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AbstratGiven a set S of n points in the plane and a set O of pairwise disjoint simple polygonswith a total of m edges, we wish to �nd two ongruent disks of smallest radius whose unionovers S and whose enters lie outside the polygons in O (referred to as loational on-straints in faility loation theory). We present an algorithm to solve this problem in ran-domized expeted time O(m log2(mn) +mn log2 n log(mn)). We also present an eÆientapproximation sheme that onstruts, for a given " > 0, two disks as above of radius atmost (1+")r�, where r� is the optimal radius, in time O(1=" log(1=")(m log2m+ n log2 n))or in randomized expeted time O(1=" log(1=")((m + n logn) log(mn))).1 IntrodutionFor a set S of n points in the plane, the (standard) 2-enter problem is to �nd two ongruentdisks of minimum radius that over the points of S. This is a speial ase of the p-enterproblem, where the goal is to over S with p ongruent disks of minimum radius. When p ispart of the input the problem is known to be NP-omplete [14℄. For p = 1 this is the \smallestenlosing disk" problem whih an be solved in linear time [13℄. The ase p = 2 has beenintensively studied, and after a series of papers presenting near-quadrati algorithms, Sharirpresented an algorithm that solves the problem in O(n log9 n) time [16℄. The latter solution hasbeen improved by Eppstein who solves the problem in randomized expeted time O(n log2 n)[8℄. Another eÆient variant has reently been proposed by Chan [2℄.�Work on this paper by Ken Goldberg and Dan Halperin has been supported by a grant from the U.S.-IsraeliBinational Siene Foundation. Work by Dan halperin and Miha Sharir has been supported by The Israel SieneFoundation founded by the Israel Aademy of Sienes and Humanities (Center for Geometri Computing andits Appliations), by a Frano-Israeli researh grant \fatory of the future" (monitored by AFIRST/Frane andThe Israeli Ministry of Siene), and by the Hermann Minkowski { Minerva Center for Geometry at Tel AvivUniversity.yDepartment of Computer Siene, Tel Aviv University, Tel-Aviv 69978, Israel. halperin�math.tau.a.il.zShool of Mathematial Sienes, Tel Aviv University, Tel-Aviv 69978, Israel, and Courant Institute ofMathematial Sienes, New York University, New York, NY 10012, USA. sharir�math.tau.a.il.xDepartment of Industrial Engineering and Operations Researh, University of California, Berkeley, CA 94720.goldberg�ieor.berkeley.edu. 1



We study a variant of the 2-enter problem, where in addition to the set S we are given aset O of pairwise disjoint simple polygons with a total of m edges, whose interiors onstituteforbidden regions for plaing the enters of the overing disks. (These obstales are referredto as loational onstraints in the standard theory of faility loation [10℄.) We are not awareof existing eÆient solutions to this problem. The analogous 1-enter problem, namely theminimum enlosing disk problem with obstales has been reently studied by Halperin andLinhart [9℄ who give an algorithm with running time O((m+ n) log(mn)) to solve it. They alsoprovide an approximation algorithm for the problem and a publily aessible Java applet thatimplements the approximation algorithm [9℄. See Figure 1 for an illustration.

Figure 1: The minimum enlosing disk problem with and without obstales. S onsists of 4 pointsand O onsists of one retangle. The minimum enlosing disk without obstales (whose enter isinside the retangle) is shown in dashed line and the minimum enlosing disk entered at a freeloation (on the top edge of the retangle) is shown in bold line.We present two algorithms to solve the 2-enter problem with obstales. The �rst algorithmfollows the general approah of Sharir [16℄ for the standard 2-enter problem, but it has to handlethe presene of the polygons of O, whih requires the introdution of several new and nontrivialtehniques. A major innovation in our algorithm is a data struture that dynamially maintainsa set P of points in the plane, under insertions and deletions of points, suh that after eahupdate we an eÆiently (in polylogarithmi time) determine whether the intersetion of �xed-radius ongruent disks entered at the points of P and the omplement F of the obstales in Ois nonempty (any point in this intersetion an serve as the enter of a `free' disk that ontainsP ). In ontrast, the parallel proedure in [16℄ only has to determine whether the intersetion ofthose disks is nonempty|a onsiderably simpler task. As in the improved solutions of Eppsteinand Chan for the standard 2-enter problem, we also aim to minimize the use of parametrisearhing in our algorithm, so that (a) we keep it simpler, (b) we improve its running time bya polylogarithmi fator, and () we gain more insight into the struture of the problem. Toahieve this, we note that one an use an interplay between the standard 2-enter problem andthe one in the presene of obstales. Informally, we show that, after various redutions andrestritions are imposed on the problem, one an solve it by solving the standard version of the(restrited) problem in whih there are no obstales. This will beome learer later on. Thealgorithm runs in randomized expeted time O(m log2(mn) +mn log2 n log(mn)).Sine the exat algorithm does not have a near-linear omplexity, we develop a seond algo-rithm that is an eÆient approximation sheme for the problem. Given " > 0 we �nd two ongru-2



ent disks that over the points in S, whose enters lie outside the obstales in O and whose radiiare eah at most (1+")r�, where r� is the optimal radius, in timeO(1=" log(1=")(m log2m + n log2 n))or in randomized expeted time O(1=" log(1=")((m+ n logn) log(mn))). The algorithm is drivenby a variant of binary searh for the optimal radius, within a range that depends on the diameterof S, and uses a simpli�ed deision proedure for the searh, whih makes it more eÆient. Avariant of this algorithm also yields an approximation sheme for the standard 2-enter problem,whih is more eÆient than the exat algorithm and is onsiderably simpler.Disussing the introdution of obstales in faility loation problems, the authors in [10℄ arguethat \suh [loational℄ onstraints are ubiquitous and important in pratie". Our work howeverhas been inspired by the following problem in robotis. Several CAD vendors are developingsoftware for rapid setup of automated workells [6℄. A fundamental problem is where to plaerobot arms and other devies so that ertain desired points an be reahed. The distane therobot reahes for eah point inuenes robot preision and settling time; it is therefore desirableto minimize this distane. Furthermore, operations suh as inspetion and assembly must beperformed in tight quarters, so it is also neessary to position robots suh that their base doesnot interset with other devies in the workell. The real-life (two) robot plaement problem isompliated by many fators, and eah fator raises new and more involved problems (e.g., therobot joints may have mehanial limits so that the robot's workspae is a disk-setor ratherthan a full disk). Nevertheless, we view our urrent work as a �rst step in approahing thisfamily of problems.In the next setion we present the dynami data struture to maintain the intersetion ofdisks and free spae. The exat algorithm is desribed in Setion 3 and the approximationsheme is presented in Setion 4. Diretion for future work are proposed in Setion 5.2 Dynami Maintenane of the Intersetion of Disks andFree SpaeIn this setion we desribe a dynami data struture whih is a key ingredient of our solutionto the 2-enter problem with obstales.Let F denote the free spae, namely the omplement of O. We assume here that r is a �xedradius. The following notation is borrowed from [16℄. Br(p) denotes the losed disk of radius rentered at p. For a set P of points, K(P ) denotes the intersetion Tp2P Br(p). We will maintaintwo strutures K+(P ) = Tp2P B+r (p) and K�(P ) = Tp2P B�r (p), where B+r (p) (resp. B�r (p)) isthe region onsisting of all the points that lie in or above (resp. in or below) Br(p).Our goal is to dynamially maintain a set P of points in the plane, under insertions anddeletions of points. After eah update we need to determine whether the intersetion K(P )\Fis nonempty. If this intersetion is nonempty this means that we an over the set P by a diskof radius r whose enter lies outside O.We prepare auxiliary stati data strutures. The �rst is for point loation in the planarmap indued by the polygons in O. For a query point q we determine with this data struturethe polygon whose interior ontains q, or otherwise that q lies in F (i.e., outside all polygons).3



Constrution of this standard data struture takes O(m logm) time, requires O(m) spae, anda point loation query takes O(logm) time.Seondly, we onstrut for eah polygon a �xed-radius irular-shooting struture as de-sribed in [3℄. We summarize its performane in the following theorem.Theorem 2.1 (Cheng et al. [3℄) Let Q be a simple polygon with k edges. A data struture for�xed radius irular shooting inside Q an be onstruted in O(k log k) time using O(k) spae,suh that the �rst intersetion point of a query ar of the given radius with the boundary of Qalong the ar, if any, an be found in O(log k) time.The radius of all the irular ars we are shooting is the �xed r we will be using throughoutthis setion. By Theorem 2.1 the onstrution of these strutures for all polygons in O togetherrequires O(m logm) time, O(m) spae, and a query is answered in O(logm) time, one we aregiven the polygon ontaining the initial point of the query ar. Below we will always query withx-monotone ars whose starting point is the leftmost point of the ar. For an x-monotone ar�, we will denote its leftmost point by l(�).We denote all the stati data strutures olletively by S, and we use them as follows. Wequery S with an x-monotone ar �. The answer is the leftmost point of � \ F , or NULL if �is ompletely ontained inside a single polygon of O. We do this by �rst querying the pointloation struture with l(�). If l(�) lies in F we return l(�). Otherwise we obtain the polygon inwhih l(�) lies and we shoot with � in the respetive irular-shooting data struture to obtainthe desired answer. Thus, querying S with an ar takes O(logm) time.The Overmars-van Leeuwen-like data struture developed in [16℄ maintains the intersetionsK+(P ) and K�(P ). The boundary of either intersetion onsists of a sequene of irular ars,with breakpoints between eah onseutive pair of ars. We augment the struture desribingK+(P ) so that we an eÆiently obtain the following information: for eah breakpoint b on theboundary of K+(P ) what is the leftmost point on the boundary whose x-oordinate is greaterthan or equal to that of b and that lies in F , or NULL if there is no suh point. In other wordswe wish to determine for a breakpoint b what is the �rst free point that we will enounter whenwalking along the boundary from b to the right, if there is suh a point. We onsider the pointson the boundaries of the polygons in O to be free. The same augmentation will be applied toK�(P ).Before we give details on how we augment the strutures, we desribe how we use them.Reall that we wish to determine whether K(P )\F is nonempty. We �rst look for the left andright intersetion points of the boundaries of K+(P ) and K�(P )|this an be done in O(log2 n)time. If K+(P ) and K�(P ) do not interset then we are done (the intersetion K(P ) is empty).If they interset, let � and � denote the left and right intersetion points of their boundaries,respetively. See Figure 2. Let b be the �rst breakpoint along �K+(P ) (the boundary of K+(P ))to the right of �. Let � be the ar whih is the portion of �K+(P ) between � and b, or between� and � if b lies to the right of �. Assume that b lies to the left of �; we �rst have to �nd b whihwe do in O(logn) time (we defer the desription of this simple operation to the full desriptionof the data struture below). We query the stati struture S with �, in O(logm) time. If weget a free point in return, then K(P ) \ F is `nonempty', and we are done. Otherwise � liesompletely inside an obstale. 4



�� b �
�K+(P )

�K�(P )Figure 2: The ar � on the boundary of K(P ). The small dashes mark breakpoints.Note that in this ase, sine our obstales are simple polygons, K(P )\F is nonempty if andonly if there is a free point along the boundary of K(P ). We query the augmented dynamistruture with the breakpoint b to get the �rst free point to the right of b on �K+(P ). Asexplained below, this an be done in O(logn) time. If the answer is a point lying to the left ofor oiniding with � then again the answer to our original question is `nonempty'. If in all theabove queries we found no free point along �K+(P ), we turn to the boundary of K�(P ) andrepeat the same sequene of operations from � to the right. If we �nd a free point along theportion of �K�(P ) that bounds K(P ) then the answer to our question is `nonempty', otherwisethe answer is `empty'. The overall time to deide whether K(P ) \ F is nonempty is thusO(log2 n + logm).Next we desribe how to augment the dynami data struture desribing K+(P ) so that iteÆiently answers a query of the type: Given a breakpoint b along �K+(P ), what is the �rstpoint on �K+(P ) that is free and whose x-oordinate is greater than or equal to that of b, ifone exists? The dynamization is under insertions and deletions of points to and from the setP , where all the points are from the original set S. The struture desribing K�(P ) and itsaugmentation are analogous.We �rst reall the struture desribing K+(P ) [16℄. We sort the points of S by their x-oordinates and store them, from left to right, in the leaves of a minimum-height binary treeT . Eah leaf of T maintains a ag that indiates whether the point p of S assoiated with itis urrently in P . To onform with the struture of internal nodes, eah leaf stores the x-rangeof B+r (p) if p belongs to the urrent set P , and stores the full x-axis otherwise. A node v ofT (indiretly) maintains K+(Pv), where Pv is the subset of points of P stored at the leaves ofthe subtree of T rooted at v. Let wl and wr be the left and right hildren of v, respetively;then v stores the x-range of K+(Pv), whih is the intersetion of the x-ranges of K+(Pwl) andK+(Pwr). If the x-range of K+(Pv) is nonempty then we also store at v the single intersetionpoint qv between �K+(Pwl) and �K+(Pwr), with pointers to the pair of irles that interset atqv. For more details, see [16℄.In the augmented struture T �, at eah node v, besides the intersetion point qv, we will alsostore the �rst free point � = �(qv) along �K+(Pv) suh that x(�) � x(qv) or NULL if no suhpoint exists. At a leaf orresponding to point p, the role of qv will be played by the leftmostpoint lp of the semiirle (p) bounding B+r (p), namely we will store the �rst free point � = �(lp)5



along (p) suh that x(�) � x(lp) or NULL if no suh point exists.We now desribe how we ompute, update and searh for the information �(q), where q iseither the breakpoint stored at an internal node, or the leftmost point lp in ase of a leaf. Westart with the omputation of �(q) for all the relevant nodes of T for a given initial set P � S,whih we ompute bottom-up. At a leaf assoiated with point p, we query the stati struture Swith the ar (p) and store the answer at the leaf; this requires O(logm) time. Next we ompute�(qv) for an internal node v with a left hild wl and a right hild wr, where for all nodes in thesubtree rooted at v besides v we already have the information �(q). As above, let qv denote theintersetion point of �K+(Pwl) and �K+(Pwr). Let b denote the next breakpoint when movingfrom qv along �K+(Pv) rightwards (possibly the rightmost point of �K+(Pv)). Next we showhow to �nd b.We are looking for the leftmost breakpoint of �K+(Pv) to the right of qv. We searh downthe subtree rooted at v and maintain the leftmost breakpoint to the right of qv that we havefound so far, all it �b. We know that b is a breakpoint along �K+(Pwl) hene we start the searhat wl. At a node w along the searh path (where originally w := wl) we ompare x(qw) andthe interval [x(qv); x(�b)℄. If x(qw) falls inside the interval then we let �b := qw and we ontinueto the right hild of w. Else, if x(qw) > x(�b) we move to the right hild of w. Else (namely,x(qw) < x(qv)) we move to the left hild of w. One we have reahed the end of the searh path(a leaf), the �nal value of �b is the desired breakpoint b. The ost of this searh is O(logn).We query S with the ar whih is the portion of �K+(Pv) between qv and b (in timeO(logm)).If the answer is not NULL then we store it at �(qv). Else, if b is the rightmost point of �K+(Pv)we store NULL at �(qv). Otherwise, namely if b is an internal breakpoint of �K+(Pv) and theanswer to the query was NULL, we `jump' to the node u ontaining the breakpoint b.We denote the nodes along the searh path from v to u in reverse order v0 = u; v1; v2; : : : ; vk =v. At the node v0, the information �(qv0) is orret for K+(Pv0), namely �(qv0) is the �rst freepoint along �K+(Pv0) suh that x(�(qv0)) � x(b), if suh a point exists. We now move up fromv0 to vk along the reverse of the searh path and `orret' this information so that when wereah vk we will have the �rst free point � along �K+(Pvk) suh that x(�) � x(b). We maintainan auxiliary variable �0. At the beginning of the proess we let �0 := �(qv0). When we movefrom vi to vi+1 we distinguish two ases (see Figure 3):� The node vi is a left hild of vi+1. Then �0 remains unhanged, sine from b rightwardsthe boundary of K+(Pvi+1) is the same as the boundary of K+(Pvi).� The node vi is a right hild of vi+1. If �0 is NULL or x(�0) � x(qvi+1), we put �0 := �(qvi+1).Otherwise, �0 remains unhanged.At the end of the proess, we set �(qv) := �0.Lemma 2.2 The overall onstrution time of the augmented struture T � is O(n log(mn)).Proof: At eah of the O(n) nodes of the tree we spend O(logn) time for searhing the break-point b, and we do one irular shooting query at the ost of O(logm) time, for an overall time6



b �K+(Pvi)�K+(Pvi) bqvi+1 qvi+1Figure 3: Moving up the searh path: on the left vi is the left hild in whih ase the portionof the boundary to the right of b does not hange when we move up; on the right vi is a righthild and �(b) may be a�eted by the other hild of vi+1.O(n logn+ n logm) = O(n log(mn)). 2We query T � with a breakpoint b for the �rst free point � alongK+(P ) suh that x(�) � x(b)in the same way that we ompute �(qv) originally. Only this time v is the root of the tree.Namely, we �rst searh the tree for the node ontaining the breakpoint b and then we movebak up along the searh path and maintain a variable �0 so that when we ome bak to the rootwe get in �0 the desired answer. Sine we spend onstant time at eah node along the searhpath, the query time is O(logn).It remains to show how we update T � when a point p is inserted to or deleted from P . We�rst searh the tree for the leaf orresponding to p. It is easily seen that we need to updatethe information �(qv) only at nodes v along this searh path �(p), and we update it bottomup. As we reah a node v along �(p), we need to update both the intersetion point qv and theinformation �(qv). The latter may require irular shooting from the new qv, and omputing theinformation �(b) at the breakpoint b to the right of qv, whih in turn requires searhing for b inthe subtree rooted at v and going bak up along this `loal' searh path to get the desired output.This means that at eah of the O(logn) nodes along �(p) we spend O(logn) time for the searhand O(logm) time for irular shooting, for a total of O(log2 n+logn logm) = O(logn log(mn))time per update.Note that the resoures required by the extra information (the �(qv)'s) in T � dominate theresoures required by the original dynami struture T [15℄, [16℄. We onlude:Theorem 2.3 Given a set of points S and a set of polygonal obstales O as above, we anonstrut a dynami data struture to determine whether K(P ) \ F is nonempty, where F isthe omplement of the obstales and P � S is the urrent ative set of points. Eah suh testtakes O(log2 n + logm) time. The onstrution of the struture takes O(m logm + n log(mn))time. An update of the struture when a single point is inserted to or deleted from P takesO(logn log(mn)) time. The spae required by the dynami struture is O(n) and additionalO(m) spae is required by the auxiliary stati struture S.In our algorithm we will also need to report whether there is a solution with radius smallerthan the given r. To this end, we augment our dynami struture as follows. When we obtain a7



positive answer to the intersetion query, the struture in fat �nds a \witness" point w in theintersetion K(P )\F . We hek in O(1) time if loally w is an isolated point of the intersetion;if the answer is no, then we report that there is a solution with radius smaller than the givenr|this is justi�ed by Lemma 3.1 below. Otherwise, if w is isolated and it is the rightmost point� of K(P ) there is no solution with smaller radius. Finally, if w is an isolated point whih isnot the rightmost point of the intersetion, we ontinue querying our data struture as abovefrom w (i.e., we shoot a irular ray from w along the boundary of K(P ), et.). The generalposition assumption, that will be made in the following setion, assures us that if we get anotherfree point along the boundary of K(P ) then this annot be an isolated point, in whih ase wereport that there is a solution with a smaller radius.Corollary 2.4 The struture of Theorem 2.3 an also report whether there is a solution withradius smaller than the given r, within the same resoure bounds.3 The Overall Exat AlgorithmThe overall exat algorithm follows losely the tehnique of [16℄ and its enhanements in [2, 8℄for the standard 2-enter problem, but it has to handle additional on�gurations that an arisebeause of the existene of obstales.3.1 PreliminariesLemma 3.1 Let P be a �nite point set and F a losed polygonal free region. Let D be asmallest disk that ontains P and is entered at F . If D is entered at int(F ) then it is the(unonstrained) smallest enlosing disk of P .Proof: We use the following well-known approah. Parametrize the spae of all disks in theplane so that a disk entered at (x; y) and having radius r is represented by the triple (x; y; (r2�x2�y2)). The set of disks that ontain a point (a; b) is the halfspae z � �2ax�2by+(a2+ b2).Hene the set of disks that ontain P is a onvex polyhedron K formed by the intersetion ofjP j suh halfspaes, one for eah point of P . An (unonstrained) smallest enlosing disk of Pis a point of K that minimizes the onvex funtion x2 + y2 + z, and hene it is unique. Anyother point of K an be moved ontinuously within K in a diretion where x2 + y2 + z stritlydereases.Now ifD is a disk as in the lemma, and is not equal to the (unonstrained) smallest enlosingdisk of P , then D is represented by a point in K whih an thus be moved slightly within K sothat x2 + y2 + z dereases. In other words, we an slightly shift and shrink D so that its enterremains in F and it ontinues to ontain P . This ontradits the assumed minimality of D andthus establishes the lemma. 2Lemma 3.2 Let S and F be as above. Let � denote the diameter of S. If the radius of theoptimal solution of the two-enter problem with obstales is larger than � then at least one ofthe enters must lie on an edge of F . 8



Proof: Sine S an be enlosed in a disk of radius �, it follows that the radius of the (unon-strained) smallest enlosing disk of any subset of S is at most �. Let D1, D2 be the two disksof an optimal solution of the two-enter problem with obstales for S and O. It follows that D1is not the (unonstrained) smallest disk enlosing S \ D1, and similarly for D2. If the entersof both D1 and D2 lie in int(F ) then Lemma 3.1 implies that we an shrink both of them andobtain a solution with a smaller radius, ontrary to assumption. 2Lemma 3.3 (Eppstein [7℄) Let S be a set of n points in the plane and let S1; S2; : : : ; Sk bea sequene of subsets of S suh that for eah i < m, Si+1 is obtained from Si by inserting ordeleting a single point. Then the smallest enlosing disks of the sets Si an all be omputed inoverall randomized expeted time O((n+ k) log2 n log2 logn).In what follows, we assume that S and O are in general position. Loosely speaking, thismeans that we rule out any oinidene between various unrelated quantities that are de�ned interms of S and O and that would not oinide for randomly hosen values of the parameters thatspeify S and O. For example, we assume that the radii of disks passing through three pointsof S or having two points of S as a diameter are all distint. Several additional requirements ofthis sort will be noted when they arise in the analysis (one of them has already been made atthe end of the preeding setion). The algorithms an also handle inputs in degenerate position,using a variety of known tehniques (suh as symboli perturbations).3.2 Centers lying on obstale edgesThe �rst (and new) stage of the algorithm aims to ompute the smallest radius r1 suh that San be overed by two disks of radius r1 so that at least one of them is entered at a point of�F (and the other at any point of F ).To this end, we onsider the following subproblem: Let e be a �xed edge of F . For simpliity,assume that e is the unit interval [0; 1℄ along the x-axis. Let S be the given set of points. Wewant to �nd the smallest r suh that S an be overed by two disks of radius r, so that one ofthem is entered at a point of e and the other is entered at a point of F .Enumerate the points of S as (s1; : : : ; sn), where the oordinates of si are (ai; bi), for i =1; : : : ; n. For eah i, de�ne a funtion fi on e, parametrized by � 2 [0; 1℄, as follows:fi(�) = d2((�; 0); si) = (� � ai)2 + b2i = �2 � 2ai� + (a2i + b2i ):For simpliity, we will regard these funtions as de�ned over the entire �-axis.Consider the arrangement A(F) of the set F of the graphs of the funtions fi, representedin a oordinate frame (�; �). We will regard eah point (�; �) in this frame as representing thedisk D(�; �) = Bp�((�; 0)). Clearly, a point si lies in D(�; �) if and only if its assoiated funtiongraph fi lies below the point (�; �). Let S(�; �) denote the subset of S onsisting of those pointsthat lie outside D(�; �) (i.e., points whose assoiated funtion graphs lie above (�; �)).Lemma 3.4 (a) Eah pair of funtions fi, fj interset at most one.9



(b) A pair of funtions fi, fj interset below the horizontal line � = �0 if and only if the pair of�-ordinates where fi(�) = �0 and the pair where fj(�) = �0 de�ne two intervals (denotedas Ii(�0) and Ij(�0)) that are overlapping (i.e., neither disjoint nor nested).() The number of verties of A(F) that lie below a given horizontal line � = �0 an be ountedin O(n logn) time.(d) Given any number 0 � k � �n2�, one an �nd the k-th highest vertex of A(F) in O(n log2 n)time.Proof: The laim in (a) is immediate. Conerning (b), if Ii(�0) and Ij(�0) are overlapping thenit is lear, using a ontinuity argument, that fi and fj interset below � = �0. Conversely, iffi and fj interset below � = �0 (at a unique point, whose �-ordinate is denoted as �ij), thenIi(�0) and Ij(�0) annot be disjoint (they both ontain �ij) and they annot be nested either, forthis would fore the two graphs to interset twie. Hene, ounting the number of intersetionsbelow � = �0 is equivalent to ounting the number of pairs of overlapping intervals in a givensystem of n intervals on a line. This an be done in time O(n logn) using, e.g., a standard tree-based algorithm for ounting inversions in a permutation (see, e.g., [5℄). Indeed, sort the leftendpoints of the given intervals in inreasing order, and sort the right endpoints in dereasingorder. Regarding the �rst permutation as the identity, the number of inversions in the seondpermutation is equal to the number of overlapping pairs of intervals. This establishes (). The�nal assertion (d) follows by using an appropriately modi�ed variant of the algorithm of [5℄for the slope seletion problem. Spei�ally, this algorithm applies parametri searhing to theinversion ounting algorithm. The simplest version runs in O(n log3 n) time, whih is reduedto O(n log2 n) time using an enhanement tehnique due to Cole [4℄. Both of these approahesare appliable in our ase too. (The �nal improvement in the algorithm of [5℄, whih redues itsomplexity to O(n logn), does not seem to be appliable in our ase, and has no e�et anywayon the overall asymptoti bound on the running time of the algorithm.) 2The �rst stage of the algorithm proeeds through the following steps.(i) Maintain a horizontal slab � : �� � � � �+. Initially, this is the whole ��-plane.(ii) Find a horizontal line  : � = �0 that bisets the subset of verties of A(F) that lie in �.(iii) Determine whether there exists a point (�; �0) 2  suh that S(�; �0) an be overed bya disk of radius �0 = p�0 entered at F . (To aomplish this step, we interset e withthe irles bounding the disks B�0(si), for i = 1; : : : ; n, sort these intersetions along e,and iterate over these points in sorted order. Whenever we pass from one point to thenext, a single element is added to or deleted from S(�; �0), and we use the dynami datastruture of the previous setion to determine whether the new set an be overed by adisk of radius �0 entered at F .) If suh a point was found, replae � by its portion below; otherwise replae it by its portion above .(iv) Repeat these steps until � ontains no vertex of A(F) in its interior. Suppose that this�nal � is �1 � � � �2. This means that step (iii) was suessful at �2 and failed at �1.The line � = �2 ontains a single vertex v of A(F), indued by two points p; q 2 S. Weexamine all the solutions found when step (iii) proessed � = �2. Two subases an arise:10



(iv.a) v is the only possible enter along this line. Assuming general position, the radius ofthe smallest (onstrained) disk enlosing S(v) is stritly smaller than �2 = p�2. This iseasily seen to imply that there is no disk of radius smaller than �2 and entered at e thatontains both p and q (for otherwise � = �2 would have ontained other solutions in theviinity of v). This in turn implies that the solution with the minimum radius and withone enter lying on e is at v itself. Hene in this ase we return D(v) and the sibling diskthat overs S(v).(iv.b) There are other solutions along � = �2. This means that any of the subsets of S thatthe disk D(�; �2) ontains, as its enter moves along e, with the possible exeption of thesubset de�ned by D(v), are also ontained by smaller disks entered at e; in fat, the radiiof these smaller disks an be made (at least) as small as �1 = p�1; see Figure 4 for anillustration. Sine step (iii) failed at �1, this an only be beause the smallest (onstrained)disks ontaining the omplementary sets S(�; �2) all have radii stritly greater than �1. Inview of Lemma 3.1, this implies that, for eah suh set S(�; �2), either the radius of its(unonstrained) smallest enlosing disk is greater than �1, or the radius of its onstrainedsmallest enlosing disk is greater than �1 and this disk is entered at an edge e0 of F .We an ignore the latter kind of situation beause, as is easily seen, it will be detetedin subase (iv.a) when e0 is proessed. (More preisely, either it will be deteted, or asolution with a smaller radius will be found.)(v) We thus proeed as follows. The data gathered so far implies that the sequene of ritialevents de�ned in step (iii) is ombinatorially the same for all horizontal lines � = �0 through�. We apply the algorithm in Lemma 3.3 to the �xed sequene of subsets S(�; �0) of Sthat arise in step (iii) (and is independent of �0), to obtain the (unonstrained) smallestenlosing disk of eah of these subsets. From among those disks whose enters lie in F ,we take the smallest one, and return this disk and the orresponding disk D(�; �1). Notethat the largest of the radii of these two disks is between �1 and �2 (for otherwise step (iii)would not have failed at � = �1). v
� = �1
� = �2�

Figure 4: The arrangement A(F) within the �nal slab �We apply the proedure to eah of the m edges of F , and output the solution with thesmallest radius. The overall (expeted) running time of this proedure is O(mn log2 n log(mn))11



(note that the only randomized part of the algorithm is Eppstein's proedure used in step (v)).Its orretness follows from the analysis given above.In onlusion, we an, in O(mn log2 n log(mn)) time, �nd the smallest radius r1 suh that San be overed by two disks of radius r1 so that at least one of them is entered at a point of�F (and the other is entered somewhere in F ). From now on, our goal is to determine whetherthere exist a pair of ongruent disks of radius smaller than r1 whih are both entered at pointsin the interior of F and whose union overs S. Reall that, by Lemma 3.1, eah of these disksD is the (unonstrained) smallest disk ontaining D \ S. Reall also that, by Lemma 3.2, wehave r1 � �.Remark: This stage is the only part of the algorithm that requires more than near-linear time.We leave it as an open problem to �nd a subquadrati implementation of this stage.We now proeed following the general approah of [16℄. It treats separately three subases:(a) the ase where the disks in an optimal solution are far apart (the distane between theirenters is at least 3r�, where r� is their ommon radius); (b) the ase where the disks are `nearlyonentri' (the distane between their enters is smaller than r�); and () the ase where thedisks are `nearly tangent' (the distane between their enters is between r� and 3r�). We onsiderthe same three ases, and show how to replae or modify the proedures used in the previouspapers in order to handle the presene of obstales.3.3 The ase where the disks are far apartWe next ompute the smallest r� < r1 suh that S an be overed by two disks of radius r� thatare entered at points of int(F ) and the distane between their enters is at least 3r�.Suppose that there exist a pair D1, D2 of disks of radius r� < r1 so that their union overs Sand their respetive enters 1, 2 satisfy j12j � 3r�. Let � denote the diameter of S. Clearly,we have � � j12j + 2r� � 5=3j12j. On the other hand, j12j � 2r� � �, whih implies thatj12j � 3� and r� � � (the latter inequality is of ourse also a onsequene of Lemma 3.2).Suppose that we guess, as in [16℄, that the orientation of 12 is nearly horizontal. Projet S ontothe x-axis. The span of this projetion is at most �, and 1 and 2 projet to two points, eahlying at most r� � � away from this span. Hene, we an onstrut an interval on the x-axis,of length at most 3�, whih ontains the projetions of both 1 and 2. Sine j12j � 0:6�, itfollows that we an onstrut a onstant number of vertial lines (spaed �� apart, for somesuÆiently small onstant � > 0), suh that at least one of them is guaranteed to separate D1and D2.The urrent stage of the algorithm is thus straightforward: Construt a set of O(1) andidateseparating lines (a onstant number of lines for a onstant number of orientations). For eahof these lines `, obtain the partition of S into two subsets indued by `, and ompute the(unonstrained) smallest enlosing disk for eah of the two subsets (this an be done in O(n)time). Disard any output in whih one of the radii of the two enlosing disks is larger than orequal to r1 or one of the enters is not in F . For any surviving output, take the largest of thetwo radii, and return the solution whih minimizes this value.The orretness of this proedure is an immediate onsequene of Lemma 3.1. Spei�ally,12



suppose that the optimal solution (in the presene of obstales) is a pair of disks D1, D2, whihare well-separated in the above sense, whose ommon radius r� is smaller than r1, and whih areentered at points of int(F ). (If there is no suh solution, it is lear that the proedure will notreport any solution.) As argued, one of the lines that the proedure proesses separates D1 andD2, and thus separates the sets S1 = S\D1, S2 = S\D2. Let D01 (resp. D02) denote the smallest(unonstrained) disk enlosing S1 (resp. S2). By Lemma 3.1, either D1 = D01 or it an be shrunkontinuously while ontinuing to ontain S1. This shrinking proess must eventually reah D01,for otherwise the enter of the shrinking disk would reah �F and this would ontradit thede�nition of r1. A similar argument applies to D2, and thus establishes the orretness of thisproedure. The overall ost of this step is O(n+ logm).3.4 The ase where the disks are nearly onentriIn this subsetion we handle the ase in whih the optimum solution onsists of two disks D1; D2,that are entered at points 1; 2 2 F , have ommon radius r� < r1 � � and satisfy j12j � r�.In this ase we proeed in a manner similar to that in [2, 8, 16℄. We briey desribe the approah,and refer the reader to these papers for more details. Spei�ally, in this ase there is a largeoverlap between the disks, and we an guess a point z, out of a set of O(1) andidate points,that lies in D1 \ D2. We an also guess an orientation, out of O(1) possible ones, so that theline ` passing through z at that orientation separates the two intersetion points of �D1 and�D2. Without loss of generality, assume ` to be horizontal.Let S+ (resp. S�) be the subset of the points of S that lie above (resp. below) `. Sort thepoints of S+ (resp. of S�) in ounterlokwise (resp. lokwise) angular order about z. De�ne amatrix struture M whose rows (resp. olumns) orrespond to the points of S+ (resp. of S�) insorted order. The (i; j)-th entry ofM represents the partition of S into a left subset SL(i; j) anda right subset SR(i; j), separated by the ray emanating from z upwards and passing between thei-th and (i+ 1)-st points of S+ and the ray emanating from z downwards and passing betweenthe j-th and (j + 1)-st points of S�. Clearly, the two disks D1, D2 of the optimum solutionsatisfy SL(i; j) � D1 and SR(i; j) � D2, for the entry (i; j) indued by the two rays that emanatefrom z towards the two points of intersetion of �D1 and �D2. See Figure 5 for an illustration.For eah (i; j), we assoiate four values with the (i; j)-th entry of this struture:� rL(i; j) = radius of the smallest disk that enloses SL(i; j) and is entered at a point of F ;� rR(i; j) = radius of the smallest disk that enloses SR(i; j) and is entered at a point of F ;� r0L(i; j) = radius of the (unonstrained) smallest disk enlosing SL(i; j);� r0R(i; j) = radius of the (unonstrained) smallest disk enlosing SR(i; j).Note that all four resulting matries are monotone. Spei�ally:� rL(i1; j1) � rL(i2; j2) for i1 � i2, j1 � j2.� rR(i1; j1) � rR(i2; j2) for i1 � i2, j1 � j2. 13
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��Figure 5: The ase where j12j < r� r0L(i1; j1) � r0L(i2; j2) for i1 � i2, j1 � j2.� r0R(i1; j1) � r0R(i2; j2) for i1 � i2, j1 � j2.We �rst run a matrix searhing step that omputes all entries (i; j) for whih rL(i; j) < r1and rR(i; j) < r1. This is done as in [16℄, by traing two monotone paths through the struture,sanning in total a linear number of entries, and using the dynami data struture of Setion 2to navigate through the matrix. (As noted in that setion, the data struture is also able,under the general position assumption, to detet the ase where there is a strit inequalitybetween the optimal solution and the given r1.) The output of this phase is a olletion ofmatrix substrutures M1; : : : ;Mt that have pairwise-disjoint sets of rows and of olumns andare arranged in row-inreasing and olumn-dereasing order; see Figure 6 for an illustration.We now solve within these submatries the unonstrained two-enter problem, using thetehniques of Eppstein [8℄ or Chan [2℄. We note that these tehniques treat the matries ina fully abstrat manner, and do not rely on any spei� geometri struture. All that theyrequire is that the matries be monotone, as above, and that there are `blak-box' routinesthat return any spei� value r0L(i; j) or r0R(i; j), or that ompare any of these values with anygiven r (where the latter operation is heaper than the former one). We modify the r0L and r0Rmatries as follows: Connet all the substrutures M1; : : : ;Mt by a sequene of row-inreasingand olumn-dereasing paths. For any entry (i; j) that lies above this path and outside thematries Mq, we put r0L(i; j) = +1, r0R(i; j) = 0, and for any entry (i; j) that lies below thispath and outside the matries Mq, we put r0L(i; j) = 0, r0R(i; j) = +1. The values of r0L(i; j)and r0R(i; j) remain unhanged within eah of the Mq submatries. See Figure 6. It is easy to seethat the new matries remain monotone, and that the blak-box routines mentioned above retaintheir asymptoti omplexity for the modi�ed matries (we simply augment the old routines withan initial binary searh step that determines whether the query entry lies in one of the matriesMq, above the onneting paths, or below the paths).14
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+1; 0
0;+1Figure 6: The matrix substrutures MqSuppose that the optimal solution (to the unonstrained problem) is attained at entry (i; j)(beause of the way we have modi�ed the matries, this entry must belong to one of the subma-triesMq). We laim that it must oinide with the optimal solution in the presene of obstales.In other words, we laim that the smallest disks DL; DR enlosing, respetively, SL(i; j), SR(i; j)are entered at points of F . This is argued as in the previous steps of the algorithm, usingLemma 3.1. Spei�ally, suppose to the ontrary that, say, DL is entered at a point of O.Sine (i; j) belongs to Mq, we know that there exists another disk D�L that ontains SL(i; j),is entered at a point of int(F ), and has radius smaller than r1. By Lemma 3.1, sine D�L isnot the smallest enlosing disk of SL(i; j), we an shrink it ontinuously, while keeping SL(i; j)ontained in it, until its enter reahes �F . This is easily seen to ontradit the de�nition of r1,and thus implies the laim.The overall ost of this proedure is thus (see [2℄)O(n logn log(mn) + n log2 n log2 logn):(The seond term redues to O(n logn) if randomization is allowed [2℄.) After running thisproedure, and the preeding ones, we obtain a threshold radius r2 � r1, whih is the smallestradius for whih there exists a solution to the two-enter problem with obstales in whih theommon radius of the disks is r2 and either at least one enter lies on �F or the enters are farapart or there is a large overlap between the disks.In the remainder of the algorithm, we seek a solution (if one exists) where the radius r� issmaller than r2 and where the distane between the enters is between r� and 3r�. Handlingthis `nearly-tangent' situation is the most involved stage of the algorithm.
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3.5 The NT2DC deision proedureTo failitate the handling of the nearly-tangent ase by the algorithm, we �rst desribe a deisionproedure that will be used in the algorithm. We are given S and F , as above, and a radiusr < r2. The goal is to determine whether there exist two ongruent disks of ommon radius rwhih are entered at int(F ), whose union overs S, and where the distane between the enters1, 2 is between r and 3r. We refer to this subproblem as the nearly-tangent two-disk overingproblem, or the NT2DC problem for short.We follow exatly the same tehnique as in [16℄. That is, we guess, in a onstant number ofpossibilities, an approximate orientation of the direted line 12 (heneforth assumed to be thepositive horizontal orientation) and a (vertial) line ` that separates the left enter 1 from thetwo intersetion points of the disks (if these points exist) or from the leftmost point of the rightdisk, otherwise. See Figure 7 for an illustration.
1 v1

v2
Figure 7: The ase r < j12j � 3rLet SL denote the subset of the points of S to the left of `. Form the intersetion Kr(SL)of all the disks Br(p), for p 2 SL, and interset all the other disk boundaries Br(q), and all theedges of F , with the right boundary �r of Kr(SL). We obtain a olletion of O(m+ n) ritialpoints along �r, whih an be onstruted and sorted along �r in O((m + n) log(m + n)) time(this follows from the observation that eah disk boundary and eah edge of F rosses �r atmost twie). We now trae the enter 1 of the left disk along �r, maintaining the set S2 ofpoints of S not ontained in Br(1). As 1 moves past a ritial point, S2 hanges by at most onepoint that is being added or deleted, or, if the ritial point lies on an edge of F , the enter 1enters or leaves F . Using our data struture, we determine, after eah suh transition, whetherS2 an be overed by a disk of radius r that is entered at F . We onsider as valid only aseswhere the portion of �r that 1 urrently traes is ontained in F ; the ritial intersetion points16



of the edges of �F with �r help us to keep trak of this property.The ost of this NT2DC deision proedure is O((m + n logn) log(mn)). Note that in thisproedure we assume that the left disk determines r�. The ase where the right disk determinesr� will be handled when we proess another orientation for whih 12 is nearly horizontal and1 lies to the right of 2.3.6 The ase where the disks are nearly-tangentNext assume that the optimal solution satis�es r� < j12j � 3r� and r� < r2. To detet thisase we use a limited amount of parametri searhing, applied to the NT2DC proedure thatwe have just presented. This is done as follows.We �rst onstrut the farthest-neighbor Voronoi diagram VORF (SL) of SL. For eah vertexv of the diagram we ompute (in O(1) time) the radius of the smallest disk entered at v andontaining SL. Similarly, for eah edge e of the diagram we ompute (again, in O(1) time) theradius of the smallest disk entered on e and ontaining SL. We obtain a list of O(n) ritialradii (as a matter of fat, we keep in the list only ritial radii that are smaller than r2), and weondut binary searh over that list, using the NT2DC deision proedure as a disriminator forthe searh. We obtain a range I that is delimited by two onseutive ritial radii and ontainsr�. For any r 2 I, the ombinatorial struture of the right boundary �r of Kr(SL) is the same,as follows easily from the struture and properties of the farthest-neighbor Voronoi diagram.The ost of this step is O((m+ n logn) logn log(mn)).In the next stage of the parametri searh, we take eah edge of F and eah irle �Br�(p),for p =2 SL, and attempt to loate their intersetion points with �r� along this urve (i.e., identifythe ar of �r� that ontains eah of these points). Interseting an edge e of �F with �r� amountsto interseting the line ontaining e with this urve and determining whether the endpoints ofe lie inside or outside Kr�(SL). Eah of these two operations is easy to aomplish using binarysearh on the breakpoints of �r�. Eah suh breakpoint is a point on some edge of VORF (SL)at distane r� from the two sites de�ning the edge. It is easy to de�ne the ritial values ofr� where the output to a query that seeks the position of suh a breakpoint relative to a givenline or point may hange. In a similar manner we an ondut an impliit omparison betweena breakpoint of �r� and a query irle of radius r�. We now exeute the generi simulation ofall these m+ n queries in parallel, applying the parametri searhing paradigm at eah parallelstep. The ost of a single parallel step isO ((log(m+ n)) � (m + n logn) log(mn)) ;and sine there areO(logn) parallel steps, the overall ost of this step isO((m+n logn) logn log2(mn)).We an improve this further, by a fator of O(logn), by using the tehnique of Cole [4℄. Thistehnique is appliable when the parallel exeution an be simulated on a network with boundedfan-out, and this property holds for our algorithm, whih is just a olletion of binary searhes.At this stage, we have limited the range for r� further, and for any r in the new range,we know the ombinatorial struture of �r, as well as all the ritial intersetion points of diskboundaries and edges of F along eah of the ars of �r. We still need to sort these points along17



eah ar, whih we do, in a generi simulation mode, in a manner similar to that desribedin the preeding paragraph. We omit the straightforward details. The ost of this step isasymptotially the same as that of the preeding one (and Cole's improvement is appliablehere as well).At this point we know the exat sequene of ritial points along �r�. This allows us toonstrut expliitly a sequene of O(m + n) bipartitions of S into a left subset S1 and a rightsubset S2, eah obtained by plaing a disk of radius r� entered between a pair of onseutiveritial points along �r� and by de�ning the orresponding S1 (resp. S2) to be the set of pointsof S that lie inside (resp. outside) that disk.Lemma 3.5 In the spei� subase under onsideration, the optimal radius r� is the upperendpoint of the urrent range (whih possibly onsists of a single point) produed by the preedingparametri searhing steps.Proof: Let D1 be the disk of the optimal solution whose enter 1 lies on �r�. Sine r� < r1,we know that D1 is the (unonstrained) smallest enlosing disk of S1 = D1 \ S. Hene theboundary �D1 ontains either three points of S1 or two diametrially-opposite points of S1. Byonstrution, at least one of these points belongs to SL. Consider the ase where exatly one ofthese points, p, belongs to SL, whih means that 1 lies in the relative interior of the ar  of�Br�(p) that appears along �r�. It follows that either there exists another point q =2 SL suh that�Br�(q) is tangent to  (at 1), or there exist two points q; s =2 SL suh that �Br�(q) and �Br�(s)interset  at a ommon point (namely, at 1). However, eah of these ases auses a disretehange in the sequene of ritial points along �r, as r varies through r�, and thus r� will be aritial value in one of the generi omparisons that one of the preeding steps makes. Similarreasoning applies when �D1 ontains two points of SL and one point in the omplementary set:In this ase 1 is a breakpoint of �r� and a irle �Br�(q), for some q =2 SL, passes through 1.Again, this is an event that auses a disrete hange in the sequene of ritial points and sowill also be deteted. Finally, the ase where �D1 ontains only (two or three) points of SL willbe deteted during the initial stage of the proedure that uses the farthest-neighbor Voronoidiagram, sine in this ase r� is one of the ritial values omputed at that stage. 2Finally, we go over the sequene of bipartitions and hek, for eah bipartition, whetherboth subsets S1, S2 an be overed by a disk of radius r� and entered in F . This is easy todo, by simply sanning through the sequene, maintaining dynamially the two orrespondingsubsets S1, S2, and performing these heks using our data struture. The ost of this step isonly O((m+ n) logn log(mn)). We return the �rst partition, and the two overing disks. If theproessing of the urrent guess for ` has reahed this point, the preeding analysis implies thatsuh a solution does exist.Putting everything together, we have shown:Theorem 3.6 The two-enter problem with obstales, for a set S of n points in the plane, anda olletion of polygonal obstales with a total of m edges, an be solved in randomized expetedO(m log2(mn) +mn log2 n log(mn)) time. 18



4 An EÆient Approximation AlgorithmIn this setion we develop a near-linear algorithm that produes an approximation to the optimal2-enter problem with obstales. That is, given " > 0, the algorithm omputes two ongruentdisks whose union overs S, whose enters lie in F and whose ommon radius is at most (1+")r�,where r� is the optimal radius. The algorithm runs in O(1=" log(1=")(m log2m+ n log2 n)) time.We begin with the following easy observation: Let � denote the diameter of S, and letp; q 2 S be two points suh that jpqj = �. (Clearly, p, q and � an be omputed in O(n logn)time.) Suppose �rst that r� < �=5. In this ase, the distane j12j between the enters of thetwo optimal overing disks must be at least jpqj � 2r� > 3r�. This implies (f. the analysis inthe �rst ase of the algorithm that solves the (exat) 2-enter problem with obstales) that thetwo optimal disks are disjoint and an be separated by a line whose orientation belongs to some�xed set of onstant size.The �rst stage of our algorithm �nds the optimal solution in ase r� < �=5, as follows.Clearly, in this ase the two overing disks are well separated, so, as already noted in theprevious setion, we an onstrut a set of O(1) lines so that at least one of them separates thetwo overing disks. Let ` be a line in this set, and let S1, S2 be the two subsets into whih S ispartitioned by `. We �nd the smallest disk enlosing S1 and entered at F in O((m+n) log(mn))time, using the algorithm of [9℄, and similarly for S2. Asymptotially the overall running timeof this stage is the same: O((m+ n) log(mn)).The next stage deals with the ase where r� is muh larger than �. Let p denote the entroidof S. Note that for any R > �, if F and BR(p) are disjoint, then any disk entered at a pointof F and ontaining any point of S must have radius at least R � �. On the other hand,if F \ BR(p) 6= ; and  is any point in this intersetion then S � BR+�(), implying thatr� � R +�.We apply the observations in the preeding paragraph with R = (1+2=")�. Clearly, we andetet in O(m+n) time whether F \BR(p) = ;. If so, we ompute the point  2 F nearest to p(in O(m) time), and return the single disk Bjpj+�() as an approximate solution. It is lear thatthis disk overs S. Moreover, as argued above, any disk entered at a point of F and ontaininga point of S must have radius at least jpj ��. Hene,jpj+�r� � jpj+�jpj �� � (1 + 2=")� +�(1 + 2=")��� = (1 + 2=") + 1(1 + 2=")� 1 = 1 + ";implying that our solution is a (1 + ")-approximation to the optimum.Hene, in the remaining part of the algorithm (the third stage), we may assume that�5 � r� � �2 + 2"��:Put r0 = �=5 and � = 10 + 10=". We thus assume that r� 2 [r0; �r0℄. De�ne rj = r0(1 + ")j=2,for j = 0; : : : ; J , where J is the smallest integer for whih (1 + ")J=2 � �; that is,J = 2 & log �log(1 + ")' = O�1" log 1"� :19



The idea of the �nal stage of the algorithm is to run a binary searh on the list of `ritialradii' (r0; r1; : : : ; rJ). At eah step of the searh, we run an approximating proedure for thetwo-disk-overing problem with obstales. The exat version of this proedure reeives as inputS, O and F , as above, and a radius r, and aims to determine whether S an be overed bytwo disks of radius r, both entered at F . The approximating solution of this problem will bepresented in the following subsetion. At eah searh step, we run this proedure with some rjas the input radius. The approximating proedure an have one of the following two possible(not mutually exlusive) outputs: (a) r� > rj; (b) r� � rj+1; in the latter ase, the proedurealso outputs two ongruent disks of radius at most (1+")1=2rj = rj+1 that are entered at pointsof F and whose union overs S. Hene, after O(log(1=")) alls to this proedure, we will haveobtained a radius rj � r� and two ongruent overing disks of radius � rj+2 = (1 + ")rj. Inother words, we will have obtained an approximate solution with the desired properties.4.1 An approximation algorithm for the two-disk-overing problemwith obstalesLet S, O, F and " > 0 be as above, and let r > 0 be an input radius. Reall that the goalof the exat problem is to determine whether there exist two ongruent disks of radius r whihare entered at points of F and whose union overs S. The goal of the approximating versionis to determine whether there exist two ongruent disks of radius at most (1 + ")1=2r whih areentered at points of F and whose union overs S. We �rst establish the following lemma:Lemma 4.1 If there exist two ongruent disks D1, D2 of radius r that are entered at points ofF and whose union ontains S then there also exist two other disks D01, D02 of radius at most(1 + Æ=2)r suh that(a) D01 [D02 overs S;(b) The enters of D01 and D02 both lie in the Minkowski sum (where BÆr=2 is the ball of radiusÆr=2 entered at the origin)FÆ = F � BÆr=2 = fx + y j x 2 F; jyj � Ær=2g;and() Either D01 and D02 are disjoint and there exists a line that separates them and has orientationjÆ=6, for some integer 0 � j � 12�=Æ, or D01 and D02 interset and the line onneting thetwo rossing points of their boundaries has orientation jÆ=6 for some j as above.Proof: Let 1 and 2 be the enters of D1 and D2, respetively. If j12j > 3r then it is lear thatD01 = D1 and D02 = D2 satisfy (a){() (in fat, they satisfy a stronger property than (), alreadyused in Subsetion 3.3, that there is a line separating these disks whose orientation belongs toa anonial set of onstant size, independent of Æ). So assume that j12j � 3r. Without lossof generality, assume that the orientation � of 12 is between �=2 and �=2 + Æ=6. Rotate 2about 1 by the angle � � �=2 in lokwise diretion, and let 02 be the resulting point, whih20



lies vertially above 1. We laim that D01 = B(1+Æ=2)r(1) and D02 = B(1+Æ=2)r(02) are two diskswith the desired properties. Indeed, we have j202j < j12jÆ=6 � 3rÆ=6 = Ær=2. This impliesthat D2 � D02, from whih (a) follows. Property (b) trivially holds for D01 and is an immediateonsequene of the preeding inequality for D02. Property () (with j = 0 in the spei� aseassumed above) is also immediate. 2The algorithm is now obvious. We put Æ = (1 + ")1=2 � 1. We �rst ompute FÆ. As is wellknown, FÆ has O(m) omplexity and it an be omputed in (deterministi) O(m log2m) time[11℄, or in randomized expeted O(m logm) time [12℄. We next iterate over the O(1=Æ) anonialorientations in Lemma 4.1. Let � be one of them, and assume for onveniene that � is vertial.Sort the points of S in their inreasing x-order; suppose that this order is (p1; p2; : : : ; pn). PutSi = fp1; : : : ; pig and S 0i = fpi+1; : : : ; png, for i = 0; : : : ; n, and test whether there exists an isuh that eah of Si, S 0i an be overed by a disk of radius (1+ Æ=2)r that is entered at a pointof FÆ. This an be eÆiently arried out using the dynami data struture of Setion 2.The �xed-radius irle shooting strutures of [3℄ work with the same resoure bounds as itedin Theorem 2.1 for the generalized polygons that onstitute the omplement of FÆ. We brieyjustify this laim; for this we assume familiarity of the reader with the paper [3℄. We note thatthe vertial deomposition used in [3℄ goes through for the generalized polygons after breakingirular ars into subars at points of vertial tangeny. Also, the data struture of [3℄ alls forthe omputation of the lower envelope of a olletion of graphs, eah being the boundary of theMinkowski sum of a disk of radius r with either a segment or a irular ar of radius Ær=2. Weompute the envelopes separately for eah family of objets in O(k log k) time, where k is thenumber of objets in the family, and then merge the resulting envelopes in time linear in theiromplexity, whih itself is linear in the number of objets de�ning the envelope.If no solution was found for any of the anonial orientations, we onlude that r� > r andoutput this inequality. Otherwise, we take eah of the resulting disks, all it D, and �nd thepoint q 2 F nearest to its enter . We replae D by Bjqj+(1+Æ=2)r(q), and note that its radiusis at most (1 + Æ)r = (1 + ")1=2r. We output the two new disks. (Stritly speaking, if the diskshave unequal radii, we replae the smaller one by a onentri disk that is ongruent to thelarger one.)For eah of the O(1=") anonial orientations and for eah of the O(logJ) = O(log(1=")) bi-nary searh steps, the deision proedure of the third stage of the algorithm runs inO((m log2m+n logn log(mn)) = O(m log2m + n log2 n) time, or in randomized expeted time O((m logm +n logn log(mn)). Putting everything together, we obtain:Theorem 4.2 Given S, O and F as above, and a parameter " > 0, one an onstrut two on-gruent disks that are entered at points of F , whose union overs S and whose ommon radius isat most 1+" times the optimal radius; the algorithm runs in time O(1=" log(1=")(m log2m+ n log2 n))or in randomized expeted time O(1=" log(1=")((m+ n logn) log(mn))).
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5 ConlusionsThe introdution of obstales in the p-enter problem is natural in the ontext of faility-loationtheory as it expresses onstraints on where failities an be plaed. We presented two algorithmsfor solving the 2-enter problem with obstales: an exat algorithm and a near-linear approxi-mation algorithm. These seem to be the �rst published eÆient solutions to this problem.A major problem that remains open is to devise a near-linear exat algorithm for the problem.In fat, any solution with running time o(mn) would be interesting. Notie that the only stage inour solution whose time requirements involve an mn fator is the stage where we look for disks,at least one of whih has a enter lying on an obstale edge. The other stages take near-lineartime.As mentioned in the Introdution, our motivation to study this problem omes from robotworkell layout. The robot plaement problem has several variants that also merit investigation:� Industrial robots or other failities may experiene downtime. Plae robots or failities toinsure redundany (i.e., eah workpoint overed by at least 2 disks).� Consider non-irular overs. For example over all workpoints with ones (e.g., as thoughpositioning ameras or other sensors). Industrial robots have joints limits, so the e�etiveover may be a disk setor instead of a disk. This adds another dimension to the problemsine non-irular overs require speifying orientation.� Similarly, industrial robots and failities may be mobile. Consider the plaement problemwhen one or more robots are mounted on linear traks that allow translation. Deidewhere to plae the traks avoiding ollision with the obstales. This is an extension of thesegment-enter problem [1℄ where obstales are also onsidered.� Often industrial robots are limited in how lose the end-e�etor an get to the robot base.This means that instead of overing the workpoints by disks we atually need to overthem by annuli, where the inner radius is �xed.� If the workspaes of the robots overlap, then robots may ollide as they reah the work-points. This ould be avoided during run-time using motion planning, or by overing withdisjoint disks, whih gives rise to a new variant of the p-enter problem.Finally, it would be interesting to devise eÆient solutions (exat or approximate) to the p-enterproblem with obstales with p > 2.Referenes[1℄ P. K. Agarwal, A. Efrat, M. Sharir, and S. Toledo. Computing a segment enter for aplanar point set. J. Algorithms, 15(2):314{323, 1993.22



[2℄ T. Y. Chan. More planar two-enter algorithms. Comput. Geom. Theory Appl., 13:189{198,1999.[3℄ S.-W. Cheng, O. Cheong, H. Everett, and R. van Oostrum. Hierarhial vertial deompo-sition, ray shooting, and irular ar queries in simple polygons. In Pro. 15th Annu. ACMSympos. Comput. Geom., pages 227{236, 1999.[4℄ R. Cole. Slowing down sorting networks to obtain faster sorting algorithms. J. ACM,34(1):200{208, 1987.[5℄ R. Cole, J. Salowe, W. Steiger, and E. Szemer�edi. An optimal-time algorithm for slopeseletion. SIAM J. Comput., 18(4):792{810, 1989.[6℄ J. Craig. Geometri algorithms in Adept RAPID. In P. K. Agarwal, L. Kavraki, andM. Mason, editors, Third Workshop on Algorithmi Foundations of Robotis, pages 133{139. A. K. Peters, Ltd, Wellesley, MA, 1998.[7℄ D. Eppstein. Dynami three-dimensional linear programming. In Pro. 32nd Annu. IEEESympos. Found. Comput. Si., pages 488{494, 1991.[8℄ D. Eppstein. Faster onstrution of planar two-enters. In Pro. 8th ACM-SIAM Sympos.Disrete Algorithms, pages 131{138, 1997.[9℄ D. Halperin and C. Linhart. The minimum enlosing disk with obstales. Manusript, 1999.Java applet: http://www.math.tau.a.il/CGAL/Projets.html.[10℄ P. Hansen, B. Jaumard, and H. Tuy. Global optimization in loation. In Z. Drezner, editor,Faility Loation, pages 43{68. Springer-Verlag, New York, 1995.[11℄ K. Kedem, R. Livne, J. Pah, and M. Sharir. On the union of Jordan regions and ollision-free translation al motion amidst polygonal obstales. Disrete Comput. Geom., 1:59{71,1986.[12℄ J. Matou�sek, N. Miller, J. Pah, M. Sharir, S. Sifrony, and E. Welzl. Fat triangles determinelinearly many holes. In Pro. 32nd Annu. IEEE Sympos. Found. Comput. Si., pages 49{58,1991.[13℄ N. Megiddo. Linear-time algorithms for linear programming in R3 and related problems.SIAM J. Comput., 12:759{776, 1983.[14℄ N. Megiddo and K. J. Supowit. On the omplexity of some ommon geometri loationproblems. SIAM J. Comput., 13(1):182{196, 1984.[15℄ M. H. Overmars and J. van Leeuwen. Maintenane of on�gurations in the plane. J.Comput. Syst. Si., 23:166{204, 1981.[16℄ M. Sharir. A near-linear algorithm for the planar 2-enter problem. Disrete Comput.Geom., 18:125{134, 1997. 23


