)-facets (see Lemma 2.1).
Take a triangle �uvw in the xy-plane, pass a vertical line through each of its three

vertices u, v, w , and place n/3 points on each line at heights
√

1,
√

2, . . . ,
√

n/3.
This yields a set S of n points in R

3. We fix j = 3n/4 − 2, and we consider the j-
facets of S that have one point on each of the vertical lines. There are �( j2) = �(n2)
choices of triples (a, b, c) such that a +b + c = j +3, and any such triple defines a

j-facet whose vertices are (u,
√

a), (v,
√

b), (w,
√

c). Moreover, any j-facet either
has this form, or it corresponds to a triple (a, b, c) with a + b + c = n − j .

Passing to the dual space, a plane containing any such j-facet becomes the
intersection point of the three dual planes (where x denotes the vector (x, y) in the
xy-plane)

z = u · x + √
a, z = v · x +

√
b, and z = w · x + √

c.

Clearly, any such dual point lies on the ellipsoid

(z − u · x)2 + (z − v · x)2 + (z − w · x)2 = a + b + c = j + 3.

Since this is a convex surface, standard properties of the duality transform imply
that each of the planes containing the j-facets in the primal space is tangent to a
convex surface. Since each of these tangency points necessarily lies on the boundary
of the intersection polytope, it follows that each of these j-facets contributes a facet
to c(S). The lower bound follows for the special values of n assumed so far, and it
can be easily extended to other values of n.

Remark. We are currently unable to prove a similar bound on the complexity
of c(S) in higher dimensions. The upper bound theorem for convex polytopes (see
Ziegler [1995]) implies that the complexity of c(S) is O(n(d−1)�d/2�). However, we
conjecture that the actual bound is much smaller, maybe even O(nd−1).
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2.3. COMPUTING THE CONVEX HULL OF A LEVEL. Let H be a set of n planes
in R

3 in general position, and let k < n be an integer. We describe an algorithm for
computing the upper convex hull of � = �k(H ).

LEMMA 2.4. conv(�) = conv(
⋃
h∈H

conv(� ∩ h)).

PROOF. � is composed of relative closures of facets of the arrangement of
H , thus � = ⋃

h∈H (� ∩ h). The claim then follows, since conv(A ∪ B) =
conv(conv(A) ∪ conv(B)).

LEMMA 2.5. For any h ∈ H, conv(� ∩ h) has linear complexity.

PROOF. Any vertex of � ∩ h, and thus also of conv(� ∩ h), lies on two of the
lines in {g ∩ h | g ∈ H \ {h}}, and any such line g ∩ h can contain at most two
vertices of conv(� ∩ h). A similar reasoning is applied to the unbounded edges of
� ∩ h.

Our algorithm processes the planes of H one at a time. For each plane h, it
computes a convex (generally unbounded) polygon Kh with O(n) edges and with
the property that

conv(� ∩ h) ⊆ Kh ⊆ conv(�) ∩ h. (1)

By Lemma 2.4, conv(
⋃

h∈H Kh) = conv(�), so we simply compute and output the
convex hull of

⋃
h∈H Kh .

Although � is the graph of a continuous piecewise-linear totally defined function
of x, y, the set �∩h within a single plane h ∈ H is much less structured. It need not
even be connected, and can in fact have quadratic complexity (in contrast with its
convex hull, which has only linear complexity). Specifically, for each g ∈ H \ {h},
consider the halfplane g+ ∩h within h, where g+ is the (closed) halfspace bounded
from below by g. The level of a point w ∈ h is the number of halfplanes g+ ∩ h
that contain w . These halfplanes can have a rather “erratic” structure, such as the
one shown in Figure 3, which may cause �∩ h to consist of up to �(n2) connected
components.

Fix a coordinate frame within h whose axes project vertically to the x and y-axes
of the 3-dimensional frame. (This is not an orthogonal frame, but can be made
so with an appropriate affine transformation within h.) Let g ∈ H \ {h}. Write
the equations of h and of g as z = ah x + bh y + ch and z = agx + bg y + cg.
Observe that the halfplane g+ ∩ h is a upper (respectively, lower) halfplane within
h in this coordinate frame if and only if bg > bh (respectively, bg < bh). Thus,
each connected component of � ∩ h is bounded from below (respectively, above)
by halfplanes g+ with bg > bh (respectively, bg < bh). The general-position
assumption, and an appropriate choice of the coordinate frame, allow us to assume
that all the coefficients bh , for h ∈ H , are distinct.

Sort the planes h ∈ H in decreasing order of the y-coefficients bh of their equa-
tions. Let the sorted order be h1, . . . , hn . We first define the polygonal region K j =
Kh j with the property (1) and then present an algorithm for computing each K j .

Definition of K j . We give an inductive definition of K j . All halfplanes g+ ∩ h1

are upper halfplanes, implying that �∩ h1 is a level of the arrangement of the lines
g ∩ h1, for g ∈ H \ {h1}. We set K1 to be conv(� ∩ h1). Suppose K1, . . . , K j−1

have been defined.

ACM Transactions on Algorithms, Vol. 5, No. 1, Article 5, Publication date: November 2008.
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FIG. 3. �k(H ) ∩ h may have quadratic complexity.

For i < j , let γi = Ki ∩ h j —these are segments, rays, or lines. Put

 j = {γi | 1 ≤ i < j}, and refer to these segments (rays, or lines) as red segments.
Let R j ⊆ h j denote the convex hull of 
 j . (Let us note right away that each γi
can be computed in O(log n) time, by forming the line hi ∩ h j and by intersecting
it, within hi , with Ki . Thus, R j can be computed in O(n log n) time.) Refer to
hi ∩ h j , i > j , as green lines. We define

K j = conv(R j ∪ (� ∩ h j )),

and set ζ j = ∂K j . Next we prove a few properties of � ∩ h j and K j that will be
useful in the construction of K j .

LEMMA 2.6. The portion of �∩ h j that lies on green lines consists of pairwise
disjoint x-monotone polygonal chains, each starting and ending either at infinity
or on some red segment.

PROOF. Let w be a point in � ∩ h j that lies on a green line, and trace � ∩ h j
from w to the right (i.e., in the positive x-direction). When encountering a new
green line, the level switches to the new line and continues to the right; this follows
from the fact that all the green halfplanes h+

i ∩ h j are upper halfplanes in h j .
Continuing the tracing, we either reach +∞ or an intersection point u with some
line hi ∩ h j , with i < j . Then, u ∈ � ∩ hi , so u ∈ Ki , and thus u ∈ γi . Tracing the
level from w to the left, and repeating this analysis to each connected component
of � ∩ h j completes the proof of the lemma.

LEMMA 2.7. Let u, v be two y-covertical green points in � ∩ h j . Then, the
segment uv must cross at least one red segment.

PROOF. Suppose that u lies above v (in the y-direction). As we move from v in
the positive y-direction, the level increases by 1 to k +1. Just before reaching u, the
level is restored to its original value k. Thus, there had to be a point w on uv so that

ACM Transactions on Algorithms, Vol. 5, No. 1, Article 5, Publication date: November 2008.
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FIG. 4. (i) The set Q j . Segments of 
 j are drawn as solid lines, R j is the shaded polygon, intersection
lines hi ∩ h j are drawn as dashed lines, and the thick polygonal chains denote the green portion of
� ∩ h j . (ii) The convex hull K j of Q j , a triangle �, and K �. Thick polygonal chain is ∂K j , shaded
(unbounded) region lying below ∂K j is K j , and the darker region is K �.

after crossing w the level decreases by 1 and becomes k. Clearly, w has to lie on
some line hi ∩ h j with i < j and in � ∩ h j . Hence, arguing as above, w ∈ γi .

COROLLARY 2.8. R j ∪ (� ∩ h j ) is either a connected set or the union of up
to two connected components, one of which contains R j and the other one is an
x-monotone unbounded green portion of �∩h j , passing either above or below R j .

PROOF. Suppose R j ∪ (� ∩ h j ) consists of three or more connected com-
ponents, then two of them are disjoint from R j . By Lemmas 2.6 and 2.7, R j
is unbounded and lies between these two components. Moreover, the convexity
of R j implies that the unbounded rays of ∂ R j are parallel to those of the green
components. However, this is ruled out by the general-position assumption, so
there is at most one connected (unbounded) green component disjoint from R j .

Constructing K j . Since K1 is the convex hull of a level in an arrangement of

n lines, it can be computed in O(n log4 n) time using the algorithm of Matoušek
[1991]. Assuming K1, . . . , K j−1 have been computed, we construct K j as
follows. Since both R j and conv(� ∩ h j ) have linear complexity, so does K j . Let
Hj = H\{h j }. Since we are given R j , we assume that we have a point o ∈ K j at
our disposal. Let Q j be the union of R j , the monotone green portions of � ∩ h j
that terminate within R j , and the unique monotone green portion of � ∩ h j that
lies above or below R j , if it exists. In case the latter green component exists, we
connect it to R j by some vertical segment γ that lies on the vertical line 
o that
passes through the point o in R j . We regard γ as being also part of Q j , so Q j is a
connected region. By computing the intersection points of 
o with the planes in H ,
we can compute γ in O(n) time. By construction, K j = conv(Q j ). See Figure 4(i).

To construct ζ j , we adapt the recursive technique of Matoušek [1991] for comput-
ing the convex hull of a level in the plane, and slightly relax it to simplify its analysis
in our new context (at the cost of making the bound on its running time slightly
worse). At each recursive step, we have a triangle2 � ⊆ h j , a subset G ⊆ Hj of

2 In order to accommodate degeneracies, we assume each triangle to be a convex region formed by
the intersection of at most three halfplanes.
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m < n planes, and an integer u so that � ∩ � coincides with the u-level of A(G)
inside �. Furthermore, we assume that ζ j intersects � and that we have the set Z�

of at most six edges of ζ j that intersect ∂�; if ζ j ⊂ �, then Z� = ∅. The goal of
this subproblem is to compute all μ� edges of ζ j that fully lie in the interior of �.
Initially, � = h j , G = Hj , u = k, and Z� = ∅. Suppose we have at our disposal a
procedure INTERSECTION (e, �, G, u) that computes the (at most two) edges of ζ j
that intersect a given segment e ⊂ �. We describe this procedure in Section 2.4. Let

K � = K j ∩ � and Q� =
(

Q j ∪
(⋃

Z�

))
∩ �. (2)

The proof of the following simple lemma is straightforward. See Figure 4(ii).

LEMMA 2.9. K � = conv(Q�).

We choose a sufficiently large constant r . If m ≤ A2r log r , for some sufficiently
large constant A2 independent of r , we compute K � directly, using Lemma 2.9.
Specifically, we first compute the u-level of A(G) within �, which, by assumption,
coincides with �� = � ∩ � (recall that it can have up to �(m2) = O(r2 log2 r )
complexity), and then compute C� = conv((R j ∪ γ ∪ (

⋃
Z�)) ∩ �). To facilitate

efficient construction of C�, we store the (edges of the) convex polygon R j in a
height-balanced tree. Then, C� can be constructed in O(log s) time, where s is the
complexity of R j , by inserting the O(1) endpoints of the segments in Z� ∪ {γ },
using an on-line procedure for updating a convex hull by insertions [de Berg
et al. 2000]. Finally, we compute, using the same procedure, conv(�� ∪ C�)
in O(r2 log2 r log s) = O(log s) additional time. By traversing the edges of the
resulting polygon, and using the fact that this polygon crosses ∂� in at most six
points, we can report, in O(log s + μ�) time, all μ� edges of ζ j that lie inside �.

Suppose then that m > A2r log r . Let L = {hi ∩ h j | hi ∈ G} and consider the
following range space

X = (L , {{
 ∈ L | 
 ∩ τ �= ∅} | τ ⊂ h j is a triangle}).
It is well known that X has finite VC-dimension [Chazelle 2000]. We compute, in
O(m) time, a (1/r )-net N ⊆ L for X of size O(r log r ), and a triangulation A∇(N )
of the arrangement A(N ) inside � [Chazelle 2000]. For each edge e of A∇(N ), we
compute the one or two edges of ζ j that cross e, or determine that e does not cross
ζ j , using the procedure INTERSECTION (e, �, G, u). We thus obtain a collection

E� of some edges of ζ j . The edges of A∇(N ) that intersect ζ j lie in the zone of ζ j
in A(N ), therefore |E�| is asymptotically bounded by the complexity of the zone,
which, since ζ j is convex, is O(|N |α(|N |)) ≤ A1rα(r ) log r , for an appropriate
absolute constant A1 > 0; see, for example, Bern et al. [1991].

Since the segments of E� are in convex position, they can be sorted along ζ j in

O(rα(r ) log2 r ) time. Let η, η′ be two consecutive edges in E�. By construction,
there exists a triangle τ of A∇(N ) such that each of η, η′ has an endpoint inside τ ,
and the portion of ζ j between η and η′ is fully contained in τ and is delimited by
these two endpoints. (The case where the endpoints coincide is trivial, since there
is no need to fill in ζ j between η and η′.) See Figure 5.

Let � be the set of triangles τ ∈ A∇(N ) for which ζ j ∩ τ contains at least
one edge of ζ j in its interior, that is, there are two consecutive edges of E� that
intersect ∂τ and do not share an endpoint inside τ . We have |�| ≤ A1rα(r ) log r .
For each τ ∈ �, let Gτ ⊆ G be the set of planes that cross τ (i.e., intersect its
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FIG. 5. ζ j (dashed polygon), E� (whose edges are drawn as thick segments), and the triangles of
A∇ (N ). The portion of ζ j between η and η′ is fully contained in the single cell τ (shaded region).

interior). Since N is a (1/r )-net, |Gτ | ≤ m/r . If bτ planes of G pass below τ , then
� ∩ τ coincides with the uτ = u − bτ level of A(Gτ ). We also have at our disposal
the set Zτ of edges of ζ j that intersect ∂τ , so we can compute K τ recursively,
using the parameters Gτ , uτ , and Zτ . We thus obtain the μτ edges of ζ j that lie
inside τ , and insert them, in sorted order, between η and η′. Repeating this step
for each of the O(rα(r ) log r ) cells τ , we obtain K �, as desired.

Suppose the procedure INTERSECTION (e, �, G, u) takes at most Q(m, s) time,
where m = |G| and s = |R j | = O(n). Let T (m, μ) denote an upper bound on the
running time of the recursive subproblem within �, where m = |G| and μ is the
number of vertices of ζ j lying inside � (here s is considered as a global variable,
since it does not change during the recursive calls). Then we obtain the following
recurrence.

T (m, μ) ≤
⎧⎨
⎩

∑
τ∈�

T
(m

r
, μτ

)
+ C(Q(m, s) + m), m ≥ A2r log r,

O(log s + μ) m < A2r log r,

where
∑

τ μτ ≤ μ, |�| ≤ A1rα(r ) log r , A1 and A2 are constants independent
of r , and C is a constant that does depend on r . As Lemma 2.11 in the following
subsection will show, Q(m, s) = O(m polylog(m + s)). The above recurrence thus
solves to

T (m, μ) = O(m1+ε polylog(m + s) + μ),

for any constant ε > 0. Initially m, s, μ = O(n), so the overall running time of
the algorithm is O(n1+ε′

), for any ε′ > ε.
We repeat this step for each of the planes h j , for 1 < j ≤ n. We then compute

conv(
⋃

j K j ), a step that takes O(n2 log n) time. We thus obtain the main result of
this part of the article:

THEOREM 2.10. Given a set S of n points in R
3 and an integer k ≥ 0, the

region of depth-k of S, ck(S), can be computed in O(n2+ε) time, for any ε > 0.

2.4. THE INTERSECTION SUBROUTINE. We now describe the main procedure
INTERSECTION (e, �, G, u) needed for the preceding algorithm: given a triangle
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FIG. 6. Detecting intersection between K � and a line. Thick dashed edge belong to K � ∩ �, and
thick solid lines are the edges of Z�. Each of 
1, 
2, and 
3 intersects K �; 
1 intersects K � ∩ ∂�, 
2

intersects R j , and 
3 intersects a green edge of �∩�; the white circles on each line are the endpoints
of the interval returned by the procedure.

� ⊆ h j , a segment e ⊂ �, a subset G ⊆ Hj of m planes, and an integer u, so that
� ∩ � coincides with the level u of A(G) within �, return the edges of ζ j that
intersect e. Recall that, by assumption, ζ j intersects � and we have at our disposal

the set Z� of edges of ζ j that intersect ∂�. Let K �, Q� be as defined in (2). Note
that only the case j > 1 is relevant since, as noted, K1 can be directly computed
in O(n log4 n) time [Matoušek 1991].

We describe the overall algorithm in three stages. The first stage detects whether
a query line 
 intersects K �. If the answer is positive, it also returns an interval
(possibly a single point) lying in 
∩ K � that contains the first and the last intersec-
tion points of 
 ∩ Q�. The second stage determines whether a query point q ∈ �
lies in K �, and computes the lines tangent to K � from q if q �∈ K �. This stage
computes the tangent lines using the previous procedure and the parametric search-
ing technique [Megiddo 1983]. The third stage plugs the tangent-computation
procedure into the parametric searching technique, to compute the edges of K �

that intersect the query segment e ⊂ �. We now describe each stage in detail.

Intersection Detection between K � and a Line. Let 
 be a given line. Since Z�

is the set of edges of ζ j that intersect ∂�, K � ∩ ∂� can be computed in O(1)
time; see Figure 6. We can therefore compute in O(1) time the intersection points
of 
 with K � ∩ ∂�. Next, we compute the intersection points of 
 with Q�; see
Figure 6. We first compute, in O(log s) time, the intersection points of 
 with
(R j ∪(

⋃
Z�)∪γ )∩�. Next, we compute the intersection points of 
 with �∩�, as

follows. We intersect 
 with each of the planes of G and sort the intersection points
along 
. We compute the level of an endpoint (possibly at ∞) of 
∩� with respect
to A(G) and scan 
 in some direction, maintaining a count of the level we are in,
and updating the count by ±1 after crossing each intersection point. If we reach
a point on level u, which, by assumption, is a point on � ∩ h j , we conclude that

 intersects � and we compute the first and the last points of level u (with respect
to A(G)) on 
 within � (see, e.g., 
3 in Figure 6). This step takes O(m log m)
time.

If the procedure does not find any intersection point of 
 that lies in K �, we
conclude that 
 does not intersect K �. If 
 intersects K �, then we return the first
and the last intersection points computed by the algorithm that lie in K �; (these are
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FIG. 7. Tangents to K � from a point q.

the hollow circles on 
1, 
2, 
3 in Figure 6). The total time spent by the procedure
is O(m log m + log s).

Remarks
(1) The interval returned by the procedure may be in general a proper subset of


 ∩ K � (see, e.g., line 
2 in Figure 6).
(2) We can also use this procedure to detect an intersection between a ray ξ

and Q�: We apply the procedure to the line 
 containing ξ , and check whether ξ
intersects the interval returned by the procedure.

Computing the Tangents to K � from a Point. Let q be a point in �. We wish
to determine whether q ∈ K �, and if the answer is negative, we also want to
compute the two tangents from q to K �. We note that if � is unbounded then
one or both of these tangents may not be real tangents, but are rather rays parallel
to the unbounded rays of ∂K �. We choose a point o in K �. If Z� = ∅, that is,
K j ⊆ �, we choose o to be an arbitrary point of R j . Otherwise, we choose o to
be an intersection point of ∂� and an edge of Z�. Let � denote the line passing
through q and o and oriented from q towards o. We parametrize rays ξ emanating
from q by a real number σ (ξ ) = tan(θ/2), where θ ∈ [0, 2π ] is the angle from �
to ξ in the counterclockwise direction; see Figure 7.

We first run the above line-intersection procedure on �. If the interval returned
by the procedure contains q, we conclude that q ∈ K � and stop. Otherwise, the ray
emanating from q in direction − �qo does not intersect Q�. However, q may still lie
in K � (see the preceding Remark (1)). The definition of Q j and its property proved
in Corollary 2.8 imply that there exists an interval IA = [0, σA] ⊂ [0, ∞] such that
a ray ξ with σ (ξ ) ∈ [0, ∞] intersects Q� if and only if σ (ξ ) ∈ IA; the ray ξA with
σ (ξA) = σA is tangent to Q A. Similarly, there exist the interval IB = [σB, 0] ⊂
[−∞, 0] and the ray ξB , with σ (ξB) = σB , tangent to Q�. The angular span of the
wedge bounded by ξA and ξB that contains Q� is less then π if and only if q �∈ K �.
Hence, it suffices to compute ξA, ξB . We describe the computation of ξA.

Using the parametric searching technique [Megiddo 1983], we simulate the
above line-intersection-detection procedure generically at ξA and maintain an
interval I = [a, b] ⊆ [0, ∞], such that σA ∈ I . During the simulation, we
encounter comparison steps, each of which compares the unknown σA with some
specific σ̃ ∈ I . To resolve the comparison, we test whether the ray ξ̃ emanating
from q, with σ (ξ̃ ) = σ̃ , intersects Q� (recall Remark (2) above). If the answer
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is positive, then σA ≥ σ̃ and we set I := [σ̃ , b]; otherwise σA ≤ σ̃ , and we set
I := [a, σ̃ ]. Using the preceding algorithm, we can detect this intersection in
O(m log m + log s) time. If the procedure returns an interval that contains q, we
conclude that q ∈ K � and stop. If I becomes empty, we conclude that q ∈ K �,
and if I becomes a singleton [a, a], then σA = a. In both cases, the procedure
terminates, and returns the indication that q ∈ K � in the former case, or the
tangent ξA in the latter case. Finally, if the simulation stops with an interval [a, b],
using the standard parametric-searching argument one can argue that σA = a.

To obtain an efficient implementation of the parametric search, we note that the
intersection detection procedure involves three main steps: Sorting the intersections
of 
 with the planes of G, finding the intersections of 
 with the convex polygon
R j , and testing whether 
 intersects γ or an edge of Z�. The third step involves
only O(1) intersection operations, and is thus trivial to simulate. The second step
uses O(log s) comparisons, so its simulation takes O(m log2(m + s)) time. The
first step, if implemented by a logarithmic-depth parallel sorting network [Ajtai
et al. 1983], and enhanced with Cole’s improvement [Cole 1987], can also be
implemented in O(m log2(m + s)) time; see Matoušek [1991] for details.

The intersection of ξA with K � is a single point, an edge of K �, or empty,
where the third situation arises when ξA is parallel to an unbounded edge of K �.
We can easily compute this intersection, by noting that the endpoints of ξA ∩ K �

must belong to Q�, and we know how to compute such an intersection in time
O(m log m + log s) using the intersection-detection procedure described above.

Finally, if q �∈ K �, we repeat the same procedure to compute ξB . The
total time spent in computing ξA, ξB , and their intersection points with K � is
O(m log2(m + s)).

Computing the Edges of K � Crossed by an Edge. Armed with the tangent
computation procedure, we next derive the main procedure by applying parametric
searching once again. It suffices to solve the simpler problem, where we are given
a query line 
, and our goal is to compute the one or two edges of K � that are
crossed by 
, or to determine that 
 ∩ K � = ∅. We then apply this procedure to
the line containing the query edge e, and trivially retrieve the zero, one, or two
edges of K � that e crosses. The latter task of determining whether 
 ∩ K � = ∅
can be accomplished using the basic intersection testing procedure, so we may
assume that 
 ∩ K � �= ∅, and that we have computed a point q0 ∈ 
 ∩ K �. Using
parametric searching once again, we slide a point q from q0 along each of the
two rays of 
 delimited by q0, and test whether q lies in K �, using the tangent
computation procedure described above. This guides our search: If q lies in K �,
we proceed by moving further away from q0, and otherwise we proceed by moving
towards q0. When we home in on the actual point q of intersection between 
 and
∂K �, the tangent computation procedure yields the desired edge of K � that 

crosses at q. We omit the routine details of the parametric searching, do not aim
at the most efficient implementation, and are satisfied with the following result,
which is the promised missing ingredient for the proof of Theorem 2.10.

LEMMA 2.11. Given a triangle � ⊂ h j , the set Z j of edges of ζ j that intersect
∂�, a segment e ⊂ �, the subset G ⊆ Hj of the m planes that cross �, and
an integer u < m, such that the level u of A(G) coincides with � within �, the
procedure INTERSECTION (e, �, G, u) takes O(m polylog(m + s)) time.
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FIG. 8. A triangle uvw that contains q, and the corresponding triple (w̄, u, v̄).

3. Recognizing Colored Tverberg Points in the Plane

We now change gears, descend to the plane, and study the problem of recognizing
colored Tverberg points. Let S be a 3-colored set, which is the disjoint union of
a set R of n red points, a set B of n blue points, and a set G of n green points. We
assume that the points of S are in general position.

Let q be a given point that we want to test for being a colored Tverberg point
of S. Let C be the unit circle centered at q. We may assume, without loss of
generality, that all the points of S lie on C ; otherwise we project these points on
C , centrally from q, and note that q is a colored Tverberg point of the original set
if and only if it is a colored Tverberg point of the projected set. If q is generic, all
projected points are distinct. Otherwise, since S is in general position, at most two
pairs of points of S may project to coinciding points on C . This will require easy
and straightforward modifications of the following procedure, which we omit, and
assume that all projected points are distinct. Similarly, we will also assume that no
two projected points are diametrically opposite on C (at most two projected pairs
can consist of diametrically opposite points).

Let C0 be a fixed semicircle of C , whose endpoints are disjoint from S. For each
point u in the (open) complementary semicircle C1, let ū denote the antipodal point
of u in C0. Put R+ = R ∩ C0 and R− = {ū | u ∈ R ∩ C1}, and define similarly the
sets B+, B−, G+ and G−. Sort the points of R+ ∪ R− ∪ B+ ∪ B− ∪ G+ ∪ G− in
counterclockwise order along C0, and denote the resulting (linear) sequence by E .
(By our assumptions, all elements of E are distinct.) Note that a rainbow triangle,
namely, a triangle uvw , with u ∈ R, v ∈ B, w ∈ G, contains q if and only if E
contains one of the ordered triples

(u, v̄, w), (w, v̄, u), (v, w̄, u), (u, w̄, v), (w, ū, v), (v, ū, w),

(ū, v, w̄), (w̄, v, ū), (v̄, w, ū), (ū, w, v̄), (w̄, u, v̄), (v̄, u, w̄),

as a (not necessarily contiguous) subsequence; the specific triple is determined
by the locations of u, v, w along C . See Figure 8. Our goal is thus to determine
whether E can be decomposed into n pairwise disjoint triples of these 12 kinds.

We first describe a less efficient (but still polynomial) algorithm for solving this
problem, which is conceptually simpler, and then improve its running time. Write E
as (e1, e2, . . . , e3n), and denote by E j its prefix (e1, . . . , e j ), for j = 0, 1, . . . , 3n.
The algorithm uses dynamic programming and processes the elements of E in in-
creasing order. At the beginning of the processing of ei , it maintains a set Xi−1 of
configurations, each of which is an 18-tuple of integers, which represent a partitions
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of Ei−1 = (e1, . . . , ei−1) into triples and prefixes of triples of the above 12 kinds.
More specifically, the first six components of a configuration ξ , which we denote by
Nξ (R+), Nξ (R−), Nξ (B+), Nξ (B−), Nξ (G+), Nξ (G−), record the number of single-
ton prefixes of triples that lie in Ei−1, where Nξ (R+) is the number of such singleton
prefixes in R+, and similarly for the other five quantities. (Counting an element of
Ei−1 as a singleton prefix means that we expect it, in the configuration under consid-
eration, to form a valid triple with two other elements that lie further ahead of Ei−1.)
The next 12 components are each indexed by a pair of a positive color set and a neg-
ative color set, where the two colors are distinct, and record potential doubleton pre-
fixes of triples in Ei−1 (where the third element of such a triple is expected to come
from the remainder of E). For example, Nξ (R+G−) is the number of doubleton pre-
fixes (u, v) in the configuration, where u ∈ R+, v ∈ G−, and u precedes v in Ei−1.
(To complete this pair into a valid triple, an element of B+ will have to be chosen
from the remainder of E .) The other 11 components are defined in complete analogy.
We emphasize that, in each configuration ξ ∈ Xi−1, the counts in its components
represent a partition of Ei−1. That is, each element of Ei−1 contributes either to one
of the components of ξ or it may drop out of the game altogether, if it is assigned
to a triple that has already been completed within Ei−1. See below for details.

Initially, X0 consists of only the all-zero tuple 0. When processing ei , we
produce the set Xi of configurations for Ei from Xi−1 as follows. Suppose that
ei ∈ R+, and let ξ be a configuration in Xi−1. We generate from ξ (at most) five
configurations in Xi , according to the following choices of the role of ei :

(i) ei is the first component of a new triple: We generate a new configuration by
increasing Nξ (R+) by 1.

(ii) ei is the second component of a triple whose first component is in B−:
We generate a new configuration by increasing Nξ (B− R+) by 1, and by
decreasing Nξ (B−) by 1.

(iii) ei is the second component of a triple whose first component is in G−:
We generate a new configuration by increasing Nξ (G− R+) by 1, and by
decreasing Nξ (G−) by 1.

(iv) ei is the third component of a triple whose first component is in B+ and whose
second component is in G−: We generate a new configuration by decreasing
Nξ (B+G−) by 1.

(v) ei is the third component of a triple whose first component is in G+ and whose
second component is in B−: We generate a new configuration by decreasing
Nξ (G+ B−) by 1.

The cases where ei belongs to any of the other five signed color classes is handled
in a completely symmetric manner. We discard a new configuration if it already ex-
ists in Xi or if any of its components is negative. Then the set Xi stores configurations
without repetition. Whenever a new configuration ξ is inserted into Xi (for the first
time), we store with it a pointer to the configuration ξ ′ ∈ Xi−1 from which ξ is gener-
ated. More precisely, we simply store with ξ the type of incremental change, that is,
an up to three-letter string from the alphabet C = {R+, B+, G+, R−, B−, G−}, that
has produced it from ξ ′, using which ξ ′ can easily be reconstructed. For example,
when ei ∈ R+, we store B− R+ at ξ in case (ii), and B+G− R+ in case (iv). In general,
there may be several configurations ξ ′ ∈ Xi−1 that can induce ξ ∈ Xi , but since we
only keep the first copy of ξ we store a pointer to only the first ξ ′ that has generated ξ .
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FIG. 9. Constructing a Tverberg partition from a sequence of configurations, by tracing the sequence
backwards. For each node in the path, the label shows the string stored at that configuration, and the
sequence of triples inside the box is the family T just before processing the node in the backward-
tracing phase. The output Tverberg partition is the one stored at the leftmost node.

The number of configurations in any Xi is O(n18), so the processing of each
ei takes O(n18) time, using an appropriate data structure to store Xi . The total
running time is thus O(n19). After processing e3n , we test whether X3n contains the
all-zero tuple 0. If it does not, q is not a Tverberg point. If 0 is in X3n then, using the
additional data stored with each configuration, we compute a Tverberg partition
by tracing back a sequence of configurations 0 = ξ0, ξ1, ξ2, . . . , ξ3n−1, ξ3n = 0, so
that each ξ j belongs to X j and can be generated from ξ j−1 when processing e j .

More precisely, we maintain with each configuration ξi that we trace, a family
T = Ti of triples. Each triple τ ∈ T has a suffix formed by the points in E , and the
remaining prefix of τ is formed by the letters in C; the prefix indicates which types of
points are needed to complete the triple. See Figure 9. For example, if a triple in T
 is
(R+, B−, ek), then k > 
, and we need a point ei ∈ R+ and another e j ∈ B− to form
the triple (ei , e j , ek) of the Tverberg partition that we are constructing, where i <
j ≤ 
. Similarly, if the triple is (G−, e j , ek), then 
 < j < k, and we need a point
ei ∈ G−, with i ≤ 
, to form a triple (ei , e j , ek). Initially, T = T3n is empty. Suppose
we are currently processing ξi , which was constructed while adding ei . If we stored
at ξi a three-letter string χ1χ2χ3 to mark the change from ξi−1, with χ1, χ2, χ3 ∈ C,
then χ3 must label the set containing ei , and we add the triple (χ1, χ2, ei ) to T. For
example, we add the triple (B+, R−, e9) to T after processing ξ9 in Figure 9 (and e9 ∈
G+ in this case). On the other hand, if we stored a two-letter string χ1χ2 at ξi , then χ2

must label the set containing ei , and we extract a triple of the form (χ1, χ2, ek) from
T and replace it with (χ1, ei , ek). Similarly, if the string stored at ξi is χ1, we extract a
triple of the form (χ1, e j , ek) from T and replace it with (ei , e j , ek). After processing
ξ1, the final value of T is (one possible) Tverberg partition for q. The correctness
of the trace-back algorithm follows from the invariant, easily established using
induction on i , that if a configuration ξ belongs to Xi then Ei admits a decomposition
into pairwise disjoint prefixes of triples (and complete triples), so that the number
of prefixes of each type is equal to the corresponding component of ξ .

In summary, we have shown that determining whether a given point q is a
colored Tverberg point of S can be done in O(n19) time.

We next proceed to optimize the algorithm. In the revised version, we apply the
same general approach, but maintain configurations with fewer components. First
we note that there is no need to maintain the two separate quantities Nξ (R+ B−),
Nξ (B+ R−), and it suffices just to maintain their sum. Indeed, both quantities are
accessed only when a further element of E that belongs to G+ “decides” to become
the last element of a triple, in which case it has to be matched with a doubleton that

ACM Transactions on Algorithms, Vol. 5, No. 1, Article 5, Publication date: November 2008.



P1: IAZ

ACMB079A-05 Journal of the ACM November 12, 2008 2:6

5:18 P. K. AGARWAL ET AL.

is counted in one of these two quantities, but it does not matter which of the two
kinds of doubletons is being used. A symmetric argument applies to other pairs of
doubleton components. Hence, a configuration needs to record only 12 counts, six
singleton counts, as above, and the six doubleton counts

Nξ (R+ B−) + Nξ (B+ R−),

Nξ (R− B+) + Nξ (B− R+),

Nξ (R+G−) + Nξ (G+ R−),

Nξ (R−G+) + Nξ (G− R+),

Nξ (B+G−) + Nξ (G+ B−),

Nξ (B−G+) + Nξ (G− B+) .

This already yields an algorithm that runs in O(n13) time (there are O(n12) different
configurations, and there are n iteration steps). The path-tracing procedure can be
adapted in a straightforward manner to construct a Tverberg partition.

We can further reduce the number of components in a configuration to 10, as
follows. Suppose that ξ ∈ X j . Denote by Mξ (R) the sum of all components of
ξ that record prefixes of tuples that involve an element of R (i.e., of R+ ∪ R−),
and define similarly Mξ (B), Mξ (G). Let K j (R), K j (B), K j (G) denote the number
of elements of E j that are red, blue, and green, respectively. Let t denote the
number of complete triples (contained in E j ) that have been generated by the
incremental construction recorded in ξ (or, more precisely, in the unique sequence
of configurations in X1, X2, . . . , X j that terminates at ξ and whose reverse is
obtained by following the stored back pointers, starting from ξ ). Then we have

K j (R) = t + Mξ (R)

K j (B) = t + Mξ (B)

K j (G) = t + Mξ (G) .

That is,

Mξ (B) − Mξ (R) = K j (B) − K j (R)

Mξ (G) − Mξ (R) = K j (G) − K j (R) .

This gives us two independent linear relations among the 12 components of a
configuration, showing that it suffices to store and maintain only 10 of them. The
number of tuples generated by the algorithm is thus O(n10), and the total running
time is O(n11). That is, we have:

THEOREM 3.1. Let S be a set of 3n points in the plane, n of which are red, n
blue, and n green. For a given point q, we can determine whether q is a colored
Tverberg point of S in time O(n11).

4. Open Problems

The article raises several open problems for further research. We mention only a few:

(i) Obtain a tight bound for the maximum possible complexity of the center
region c(S) of a set S of n points in general position in R

d , d > 3. Then,
provide an efficient algorithm for constructing c(S).
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(ii) Can the center region in R
3 be constructed in O(n2polylog(n)) time?

(iii) Can colored Tverberg points in the plane be recognized in a more efficient
manner? What about colored Tverberg points in higher dimensions?
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ŽIVALJEVIĆ, R. T., AND VREĆICA, S. T. 1992. The colored Tverberg’s problem and complexes of

injective functions. J. Combin. Theory, Ser. A 6, 309–318.

RECEIVED NOVEMBER 2004; REVISED JUNE 2006; ACCEPTED MAY 2008

ACM Transactions on Algorithms, Vol. 5, No. 1, Article 5, Publication date: November 2008.


