State of the Union (of Geometric Objects): A Review

Pankaj K. Agarwal Janos Pach Micha Sharib

July 9, 2007

Abstract

Let € be a set of geometric objectsiRf. The combinatorial complexity of the uniaf(C)
of C is the total number of faces of all dimensions, of the arramgy& of the boundaries of the
objects, which lie on its boundary. We survey the known ugymemds on the complexity of
the union ofn geometric objects satisfying various natural conditiombese problems play
a central role in the design and analysis of many geometgoriéhms arising in robotics,
molecular modeling, solid modeling, and shape matching, tae techniques used for their
solutions are interesting in their own right.

1 Introduction

LetC = {C4,...,C,} be a set ofn geometric objects, such as disks or convex polygons in the
plane, or balls, cylinders, or convex polyhedra in threetgigter dimensions. L&t(C) = |J;-_, C;
denote the union of the objects th The combinatorial complexity (or complexity for brevitgj
U(C) is the number of faces of the arrangement of the boundaridseadbjects, which lie on the
boundary of the union; see below for a formal definition. $alveombinatorial and algorithmic
problems in a wide range of applications, including lineargpamming, robotics, solid modeling,
molecular modeling, and geographic information systeras,be formulated as problems that seek
to calibrate the complexity of the union of a set of objectspacompute their union. We begin by
reviewing some of these applications.
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Figure 1. An instance of two-dimensional linear programming: (a) Efaded region denotes the feasible region
©_, Cy; (b) The shaded region denotegf._; C..

Linear programming.  Given a familyC = {C’, ..., C,} of n halfspaces iR, we want to max-
imize a linear function oven);”_; C;. Since the maximum (if it exists) is achieved at the boundiry
the common intersection, the problem can be reformulatexdimisnizing a linear function over the
boundary ofl J_, C;, whereC; is the (closed) halfspace complementanCtg see Figure 1. The
worst-case running time of the simplex algorithm, as weliresy other naive solutions to linear
programming, is proportional to the total number of vedicé U(C). According to McMullen’s
Upper Bound Theorem [96, 97], this number cannot exceed

() ("l ™)

with equality for cyclic polytopes and for all other simpéitneighborly polytopes. Regarding the
dimensiond as a constant, an assumption that we will follow throughbig paper, we can write
this bound a® (nl%/2)).

Robotics. Assume that we have a robot systdsmwith d degrees of freedom, i.e., we can rep-
resent each placement &f as a point inR?. We call the space of all placements t@nfigura-
tion spaceof B. Suppose the (say, three-dimensional) workspacB &f cluttered with a family

0 ={0,...,0,} of polyhedral obstacles whose shapes and locations arerknBvis allowed

to move freely in a motion that traces a continuous path incthiguration space, but has to
avoid collision with the obstacles. For eadh, let C; C R? be the set of placements 6fat which

it collides with the obstacl®);. C; is referred to as th€'-obstacle(or expanded obstadiénduced
by O;. Set€ = {C4,...,C,}. Thefree configuration spacE = R¢\ U(C) is the set of alfree
placements of3, i.e., placements at whicB does not intersect any obstacle.

For instance, letB be a convex polygonal object with vertices, which is only allowed to
translate inR?. LetO = {Oy,...,0,,} be a set ofn convex polygonal obstacles R?. Fix a
reference poinb (the origin) within B. A placement ofB can be represented by specifying the
z- andy-coordinates ob. B intersects an obstacl@; if and only if o belongs to the “expanded
obstacle’C; = O; @ (—B), where® denotes thélinkowski sumi.e.,

Ci:{x—b|$60i,b€B}.
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HenceF = R? \ U(C); see Figure 2.

Figure 2. The space of free placements of the roBois the complement of the union of the expanded obstac]|es

Going back to the general case, 6t R be a given initial free placement d8. Then
the set of all free placements @ that can be reached frod via a collision-free continuous
motion corresponds to the connected componerit obntainingZ. The problem of determining
whether there exists a collision-free path from an init@hfiguration! to a final configuratiorf” is
equivalent to determining whethérand £ lie in the same connected componenifof

This close relationship between union of regions and magtianning has been a major mo-
tivation for studying the former problem, and has led to @ersble work on various aspects of
the union problem [11, 66, 89, 107, 109]. The complexitQ¢€) serves as a trivial lower bound
for the running time of many motion-planning algorithmsttb@ampute the entire free space. How-
ever, in view of the preceding discussion, there is alsoidenable interest in bounding the com-
binatorial complexity of, and constructing, a single carted component of the complement of
U(e) [65, 109].

Molecular modeling. A molecule can be modeled as the union of a family of balls, rerlie
radius of each ball depends on the atom that it models andaiggn of each ball depends on the
molecular structure. In the€an der Waals modeh molecule is a family of possibly overlapping
balls, where the radius of each ball is determined by the wnAhals radius of the correspond-
ing atom in the molecule; see Figure 3 (a). Lee and Richards@®posed another model, called
solvent accessiblenodel, which is used to study the interaction between théepr@and solvent
molecules. A molecule is modeled as a family of balls in thizdel as well, but the balls repre-
senting the solvent molecules are shrunk to points and the fepresenting atoms in the protein
are inflated by the same amount [105]. See Figure 3 (b). Examgththese models ignore various
additional properties of molecules, they have been usefalvariety of applications. Many prob-
lems in molecular modeling can be formulated as problenaedlto geometric, combinatorial, or
topological properties of the union of balls. See [46, 67,f6bmore details.
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Figure 3. Representing (chain A of) the protein 1A22 as the union oftatbkalls: (a) atoms are drawn using van der
Waals radii, and (b) solvent accessible model.

Constructive solid geometry. Constructive solid geometry (CSG), a widely used technique
CAD and computer graphics, is a method for representing tmnobject as a Boolean function of
simple objects (called primitives); see Figure 4. Often GB@vides a rather simple representation
of a visually complex object, using a Boolean formula cléueh challenging problem in this area
is to compute the boundary representation of the compleacbfijom the given Boolean function,
which basically reduces to the problem of computing the mirtio intersection of two (or more)
objects. Much work has been done in CSG on developing simgiteist, efficient algorithms for
computing the boundary representation. See [61, 86] foerdetalils.

u\

#
4

/N
N |

Figure 4. Representing a complex object as a Boolean function of piviesi. The figure is taken from [1].



Proximity problems. Let P and@ be two finite point sets ift?. Thedirected Hausdorff distance
from P to @), denoted by:(P, Q), is (here|| - || denotes the Euclidean norm, but other metrics can
also be considered)

h(P.Q) = in||p—ql.
(P,Q) I;leaggggllp qll

The Hausdorff distancdetweenP and@ is H(P, Q) = max{h(P,Q),h(Q,P)}. Itis a widely
used metric to measure similarity between two point set$. A(e, r) denote the ball of radius
centered at. Thenh(P,Q) < r if and only if P is contained in the unioqueQ B(q,r). Hence,
the decision problem of computing the Hausdorff distanae, whetherH (P, Q) < r, can be
formulated as point location in the union of a set of congtiseis (or, more generally, of translates
of the unit ball of the given norm) [10, 72, 73].

Small-sizec-nets. Given a point sef?, and an admissible collectidR of ranges(subsets o),
and a parameter > 0, ane-netof (P, R) is a subsefV C P with the property that any range that
contains at least| P| points of P contains at least one point &f. By now, e-nets are a standard
and useful tool in the design and analysis of geometric dlguos; see [92, 99] for more general
definitions and reviews. If th¥C-dimensiorof the range space has a finite vatuén geometry,
this is the case when the ranges have simple shape, sucHsgmbask, balls, tetrahedra, etc.), there
existe-nets of sizegcd/e) log(d/¢), for some absolute constanf71, 83]. A challenging question
is to identify the situations in which the logarithmic factmn be removed or replaced by a smaller
factor. See, e.g., MatouSek et al. [94] for a result of thigkfor the case when the ranges are
halfplanes in the plane or halfspaces in three dimensionarksédbn and Varadarajan [34] have
recently shown that if the complexity of the union of anganges inR is sufficiently close t@(r),
then the above general bound on the size of the smaklest for (P, R) can be improved.

Conflict-free colorings. A coloring of a family € of regions in the plane is callecbnflict-free

if for each pointp € U(C), there is at least one region containingvhose color is unique among
all regions inC that containp. This definition was motivated by a frequency allocationbbem
for cellular telephone networks [54]. Minimizing the numhof frequencies used by the system
requires minimizing the number of colors in a conflict-fradocing of the transmission ranges of
the base-stations. Alon and Smorodinsky [12] showed thatneter the family© has the property
that the complexity of the union of anyranges inC is O(r), there is a conflict-free coloring using
only O(log® D) colors, whereD denotes the maximum number of regions@rthat intersect a
given region. For other results on conflict-free coloringttexploit the complexity of the union of
the regions to be colored, see Har-Peled and Smorodinsky [70

These examples illustrate the wide scope of problems tmabedormulated in terms of, or are
closely related to, the union of a collection of geometrigeots. Before proceeding further, we
formalize our notation and introduce additional termimgylo



Preliminaries and notation. We assume that each obje&ct in the given collectiort is a semi-
algebraic set.In many cases we will also assume that eGghas constant description complexity,
which is the case, e.g., for balls, cylinders, or tetraheH@vever, we will also consider objects of
non-constant description complexity, such as convex malgdn Also, in many planar instances, we
will relax the condition, by considering fairly arbitraryives, with the main restriction that each
pair of them intersect in a constant number of points.

Eachface of U(C) (or, more precisely, obU(C)) is a maximal connected (relatively open)
subset ofoU(C) that lies in the intersection of the boundaries of a fixed sul$ objects, and
avoids all other objects d@f. As usual, we refer to faces of dimensidland1 asverticesandedges
(or elementary args respectively. Theombinatorial complexitpf U(C), denoted by:(C), is the
total number of faces, of all dimensions, that appea®tiC). Note that, in certain cases, this
notion of a face is too “liberal”: if the boundary of an obj&cte € is not a single algebraic surface,
we typically regard each maximal connected portion of it thes on a single surface (variety) as
a separate “face” (this is the case, e.g., for convex polygorpolyhedra). In this case one may
want to define a face dfi(C) to be a maximal connected region that lies in the interseatioa
fixed subset of faces of individual objects@r(and avoids all other such faces and objects). In such
cases, we will continue to use the notatiof€) to denote the combinatorial complexity tfC)
under this refined definition of a face.

The study of the union of geometric objects falls into theaordopic ofarrangementf ge-
ometric objects, which has been studied since the semimparday J. Steiner in 1826 [112], and
which has received much attention in the last quarter cgnt8lightly modifying the traditional
definition, thearrangementof a finite collectionC of (full-dimensional) geometric objects R,
denoted agl(C), is the decomposition af-space into relatively open connected cells of dimensions
0,...,dinduced by, where each cell is a maximal connected set of points lyirgérintersection
of the interiors of a fixed subset €fand of the boundaries of another fixed subset, and avoids all
other sets of; lower-dimensional faces are also referred tdaaes (As above, if the boundaries
of the objects oft do not have constant description complexity, the arrangernself is refined
accordingly.) Note thal((C) is a substructure ofl(C), in the sense that each facelofC) is also
aface ofA(C). U(C) typically contains in its interior many faces df(C), but they are ignored in
the analysis of its complexity. As such(C) is bounded by the combinatorial complexity 4fC),
which, in the worst case, ©(n?) if the objects inC are semi-algebraic sets of constant descrip-
tion complexity. In the worst case, the asymptotic bound:@®) can indeed b@&®(n?). This is
the case, for example, whéhis a family ofn large and flat “plates” ifR¢, each being the region
enclosed between a pair of parallel and sufficiently cloggehylanes. See Figure 5 for a simple
planar construction involving triangles. HoweverCiatisfies certain natural conditiong,C) may
be smaller. For example, the case of halfspaces, mentidrma ayields the particularly favorable
bound®(nl%/2!) on k(C). The challenge is thus to identify classes of objects forcwhie bound
on (@) is substantially smaller tha®(n?). As we shall see, in most of the cases that we will
review herex(C) is close toO(n?~1). Easily constructed matching lower bounds indicate tHat th

A subset ofR? is called areal semi-algebraic séif it is described in terms of a bounded number of polynomils
bounded maximum degree in a bounded number of variables.



is the best “order of magnitude” one can hope for in most ofetfavorable instances. We will oc-
cassionally use the shorthand notath( f(n)) to denote bounds of the ford. f(n) - n*, which
hold for anye > 0, where the constant of proportionaliy. depends o, and typically tends to
oo ase decreases t0.

Figure 5. n pairwise crossing triangles witB(n?) intersection points on the boundary of their union.

The rest of the survey is organized as follows. We review timnn results on the complexity
of the union of planar objects in Section 2, and of three-disitnal objects in Section 3. We also
sketch proofs of some of the main results. We then brieflyexewn Section 4 the (very few) known
results in higher dimensions. Section 5 discusses theaesdtip between the union of objects and
generalized Voronoi diagrams, and gives a brief review efrétent progress in the analysis of the
complexity of these diagrams. We conclude in Section 6 wighat discussion of the topic and its
relatives.

2 Union of Planar Objects

In this section we review the known results on the union ofngetnic objects in the plane. The
study of the union of planar objects goes back to at leastdhg €980s, when researchers were
interested in the union of rectangles or disks, motivate&/b$! design, biochemistry, and other
applications [26, 77, 84, 104]. However, the early work fad on computing the union or its
measure, rather than bounding its complexity.

2.1 Union of pseudo-halfplanes

LetF = {f1,..., fn} be a set ofn totally defined continuous univariate functions. For eggh
let C; be the set of points lying on one of the sides of (above or betbes graph off;. We refer
to C; as apseudo-halfplaneIf C; lies below (resp., abovej, it is called alower (resp.,uppei)
pseudo-halfplane. Sét= {C1,...,C,}. Ifeachf; is alinear function, thedll(C) is the boundary
of a convex polygon, sa&(C) is linear. For more general functions, the bounds:6@) are more
involved, and are related to lower and upper envelopes, atkfig follows.
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The lower envelopeof a collectiond of functions, as above, denoted by, is the pointwise
minimum of the functions ¥, i.e.,

Lgy(z) = 1r§nii£n fi(x).

Theupper envelopés defined as the pointwise maximum®fi.e.,
Us(w) = max fi(z).

If each(C; is a lower pseudo-halfplane, thét{C) is the region lying below the upper envelope of
F. Similarly, if eachC; is an upper pseudo-halfplane, tHeé(C) is the region lying above the lower
envelope off. A fundamental observation (see [109]) is that if the grapihany pair of functions
in F intersect in at most points, for any fixed constant, then the graph of the lower or upper
envelope off consists of at most;(n) elementary arcs, whevg(n) is the maximum length of an
(n, s) Davenport-Schinzel sequensee [109] for more details. Letting(n) denote the extremely
slow-growing inverse Ackermann function, the best knowarms on\,(n) are

A(n) = n,

)\Q(n) = 2n-— 1,

As(n) = ©(na(n)),

Ma(n) = ©(n-200),
Aost2(n) = n- 26(a*(n)) fors > 1,
Xosi3(n) = na(n)0@ ™) for s > 1.

Figure 6. Functions inF~ (resp.,J 1) are drawn with dashed (resp., solid) lines. The sandwiglorebetweeriJ.—
andL4+, the complement df.(C), is shaded.

The case when some of the region€afre lower pseudo-halfplanes and some are upper pseudo-
halfplanes is not that much harder. L&t (resp.,F) denote the subset of those functions in
F that bound lower (resp., upper) pseudo-halfplane8.inThenU(C) is the complement of the
sandwich regionconsisting of those points that lie above the upper eneeldp- and below the
lower envelopel.y+. See Figure 6. It is known (and easy to show) that the contylefithe
sandwich region is proportional to the sum of the complegibfU4- and of L. We thus have
the following result.

Theorem 2.1. Let € be a set ofn pseudo-halfplanes so that the boundaries of any pair of them
intersect in at most points. Then:(C) = O(As(n)).



2.2 Regions with few pairwise boundary intersections

LetC = {C1,Cy,...,C,} be a family ofn simply connected regions in the plane, each bounded
by a simple closed Jordan curve. Assume, for simplicityt thase curves are igeneral position

i.e., any two of them cross only a finite number of times (tworegv; and~, are said t@rosseach
other at a point, ify; passes from one side f to the other side at this point), no two curves touch
each other, and no three curves pass through a commor?point.

In this subsection we consider the case in which the bouesiafiany pair of regions ifi cross
in a small number of points, and derive linear, or near-lineaunds for the complexity of their
union.

Union of pseudo-disks. If the boundaries of any two distinct regions @ncross at most twice,
thenC is called a family ofpseudo-disksSee Figure 7. In this especially favorable case, we have
the following result.

(@) (b)

Figure 7. (a) A family of pseudo-disks. (b) Another family ef pseudo-disks witltn — 12 elementary arcs on the
boundary of its union.

Theorem 2.2 (Kedem et al. [76]).LetC = {C4,Cs,...,C,} be afamily ofn > 3 pseudo-disks in
the plane. Then the boundary 6fC) consists of at modtn — 12 elementary arcs, and this bound
is tight in the worst case.

We present the proof of Theorem 2.2 for the case of circuklesdi(A more direct proof for the
union of circular disks based on the so-calliéthg transform which extends to higher dimensions,
is given in Section 4.) Assign to each its centerp;, and connegp; to p; by a straight-line segment
if and only if 9C; and9C; cross each other, and at least one of their crossing poiftsidseto
JU(C); see Figure 8. It is easy to verify that no two segments in éiselting geometric grapt¥
cross each other, i.&5 is planar. ThereforeG has at mos3n —6 edges, each of which corresponds

20ne can extend the general position assumption to othamioss and to higher dimensions; see [109]. There is a
general perturbation-based argument [109] that showsttleadsymptotic upper bound o(C) is not affected by the
general position assumption.



to at most two vertices a¥U/(C). Consequently, the number of crossingsd@f(€), and hence the
number of elementary arcs, is at mést— 12. The proof for the case of general pseudo-disks also
uses planarity, and follows as a special case of the proofrobie general result (Theorem 2.5),
given later in this section.

In other words, theecomplexityof U(C') is at most linear in.. A lower-bound construction
(which can also be realized using normal disks), in whichnilnaber of elementary arcs is exactly
6n — 12, is shown in Figure 7(b). The proof for general pseudo-disks be found later in this
subsection, where a generalization of Theorem 2.2 is statdgroved (Theorem 2.5).

Figure 8. The proof of Theorem 2.2 for disks.

We conclude the discussion on pseudo-disks by giving twoekes of pseudo-disks that arise
in practice. First, recall the example of translational imoplanning in the plane. Because of this
application, the lemma is formulated in terms of the reftacti B of B, but it holds of course for
B too.

Lemma 2.3 (Kedem et al. [76]).Let Oy, O, be two disjoint convex bodies in the plane, andBet
be another convex body in the plane. Then the boundarie® dflihkowski sumé€; = O & (—B)
andCy = O, @ (—B) cross at most twice.

Proof: We argue that’; andCs have exactly two common outer tangents, from which the lemma
follows easily. For a convex bod¢' and for eachd € [0,27), define f(C,0) to be the signed
distance from the origim to the unique tangent(C,#) to C' at orientationd, which hasC' lying

to its left; f(C, 0) is positive (resp., negative) if lies to the left (resp., right) of (C, ). It easily
follows from the definition of Minkowski sums that

f(C,0) = f(O1,0) — f(B,0)
f(C2,0) f(O9,0) — f(B,0).
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Figure 9. The proof that”; andC> have only two common outer tangents.

See Figure 9. Hence;(C1,60) = 7(C4,0), i.e.,C; andCy have a common outer tangent at ori-
entationd, if and only if 7(O1,6) = 7(02,6), i.e., O; and O, have a common outer tangent at
orientationd. SinceO; andO, are disjoint, they have exactly two common outer tangemis the
claim follows. O

Lemma 2.3 implies that if0 = {O4,...,0,} is a set ofn > 3 pairwise-disjoint convex
obstacles and3 is a convex “robot” translating in the plane, théf, the boundary of the free
space, has at most. — 12 elementary arcs. IB and the obstacles are convex polygons, so that
B hask vertices, and the total number of obstacle vertices thenF hasO(kn + s) vertices, of
which at mos6n — 12 are reflex intersection vertices.

Another commonly occurring example of pseudo-disks is @wemfhomothets Let B be a
convex body in the plane, and for< i < n, let C; be a homothetic copy a8, i.e.,C; = \;B + x;
for arbitrary parameters; > 0 andxz; € R2. SetC = {Cy,...,C,}. Itis known (and easy to
show) thatC is a family of pseudo-disks. Henc@l((C) has at mosén — 12 elementary arcs.

Allowing three intersections. What happens if we somewhat weaken the condition in Theo-
rem 2.2, by assuming that the boundaries of any two membetsarbss at mosthree times,
rather than twice? At first glance this problem seems to blsfodecause two closed curves in
general position can cross only amennumber of times. However, by a slight modification we
obtain a meaningful question with a somewhat surprisingvans

Theorem 2.4 (Edelsbrunner et al. [44]).Let {y1,7,...,7,} be a family ofn simple curves in
general position in the upper halfplane. Assume that thgeimtis of each curve are on theaxis,
and that any two curves cross at most three times (1 efenote the bounded region enclosecby
and thez-axis (see Figure 10 (a)). Thet{C) = O(na(n)), and this bound is asymptotically tight.

Note that if eachy; is an z-monotone curve, then Theorem 2.4 follows from Theorem 2.1.
However, as seen in Figure 10 (a), nonmonotone curves mag denles in the union (i.e., bounded
components of the complement of the union), which makes thef pf the above theorem less
obvious and quite technical. The proof of Edelsbrunner ef4dl] proceeds by constructing a

11



1 1232 4 3 5 5 467 67
(@) (b)

Figure 10. (a) Union of 3-intersecting regions. (b) The curlfe it switches from one input curve to another
at hollow circles, and the filled circles denote the vertiokshe U(C) that are not switching points df; ¥ =
(1,1,2,2,3,3,4,4,4,5,4,6,6,7,7).

curvel that starts at-oco on thez-axis and proceeds to the right, always following one ofthe
consistently with its orientation, possibly switching st intersection points, but never visiting a
point more than once, and eventually endingtab on thex-axis. The curvd’ traces each arc
of U(C) exactly once, consistently with the orientation of the esponding input curve, and all
holes of U(C) lie outsidel, i.e.,I" can be continuously deformed withlio(C), so as to coincide
with the z-axis; see Figure 10 (b). The proof then continues by lagetiach elementary arc of
' that appears odU(C) with the curve to which it belongs, producing a sequekicef labels.
One can then show that if one removes every symbal efhich is equal to its predecessor, then
the remaining sequence is an, 3) Davenport-Schinzel sequence, and thus its length(isx(n)).
One can also show that the number of deleted label¥(isx(n)), which completes the proof of
Theorem 2.4. The details can be found in [44].

Beyond three intersections. If we allow the boundaries of two objects ¢hto cross at modour
times, then the situation completely deteriorates. Asfithted in Figure 5, every pair of the
triangles intersect in precisely four points, andzkz@) intersection points belong to the boundary
of their union. However, Whitesides and Zhao [117] discedethat by excluding certain types
of crossings between the members@fit is still possible to prove a linear upper bound on the
complexity of U(C) even if pairs of members df may intersect in more than two points. More
precisely, a familyC of simply connected regions bounded by simple closed cuirvegeneral
position in the plane is callektadmissiblgwith k£ even) if for any pailC;, C; € C,

(i) C;\ C;andCj )\ C; are connected, and
(i) 0C; andoC; cross in at mosk points.

See Figure 11. Theorem 2.2 is a special case of the folloviiagrem (witht = 2).

Theorem 2.5 (Whitesides and Zhao [117])LetC = {C1,Cy,...,C,} be ak-admissible family
of n > 3 simply connected regions in general position in the plarfenbl(C) consists of at most
k(3n — 6) elementary arcs, and this bound cannot be improved.

12
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Figure 11. A pair of regions belonging to a (dyadmissible family, (b) nonadmissible familg'( \ C- is disconnected).

Proof: We sketch the proof given in [101] (see also [103]). As usitialffices to bound the number
of vertices ofU(C). For everyC; that contributes at least one arcdt{(C), we fix a pointp; in the
interior of such an arc. For any pdif;, C; € C that generate a vertexon OU(C), we draw an
edge (but only onelk;; betweerp; andp;, as follows. Starting fronp;, follow 0C; to ¢ (in any
direction), and from there followC; to p; (in any direction). Letd be the resulting graph; see
Figure 12.

We claim that any two edges di not incident to the same vertex cross an even number of
times. We sketch the proof of this claim for the case of psedigks ¢ = 2). Lete;; andey, be two
edges offf, where the first (resp., second) edge passes through aseictien pointy;; (resp.,qgxr)
of the boundaries of’;, C; (resp.,Cy, C¢), which lies on the boundary of the union. Each of the
pointsg;;, qxe Splits its respective edge into two “half-edges.” We claimattany pair of half-edges
cross an even number of times, that is, either twice or noll.alf ghis were not the case, then the
two half-edges would cross exactly once, and then the psdistqoroperty is easily seen to imply
that one endpoint of each half-edge must lie in the interidhe other object, which is impossible,
since each half-edge starts and ends at a point on the bgquafitlve union. This argument also
applies to any eveh > 2, exploiting condition (i) above.

Figure 12. The union of pseudo-disks via a planarity argument. Eachtpgiis labeled as, and pointsy;; are labeled
asij. Heree(1, 2) ande(3, 4) cross each other six times.

A remarkable result by Chojnacki (alias Hanani) [33] (sesw 4116, 91], and [103] for a new
proof), states that if a grapd can be drawn in the plane so that any two of its edges not intide
the same vertex cross an even number of times, thenplanar. Hence, we can conclude ti#ais
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planar, so it has at mo8t. — 6 edges. That is, there are at mdst— 6 pairs{C;, C;} contributing
vertices tdll(C), and each of them can contribute at mbsiuch points. O

Counting regular vertices. If 0C; and9dC; intersect in precisely two points, then we call these
intersection pointsegular; otherwise their intersection points are caligdgular. See Figure 13(a).
A vertex of U(C) is regular if it is a regular intersection point, and irreggubtherwise. If¢ is a set

of pseudo-disks, thet{(C) does not have any irregular vertex. A natural way to gerezaliheo-
rem 2.2 is to obtain sharp bounds on the number of regulaicesrinll(C) even if the boundaries
of some pairs of objects ifi intersect at more than two points.

@) (b)

Figure 13. (a) Regular (darkly shaded circles) and irregular (ligthaded circles) vertices of planar unions. (b) A union
of convex polygons with quadratically many regular vedice

Let € be afamily ofn. > 3 convex regions in general position in the plane, andkigt) and(C)
denote, respectively, the number of regular and irregudatioes oflUl(C). Pach and Sharir [101]
showed that

R(C) < 2I(C) + 6n — 12. (1)

This result is sharper than Theorem 2.2, in the sense thagstablishing the upper bound
6n — 12 on the number of elementary arcs (or the number of intesegoints) ondlU(C), one
does not have to insist that all boundary intersection padfitpairs of objects o€ be regular. It
suffices to require that all verticesfC) be regular. The extension of the above result to nonconvex
regions remains elusive:

Open Problem 1. Is it true that for every sek of n simply connected regions in general position in
the plane, one hag(C) < 21(C) + 6n — 12?

It is not hard to show that the coefficient 6fC) in (1) cannot be replaced by any constant
smaller thar2. Moreover, in generaR(C) can be©(|C|?) = ©(n?) in the worst case, as is illus-
trated in Figure 13(b), unless we limit the number of timesstbundaries of a pair of curves th
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Figure 14. The lower-bound construction for the number of regularigesgt on the union of rectangles and disks.

are allowed to cross each other (this number is not boundeddonstant in Figure 13(b)). How-
ever, we cannot expectlamear upper bound even under such an assumption (unless we deal wit
pseudo-disks): For any, we can construct a famil§ of n disks and rectangles in general position
in the plane satisfying?(C) = Q(n*/3), as follows. Take a system of/2 lines andn,/2 points with
O(n*3) incidences between them [99]. Fix two sufficiently smallgmaeters) < ¢ < ¢/ < 2e.
Shift each line by distancesand2e, and create a sufficiently long rectangle bounded by théeshif
copies. Expand each point into a disk of radilis See Figure 14. With an appropriate choice of
e, €, the resulting family of rectangles and disks Its:*/3) regular vertices on the boundary of
their union. For the special case of rectangles and disksbtiund is asymptotically tight [17]. If

C is a set ofn simply connected regions so that the boundaries of any palrem intersect in at
mosts points, for some constant> 0, then there exist§ = 4(s) > 0 such thall(€) hasO(n?~9%)
regular vertices [17]. Recently, the bound has been impréee*(n*/?), where the constant of
proportionality depends asn(and on the hidden > 0), if the objects inC areconvex58]. See also
[56] for some related results.

Open Problem 2. Let € be a set of simply connected regions in general position énplane, so
that the boundaries of any pair of them intersect in at mostes@onstant numbes, of points.
Obtain a sharp bound o®(C), which depends only om (and s), and not on/(C).

2.3 Union of fat objects

The construction depicted in Figure 5, showing that the m@bn triangles may haveguadratic
complexity, uses extremely narrow triangles. On the otlardh as we saw in Section 2.2, the
complexity of the union of: circular disks or (axis-parallel) squares is linear, thbgreaising the
guestion whether the union of “fat” objects has small coxipfe In the last fifteen years this
guestion has been answered in the affirmative under variotisns of fatness [13, 48, 50, 51, 93,
102]. In fact, these results have motivated the study oéfagtometric algorithms, for a variety of
applications, for fat objects in two and three dimensions[485, 75, 85, 110, 111]. In this section
we review the known results on the complexity of the unionatfdlanar objects, starting with the
simplest but important case of fat triangles.
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Union of fat triangles. For any fixeda > 0, a triangle is calledy-fat if each of its angles is
at leasta. MatouSek et al. [93] proved that the complexity of the wmnaf n «-fat triangles is
O(nloglogn), for any fixeda > 0. Their proof is based on the fact that every fan@lpf n «-fat
triangles in the plane determines at most a linear numbéolefs namely, bounded components
of the complement of((C). The strongest known bound on the number of holes (in ternits of
dependence on) is the following.

Theorem 2.6 (Pach and Tardos [102]) Any familyC of n a-fat triangles in the plane determines
O((n/a)log(1/a)) holes. This bound is tight up to the logarithmic factor.

Proof: We sketch the earlier proof, given in [93], of an upper boundree number of holes, which
is linear inn, but in which the dependence of the constant of proportitynah o is 1/a3.

T A A

Figure 15. Replacing a fat triangle by three canonical triangles.

We first replace each triangle € C by three(«/2)-fat triangles contained i\, by bending the
edges ofA inwards, as depicted in Figure 15, so that the directione@g&tges of the new triangles
belong to the family of th€(1/«) so-called‘canonical” directions ja/2, j = 0,1, ... During the
bending, the holes of the uni@xpand so their number can decrease only when two holes merge
into a common hole. However, this can happen only when thdibgrsweeps through a triangle
vertex, which can happen only once per vertex, and thus @sphiat the number of holes can go
down by at mos8n.

Thus, we obtairO(1) canonical familiesof («/2)-fat triangles with fixed edge directions, so
that each family consists dfomothetic trianglesi.e., similar triangles in parallel positions. It
suffices to bound the number of holes in the union of theselilssniSince any vertex of the union
is also a vertex of the union of jusio families it suffices to establish a linear upper bound on the
number of holes determined by the union of two canonical lfami

As stated in Section 2.2, the union of homothetic triangkes Imear complexity, so the union
of all members of &inglecanonical family has linear size. Consider then the uniamvoffamilies
R and G of “red” and “green” triangles, where the triangles in eaamily are («/2)-fat and)
homothetic to each other. For simplicity, assupi® = |G| = n. We may ignore holes with a
“monochromatic” vertex (i.e., a vertex df( R) or of U(G)), as there are onl®(n) such holes. It
is not hard to see that any remaining hole is eitheomvex quadrangular holgsee Figure 16) or a
convex hexagonal halé\n easy application of Euler’s polyhedral formula implibst the number
of holes is dominated by the number of quadrangular hole&hwke now proceed to bound.

We draw a graplH, whose vertices are represented by the elementary arce bbtmdary of
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Figure 16. Shaded regions denote bichromatic quadrangular heldsi, d, e are the elementary arcs bf(R) that
induce these holes$u, b), (¢, e), (d, e) are the edges df .

U(R) and whose edges connect pairs of elementary arcs that batomdraon quadrangular hole;
we draw such an edge by connecting (only once!) the pair oresl across such a common hole.
Obviously, H is a planar graph. See Figure 16.

Hence, there are onl§(n) pairs of elementary arcs df( R) that form a common quadrangular
hole. There ar®(n) quadrangular holes that afiest or last along some edge of a green triangle;
let us call therrextremal On the other hand, it can be shown by a simple trigonomediicuéation,
illustrated in Figure 17, that each pdi¢, ¢’} of elementary arcs dfi(R) can generate onl®(1)
nonextremal quadrangular holes. O

Figure 17. A fixed pair of elementary arcs &f(R) generates onl@)(1/a?) (nonextremal, bichromatic, and quadrangu-
lar) holes.

This result can be used to establish a more general uppedidouthe number of holes deter-
mined by a family of triangles with given angles.

Theorem 2.7 (Pach and Tardos [102])LetC = {C4,Cy,...,C,} be a family ofn > 1 trian-
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gles in the plane, and let; denote the smallest angle 6%, for 1 < i < n. Supposé#) < a3 <
ay < --- < ap, and letk < n be the largest integer satisfyingi?:1 «a; < w. ThenC deter-
minesO(nklog k) holes. Furthermore, there exists a famdy = {C},CY,...,C}}, whereC! is
congruent taC; and €’ determines2(nk) holes.

Proof: Note that eacld®;, for k > i, is (7 /k)-fat, so the union o€ 1, ..., C,, denoted by’, has
O(nklog k) holes. AddingC1, ..., C to U creates at mosD(nk) new holes. d

If we considerinfinite wedgegi.e., convex cones) rather than triangles, then the samedo
holds not only for the number dfoles but also for thecomplexityof the union. The following
result strengthens some earlier bounds in [13, 50].

Theorem 2.8 (Pach and Tardos [102])Let C be a family ofn wedges in the plane with angles
0 <a; <ap < -+ < a, <w Letk < n be the largest integer satisfyinﬁjle o < .

If £ > 2, thenk(C) is O(nklogk). Furthermore, there exists a family efwedges with angles
a1, o, ..., a,, Which determine§) ((r — a,,)nk) holes.

Using Theorem 2.6, we state a slightly strengthened verditime result in [93].

Theorem 2.9. For any fixeda > 0, the boundary of the union of «o-fat triangles in the plane
consists of at mog?((n/«) log log nlog(1/a)) elementary arcs.

Matou3ek et al. [93] also proved that if, in addition to lgeifat, all triangles have roughly
the same size (i.e., the ratio between any pair of diamesebeiinded by a constant), then their
union has linear complexity. On the other hand, by slightlydifying theQ2(na(n)) lower-bound
construction for the lower envelopesoiegments [118], one can constructquilateral £ /3-fat)
triangles, whose union has a slightly superlinear (2¢na(n))) complexity.

We conclude the discussion on fat triangles by mentioningbaous open problem.

Open Problem 3. What is the maximum complexity of the uniom ei-fat triangles?

Union of fat convex objects. Extending the notion of fatness to more general objects, alle ¢

a convex bodyC' in the planea-fat, for o« > 1, if there exist two disksD, D', such thatD C

C C D/, and the ratio between the radii & and D is at mosta. See Figure 18. Note that
this extends the definition of fatness for triangles:cafat triangle is easily seen to hé-fat as a
convex body, for a suitable’ > 1, and vice versa. Efrat and Sharir [51] showed that the caxitple

of the union ofn simply shaped convex-fat objects in the plane i©*(n), where the constant of
proportionality depends on (the hiddgrand on) the maximum number of intesections between any
pair of boundaries. The proof uses both the bound on the axityplof the union of fat triangles,
and the bound on the number of regular vertices of the unea ((¥)).

We also remark that the complexity of the unionnoérbitrary convexpolygonswith a total of
s vertices isO(n? + sa(n)) [19].
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fat and convex
(a, B)-covered

Figure 18. Fat-like planar objects with near-linear union complexity

Union of fat non-convex objects. There are other, more general, notions of “fatness” thatrekt
to non-convex objects, and for which the combinatorial clexity of the union ofn “fat” planar
objects remaing)*(n). For instance, call a possibly non-convex objétt-round if for each
pointp € OC, there exists a dislD of radiusa diam(C') which passes through and which is
contained inC; see Figure 18. Informallyy-round objects cannot have convex corners, nor can
they have very thin bottlenecks (but they can have reflexars)n Efrat and Katz [49] have shown
that the complexity of the union of a-round objects i$)(\s(n) logn), wheres is a constant that
depends on the description complexity of the input objettss result has been further extended
by Efrat [48] to so-called«, 3)-covered objects: An object is («, 3)-coveredif for each point

p € 0C, there exists am-fat triangleT that hasp as a vertex, is contained ifi, and each of its
edges is at least diam(C) long; see Figure 18. Thus, these objects are not necessardpth,
but their corners cannot be too sharp. Efrat [48] has shoahitl® is a collection ofn («, §)-
covered objects, each pair of whose boundaries intersettritosts = O(1) points, thenx(C) =
O(Xs12(n)log? nloglogn). See also [85, 110, 111] for other related results.

3 Union of Objects in Three Dimensions

3.1 Overview

Starting in the mid 1990s, research on the complexity of thieruof geometric objects has shifted
to the study of instances in three and higher dimensions. @stioned in the introduction, the
maximum complexity of the union of simply shaped objects iR? is ©(n?), and this bound can
already be attained by flat boxes. There are very few paatigulavorable cases for which the union
complexity is linear im, including the cases of halfspaces and of axis-paralld¢lauties [31, 28].
In general, though, the goal is to find classes of objects fackvthe maximum complexity of the
union is nearly quadratic. Indeed, in most of the caseseatigb far (as will be reviewed below), the
complexity of the union can be quadratic (and sometimekbtyjiguper-quadratic) in the worst case.
This is the case, e.g., for balls, cubes, congruent cylgdard halfspaces bounded:ymonotone
surfaces of constant description complexity.

As the evidence discovered so far suggests, there are benpaatant classes of objects &

19



whose union has at most nearly-quadratic complexity, inpleta analogy to the planar situation.
One such class is the classfafobjects, where, in complete analogy with the planar casengoact
convex objectC' is calleda-fat if the ratio between the radii of the smallest enclosing batll of
the largest inscribed ball af' is at mosta. Other notions of fatness, such asoundnesshave
also been extended ®*. A prevailing conjecture is that the maximum complexity lvé tunion of
such fat objects is indeed at most nearly quadratic. Sucluadbas however proved quite elusive
to obtain for general fat objects, and this has been recedras one of the major open problems in
computational geometry [37, Problem 4]. Neverthelesssidaemnable progress towards establishing
this bound has recently been made, as we will shortly review.

As in the plane, another candidate class of objects withlaman complexity are Minkowski
sums of pairwise disjoint convex objects with a fixed convbject. In the plane, this class was
handled by showing that its members are pseudo-disks, amdikiy applying the general linear
bound of [76] (Theorem 2.2). However, the analysis of theonrmf such Minkowski sums is
considerably harder in 3-space (because they are not “pdmalt"—see below), and there are only
a few (albeit important) instances for which a near-quacitaund has been established [11, 20];
see Section 3.4.

A third class of objects with small union complexity greeudo-halfspaces.e., regions lying
above or below any-monotone surface (the graph of a continuous totaly definadtion). This
extends the class of pseudo-halfplanes, and was one ofsheléisses to be studied.

We note that extending the notion of pseudo-disks to threeedsions does not seem to lead
to any new insights. A family of regions iR? is said to consist opseudo-ballsif the boundaries
of any two members intersect in a single closed curve, andd@daries of any three members
intersect in at most two points. It is trivial to show that gwmplexity of the union of a collection
€ of n pseudo-balls i€)(n?), by considering the portion of the union boundary on the ey of
each member of separately, and by applying Theorem 2.2. Hence, in paaticthe complexity
of the union ofn balls inR? is O(n?); it is easy to construct examples where the union®as?)
vertices, even with unit balls, and even when the unit bdllhae a common point; see [29].
Somewhat surprisingly, Minkowski sums of disjoint conveodles with a fixed convex body are
not pseudo-ballssee a more detailed discussion below.

3.2 Union of pseudo-halfspaces

LetF = {f1,..., fn} be a family ofn continuous totally defined bivariate functions (iny). As
in Section 2.1, we refer to the region lying below (resp.,va)dhe graph off; as the lower (resp.,
upper)pseudo-halfspacbounded by that graph. For eath< i < n, let C; be one of these two
pseudo-halfspaces, and @tenote the collectiogC1, ..., C,}.

Halperin and Sharir [68] proved that if each functionfiris of constant description complexity,
then the complexity of the lower or upper envelop&as O* (n?). This immediately implies that if
all the C;’s are lower (or all are upper) pseudo-halfspaces, then timon hasO*(n?) complexity.
Agarwal et al. [9] have established @ (n?) bound on the complexity of the sandwich region
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between the lower and upper envelopes of two respectivdiésnoif a total ofn bivariate functions,
each of constant description complexity. The proof is basethe following interesting result: Let
JF and G be two collections of a total of bivariate functions, as above, and ey (resp.,Mg)
denote theninimization diagranof F (resp.,5), namely, thery-projection of the lower envelope of
F (resp.,§). Then theoverlayof the two minimization diagrams ha&3*(n?) complexity. Note that
we make no assumption on any relation betwgaemd§. Also, the result continues to hold when
one or both diagrams are replaced by the respeatieimization diagrami.e., thexy-projection
of the respective upper envelope. This implies the follgariasult.

Theorem 3.1 (Agarwal et al. [9]). Let @ be a set of. pseudo-halfspaces iR?, each of which is a
semi-algebraic set of constant description complexityerilne complexity &fl(C) is O*(n?).

3.3 Union of convex polyhedra

As already remarked, an easy extension of the planar catistnushown in Figure 5 shows that
the maximum complexity of the union af (axis-aligned or arbitrarily aligned) boxes (or wedges,
or tetrahedra) irR? is ©(n?); see Figure 19. Moreover, we can easily adapt this congirutd
show that the maximum union complexity of thneenconvexpolyhedra with a total of facets is
O(s%). A natural question is whether a similar lower bound alsstexior the complexity of the
union of convex polyhedra, i.e., a bound that is cubic in theber of facets. The following result
by Aronov et al. [21] answers this question in the negative] ealibrates, more or less, the true
maximum complexity of such a union.

Figure 19. Union of n boxes inR?* with ©(n?®) complexity.

Theorem 3.2 (Aronov et al. [21]). The complexity of the union efconvex polyhedra iiR? with a
total of s facets isO(n? + snlogn). This complexity can b@(n?® + sna(n)) in the worst case.

It is interesting to note that the above bound is cubic onlyhimn number of polyhedra, but it

is only linear in s. (Compare with the bound(n? + sa(n)) for the case of convex polygons
in the plane [19].) The cubic term disappears in the specaé avhere the polyhedra hare
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Minkowski sums of pairwise-disjoint convex polyhedra wéthother fixed convex polyhedron—see
the following subsection for details.

The proof of Theorem 3.2 given in [21] is rather technical; vighlight two of its key ingredi-
ents that have been proved useful in some other context¥\temote that techniques for analyzing
the union of objects ifR? (and in higher dimensions) are rather scarce; we will mensiome of
these techniques as we encounter instances in which thdyecaxploited.

Special quadrilaterals and special cubes—Junctions in thenion. Let C be a family ofn con-
vex polyhedra with a total of facets, and le€;, Cs, C3 be three members @f with the following
property. There exists a facgt of Cy, such that) = F; N Cy, N C5 is a quadrilateral, having two
opposite edges ofiC; and two opposite edges @t's, and no other member @fintersects). In
this case, we call) aspecial quadrilatergl see Figure 20.

- Special Quadrilateral
Fy : P %
1

Figure 20. A special quadrilateral in the union of polyhedra.

Aronov et al. [20, 21] have introduced this notion, and shibwhet, for arbitrary collections
€ as above, the complexity of the union 6fis O*(n? + Q(n, s)), whereQ(n, s) is an upper
bound on the number of special quadrilaterals in any subciidin of ©. They have then shown
that, for collection<C of Minkowski sums of pairwise disjoint convex polyhedralwénother fixed
polyhedron,Q(n, s) = O(ns).

Pach et al. [100] have extended this notion to thadpmcial cubeswhere a special cube is an
intersection of three members ©f which has the combinatorial structure of a cube, where efch
the three intersecting polyhedra contributes a pair of sippdacets to the intersection, and no other
member of© meets the “cube”. Pach et al. have shown that the union coiibplaf C is roughly
n?+ the number of special cubes in any subcollectio.of

Thus, the problem of bounding the complexity of the unionues to that of bounding the
number of special quadrilaterals or cubes. This has beea @wnspecial quadrilaterals, in the
context of Minkowski sums of pairwise disjoint convex pagha, in [20], using a fairly intricate
topological argument, and for special cubes, in the cordéarbitrarily aligned nearly congruent
cubes in [100], using a plane sweeping argument.
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Charging schemes. This technique can be used in a variety of scenarios. Herekatetsin a
special case how it can be applied to convex polyhedra.

Let © be a family ofn convex polyhedra iR3, each with a constant number of facets, and
consider the problem of bounding the complexity@f). Clearly, the number of vertices df(C)
that are vertices of some member@®br are double-intersection points lying on an edge of some
member and on a facet of anotherGgn?). Therefore, we have to bound the number of triple-
intersection points on the boundary "WfC), i.e., points that belong to the boundaries of three
distinct members of. (Assuming that the sets are in general position, no pointbedong to the
boundaries of more than three distinct members.)

Consider the arrangemedtinduced by the boundaries of the polyhedr&inDefine theevel
of a vertex of this arrangement to be the number of membefstbht containv in their interior.
The number of triple-intersection vertices at levé$ denoted by; = V;(€). We have to bound
Vo(C), that is, the number of triple-intersection vertices aelév

Each vertexv of the union is incident to three edges of the arrangemigrgach leadingaway
from the union boundary; that is, each such edge is contamgu intersection segment of two of
the facets containing, and leads into the interior of the third polyhedron. Wedalleach of these
edges, and chargeto the three vertices that are the other endpoints of thegpese&ee Figure 21.

Figure 21. The charging scheme. The three dashed edges emanating feam into the interior of the union.

The favorable situation is when all three charged verticegrgple-intersection vertices at level
1. In this case, each of them can be charged at most three tdmed-{gure 21), so the number of
charging vertice® of this kind is at most/ (€), the number of triple-intersection vertices at level
1. The case where one of the charged vertices is not a tripgesiettion is easy, because there are
only O(n?) such vertices (in the entire arrangement), and each is etianly a constant number
of times, so there can be at m@3tn?) charging vertices of this kind.

Let us denote by/;(C) the number of vertices at level0 for which at least one of the charged
vertices is a triple intersection vertex that also lies atll@. We thus obtain the inequality

V(@) < Vi(€) + V5 (€) + O(n?).
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The main difficulty is in obtaining a nearly quadratic boumdig' (C). In general, this is impossible:
for instance, when the members®ére large and thin plates that form a grid, one can easilykchec
that Vo (€) = Vi (€) = ©(n?®). Suppose, however, that we are in a favorable situation hame
somehow managed to show thgt(C) = O*(n?). Then we get

Vo(C) < VA(€) + O*(n?).

Let R be a random subset €f obtained by removing one element uniformly at random. Asyea

calculation shows that 5
n [e—

E(Vo(R)) =

Vo(€) + ZVA(E),

Combining this with the preceding inequality, and writivig(m ) for the maximum value of(C)
for |€| = m, we obtain

"3 (©)+0% (n) < Va(n—1)— 2=

n n

~V3(€) < VA(€)+0" (n) = B(V(R))- Vo(€)+0" (n).

or
n—2

Vo(n) < Vo(n —1) + O*(n).

Dividing this by (n — 1)(n — 2), we obtain a telescoping recurrence that solvégta) = O*(n?).
If the overhead terni (C) is strictly O(n?), the recurrence solves @(n? log n).

The above scheme is a special instance of a technique dedebypragansky [113, 114], built
upon earlier cruder charging schemes. As already notede#iehallenge is to bounid; (C). One
way of doing so is to apply the charging scheme repeatedigrevim the next stage we want to
bound the number of leval-edges of the arrangement with both endpoints at leévbly charging
them to more complex local structures that have three lewadrtices connected by two level-
edges, and so on. This multi-stage scheme ends when thecadetdrm is the number of special
guadrilaterals defined above (or can be pushed furtherthetibverhead term counts the number of
special cubes). See [100, 113] for detalils.

An interesting feature, hidden in this quick review, is tteg only bottleneck in the analysis is to
bound the number of special qudrilaterals. In contrass, lielatively easy to give a quadratic upper
bound for the number of “special polygons” with more thanrfeertices, where such a polygon
is the intersection of a facet of one memberCoivith two other members of, so that no fourth
member of® meets().

3.4 Robots with three degrees of freedom: Complexity of therée space

A special class of problems that involve unions in three disi@ns arises in motion planning for
robots with three degrees of freedom. Recall that in thie ¢hsconfiguration spacewhich rep-
resents all possible placements of the given radBpis 3-dimensional, and each obsta€lén the
physical environment (the workspace B) generates aexpanded obstaclér C-obstacle)O*,
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which is the locus of all placements 6fat which it intersect$). The free portior¥ of the config-
uration space is then the complement of the union of the Gaoles.

In this subsection we review several results that ariseigcthntext. As already discussed in the
general setting, the naive bound on the complexitl &f cubic in the number of possible contacts
between features db and features of the obstacles. In many instances, this bcamtle attained,
but there are several special cases where better, neadyatigabounds can be established.

Let B be a robot with three degrees of freedom, so that each platexhB can be parametrized
by three real parameters. For simplicity, let us assumetkigatonfiguration space, the set of all
placements of3, isR3. Two special cases of such a robot that we consider are: ampddject that
is allowed to translate and rotate amid obstaclé®?nand a three-dimensional object allowed only
to translate amid obstacles kY. Bounding the complexity df in the former case was one of the
first applications that led to the study of the union of olgentR? [89, 90].

Translation and rotation in 2D. Let B be a convex polygon ifR? that is allowed to translate
and rotate in the plane amid a &&= {O,, ..., O, } of pairwise openly disjoint obstacles, each of
which is a convex polygon, with a total efvertices. To parametrize the configuration space, we
fix a pointo € B and a rayp emanating fromy and rigidly attached td3. A placement ofB is
then parametrized by a poifi, b, tan(6/2)) € R3, where(a, b) are the coordinates efandd is

the counterclockwise angle from theaxis top; see Figure 22(a). A placement Bfis freeif B
does not intersect any obstacle at this placementsamd-freeéf B makes contact with one or more
obstacles at this placement but does not intersect thddntafr any obstacle. A generic contact
between the boundaries B8fand an obstacle can be represented by a(paiv) whereo is a vertex

of B andw is an edge of the obstacle, @iis an edge of3 andw is a vertex of the obstacle.

O3

x O3
(a) (b)

Figure 22. (a) Representation of a placement/®f (b) A triple contact.

For each obstacl®;, let C; denote the corresponding expanded obstacle, which is thaf se
placements at whicl intersect0;; C; is a semi-algebraic set whose complexity depends on that
of B andO;. As noted, putting® = {C1,...,C,}, we haveF = R3 \ U(C), anddF is the locus
of all semi-free placements. A vertex Bfformed by the intersection of the boundaries of three
expanded obstacles corresponds to a placemeBtaifwhich it makes three distinct contacts with
the obstacles (see Figure 22(b)); these placements areeckte ascritical semifree placements
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or critical vertices(of IF). It can easily be argued that B is a polygon withk vertices then the
complexity ofF is proportional tat%s? plus the number of critical vertices.

Figure 23. A nonconvex polygon witlf2(n?) critical semi-free placements.

If B is a nonconvex polygon, theh can have)(n?) critical vertices, as shown in Figure 3.4.
However, the bound improves considerably whens convex. For instance, iB is a line seg-
ment, then, as shown in several early works (around the n80<)9F hasO(s?) vertices [27, 90].
Recently, Agarwal et al. [2] improved the bound@jns); this improved bound holds even if the
obstacles ir0 are not pairwise disjoint. In fact, if the obstacles arepie disjoint, then the num-
ber of critical vertices oF is only O(n? + s); however, the number of vertices formed by a pair of
expanded obstacles (edge-face intersection points) cér/he).

The main result for this scenario is:

Theorem 3.3 (Leven and Sharir [89]).If B is a convex:-gon, then the complexity Bfis O (ks\g(ks)).

Since the number of combinatorially different contactsaeen B and the obstacles 8(ks),
this bound is nearly quadratic in the number of contacts. eHgra brief sketch of the analysis
in [89]. Let ¢ be a (vertex-edge or edge-vertex) contact between the hdesdfB and of an
obstacle, and ldf 4, C R3 denote the set of all placementsBfat which the contaacp is made;l'y
is a two-dimensional algebraic surface patch. For eachacont we define a familyCy of O(ks)
pseudo-halfplanes ifi,, where each pseudo-halfplahaepresents placements at whiglis made
and another contaet is “violated"—¢' is made at placements &, andB and the corresponding
obstacle intersect at placements witthin The boundaries of any pair of these pseudo-halfplanes
intersect in at most six points. The main observation in theyeis is that ifB and the obstacles
are in general position, and if the complexitylbfs more thark?s?, then at least a fraction of the
vertices ofC are vertices ot((C,), over all contactg). By Theorem 2.1(Cy) is O(Xg(ks)), for
eacho, and thus the complexity @ is O(ksA¢(ks)). The details of the proof can be found in [89].

Combining this overall approach with a few new observati@ml performing a more careful
analysis, Agarwal and Gujgunte [5] have recently improves hound on the complexity @ to
O(ksAg(kn)).
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Van der Stappen et al. [111] studied the case in which theaolest are fat, and proved a linear
bound on the complexity df, under certain reasonable assumptions. We refer the reattazir
paper for more details.

Translational motion planning in R3. Let B be a convex object iR?3 that is allowed to translate
amid a set) = {04, ...,0,} of n obstacles, each of which is a convex polytope. We fix a point
o € B and represent a placement®fy specifying the coordinatds:, y, z) of o. As mentioned in
the introduction, the expanded obsta€legenerated by); is now the Minkowski sun®; © (—B)

of O; and the reflected imageB of B, and, as usualf = R? \ U(€), whereC = {C1,...,C,}.
This has led to the extensive study of the complexity of (dgdrithms for constructing) the union
of a family € of Minkowski sums of this kind ifR3.

In the planar case, the crucial property of such a colleafdvinkowski sums was that each pair
of boundaries cross at most twice, so the collection is aljaofipseudo-disks. The corresponding
property inR? (assuming general position) is that each pair of boundanigssect in a single
connected closed curve [76]. However, a triple of boundagin intersect in an arbitrarily large
number of points, which makes the analysis of the union cerityi considerably harder than in the
plane. Near-quadratic bounds have been established fpraoigw special cases, summarized in
the following theorems. (In each pasteffectively denotes the overall complexity of the indivadu
Minkowski sums inC, but its precise definition is slightly different in each €gs

Theorem 3.4 (Halperin and Yap [69]). If B is a cube, the complexity &f(C) (and thus ofF) is
O(s?a(s)), wheres denotes the overall number of faces of the original polysdpée.

Theorem 3.5 (Aronov and Sharir [20]). If B is a convex polytope, the complexity fC) is
O(nslogn), wheres denotes the overall number of faces of the polytopes. iThere exist con-
structions where the union complexitySi$nsa(n)).

Theorem 3.6 (Agarwal and Sharir [11]). If B is a ball, the complexity dfi(C) is O*(s?), where
s is the total number of faces of the polytopesdinin particular takingO to be a set of: lines in
3-space, the complexity of the unionofongruent infinite cylinders iR? is O*(n?).

The proofs of these theorems are rather different, and dabtlem is very technical. The proof
of Theorem 3.4 is based on ideas similar to those used by Laaw&iSharir [89]. The proof of The-
orem 3.5 is a special case of the analysis of the union ofrarpitonvex polyhedra, given in [21],
where the main new ingredient is an intricate topologicguarent that shows that the number of
special quadrilaterals in the union(i¥ns). The proof of Theorem 3.6 is the most involved; it uses a
rather complicated charging scheme, and is based on seesnaletric observations that reduce the
problem to that of bounding the complexity of sandwich regibetween upper and lower envelopes
of bivariate functions.

These results lead to a few natural questions that remasivelu

Open Problem 4. What is the maximum complexity of the uniomaongruent cones or tori?
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Open Problem 5. What is the maximum complexity of the uniomalylinders of different radii?

Although the upper bound for all these cases is conjectuwdskO*(n?), no subcubic upper
bounds are known to date.

3.5 Union of fat objects

Similar to the planar case, a compact convex ohjed calleda-fat, for some constant > 1, if
the ratio between the radii of the smallest enclosing ball @frthe largest inscribed ball @f is at
mosta. In this subsection we review some of the recent (and sligafis recent) developments in
the analysis of the complexity of the union of fat objects isp&ce.

Union of axis-aligned cubes. We begin by considering the simple case of axis-alignedube

Theorem 3.7 (Boissonnat et al. [28]; see also [31])he complexity of the union afaxis-aligned
cubes inR? is O(n?). The bound reduces 10(n) if the cubes are of the same (or nearly the same)
size. Both bounds are tight in the worst case.

Proof: This result is sufficiently simple to allow us to provide a quete proof. We only need to
count the number of vertices of the union that are inciderhtee facets of three distinct respec-
tive cubes; the number of all other vertices (of the entiraragement of the cube boundaries) is
only O(n?). Letv be such a vertex, incident to facefs, F», I3 of three distinct respective cubes
C1,Cs,Cs3, so thatC is the largest cube among them. Follow the intersection sagi, N F3
from v into Cy. This segment has to end withiry, at a point that lies on an edge 6% or C'3, and

on the remaining facefz or F». The number of such terminal points is clearly oiln?), and
each of them can be encountered in such a tracing from onipstanat number of verticesof the
union. Hence, the number of these vertices, and thus thelemitypof the union, iSO(nQ). The
proof for congruent cubes is also simple, but we omit it. O

Union of arbitrary nearly congruent cubes. If the cubes are not axis-parallel, the problem be-
comes much harder. Pach et al. [100] have studied the cage tegecubes have equal (or “almost
equal’) size, and have showthat the complexity of their union i©*(n?). The key observation in
their analysis is that one can lay out a regular grid, wheeesthe of its cells is somewhat smaller
than that of the given cubes, so that (a) each cube meets aolystant number of cells, and (b) no
two opposite facets of a cube meet the same cell. This allevis consider the union separately in
each cell, and observe that in each cell the union become®a ohunbounded halfspaces, (right-
angle) dihedral wedges, and (orthant-like) trihedral vesdgThe analysis thus reduces to that of
bounding the complexity of the union of such wedges. The neaihnical ingredient in the analysis
of [100] is:

3We do not highlight this result, because it is now subsumethbyresult of Ezra and Sharir [60], which we will
shortly present.
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Theorem 3.8 (Pach et al. [100]) The complexity of the union afa-fat dinedralwedges i£)* (n?),
where the constant of proportionality depends on (the mddand on)a.

Pach et al. were not as successful in analyzing the complekithe union ofa-fat trihedral
wedges (wedges whose solid angle is at leasfor any constantr > 0, and managed to establish
a nearly quadratic bound only when the wedges are “subaligrfit”, a case that includes wedges
formed at a vertex of a cube, but not wedges formed at a veft@xagular tetrahedron.

A major observation in the analysis of [100] is that, for ariple of o-fat dihedral wedges,
there are many directions, such that a plane orthogonal #ocuts each of the three wedges in a
cross-section which is itself’-fat, for somea’ > 0 that depends on. This allows the analysis
to proceed by sweeping the given wedges by a plane, congidenly those wedges that meet the
plane in fat cross-sections, and by analyzing critical &vevhen the boundaries of three of the
swept wedges become concurrent. (Finding such a good swgedjpection for triples of trihedral
wedges is harder; in general this is impossible unless thikgageare really “substantially fat”.) The
analysis then combines the study of special cubes (as redi@ove) with some other tricks, to
conclude that the complexity of the union of such wedges aipeguadratic.

To recap, the technique of [100], powerful as it were, codtdhandle cubes of arbitrary sizes
(the grid reduction does not work then), nor could it handlieeo kinds of fat polyhedra (for
which the wedges formed at their vertices are not suffigjefatl); even the special case of regu-
lar tetrahedra remained open. Both of these shortcomings texently been overcome by Ezra
and Sharir [60], who have obtained a nearly quadratic boonthe complexity of the union af
arbitrary fat tetrahedra. We will review this result bel@amd we note that it immediately implies a
nearly quadratic bound for the union complexityroérbitrary cubes ilR3 (of arbitrary sizes).

Union of fat tetrahedra and of cubes. We say that a tetrahedrondsfat if each of its solid angles
is at leastv. This definition is compatible with the other standard dé&bns of fatness. Specifically,
the ratio between the radii of the smallest enclosing ball the largest inscribed ball of anfat
tetrahedron is at most' = O(1/+/a). Conversely, if this ratio is at most for some tetrahedron,
then it must bex-fat with o = Q(1/(a/)?).

Dihedral

Trihedral

Figure 24. An «o-fat trihedral wedge and am-fat dihedral wedge.

To simplify the presentation, let us assume for the momeattvile are given a collectiofi of
n «a-fat tetrahedra ofiearly equal sizemeaning that the diameters of the tetrahedr@ &we within
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some constant ratio of each other. Then there is an easpgsied argument, similar to the one used
for nearly equal cubes, to reduce the analysis of their utdahat of the union ofy-fat trinedral
wedges, namely, trihedral wedges whose solid angles aeastnl (see Figure 24). Specifically,
assume, for simplicity, that all the diameters lie in theeiaal [1, |, for a fixed constant. We lay
out a grid of sufficiently small (but constant) cell size, batt(a) for any tetrahedronof € and any
grid cell A, at most three facets afmeetA, and (b) each tetrahedron thcrosses only)(1) grid
cells. Hence, within each grid cell, we need to bound the complexity of the union of some
a-fat trihedral wedgegwhich can also degenerate further to dihedral wedges &sdzales).

Suppose that we have a bound@f(m?) on the complexity of the union of: a-fat trinedral
wedges, with a constant of proportionality that dependsxonThis bound, combined with the
above reduction, implies that the complexity of the unionnohearly-equala-fat tetrahedra is
> A O*(nk) = O*(n?). (The case of nearly equal cubes is now an easy corollaryiofébult.)

The analysis in [60] applies also to the case where the tdrahhave arbitrary sizes (diam-
eters). It is somewhat involved, and we sketch here only sofiis highlights. To simplify the
presentation, we only consider the case of fat trihedralgeed Let ther® be a family ofn a-fat
trinedral wedges. The main technical tool in the analysi$0f is the following lemma.

Lemma 3.9 (Ezra and Sharir [60]). (a) LetR be a set of- planes inR3, and letl/ be an arbitrary
trihedral wedge. The number of cells.f R) that meet all three facets ®F is onlyO(r).

(b) Let P be a convex polyhedron withfacets inR3, and letX be the family of tetrahedra into
which P is decomposed by the Dobkin-Kirkpatrick hierarchical deposition scheme [38]. The
number of tetrahedra i that meet all three facets & is onlyO(log r).

See Figure 25(b) for an illustration. Note that the lemmaliapgdo any trihedral wedge, not
necessarily fat. Note also that the planar version of tharlans trivial: In an arrangement of
lines in the plane, at mosine cellcan meet all three edges of a given triangle (Figure 25(a¥). A
another trivial variant in the plane, the number of celld thaet both sides of wedgeis O(r).

@) (b)

Figure 25. (a) In the plane, only one cell of the arrangement can mettralé edges of a given triangle. (b)&3, many
cells (but onlyO(r)) can meet all three facets of a given trihedral wedge (a satiewiew from the apex of the wedge).

Lemma 3.9 suggests the following recursive decompositahreme. Take a random sample
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R of r planes that support the facets of the wedge€.ofConstruct the arrangemewt(R) and
decompose each of its cells into tetrahedra, using the Delkkkpatrick scheme. We obtain a
decompositiorE of 3-space inta)(r?) tetrahedra, with the property that for each wedigeof C,
the number of tetrahedra that meet all three facetd/ois only O(rlogr). Hence, on average,
each tetrahedron is crossed by at rr(Os{tr% logr) wedges ofC with this property. Moreover, the
standard theory of random sampling [71] allows us to assinaeft has the property that each of
the simplices of= is crossed by the boundaries of at m&(% log r) wedges ofc. To recap, we
obtainO(r%) subproblems, each involving at mast(Z log r) wedges, of which, on average, only
(@) (7% log ') are trihedral wedges, and the rest are dihedral wedges I(spaees).

To obtain the asserted near-quadratic bound, the analy4®0] applies the decomposition
repeatedly, taking to be a sufficiently large constant, and involves a rathezfahcounting of the
vertices that are not passed down the recursion. Insteagtohstructing this somewhat involved
analysis, let us consider the following simpler quick-atidy approach. If we choose= /n, we
obtain O(n®/?) subproblems, each involving some numberof trihedral wedges (which is only
logarithmic on average), and*(n'/?) dihedral wedges. The number of vertices of the union that
are formed by three dihedral wedge®is((n'/2)?) = O*(n) [100], and the number of vertices that
lie on the boundary of at least one trihedral wedg®1i$mn) (using a rough quadratic bound for
each trihedral wedge separately). Summing over the tetrahand using the fact that the's sum
to O(nrlogr) = O*(n?/?), yields the overall bound ab*(n°/?) for the complexity of the union.
With the more careful and recursive analysis in [60], thigrmbdrops taD* (n?).

The above analysis can also be applied to the case of fatéelrarather than wedges (Lemma 3.9
obviously carries over to this case), but then considerafdye effort is needed to count vertices
that are not passed down the main recursion. The analyg®pé{ilminates at the following result.

Theorem 3.10 (Ezra and Sharir [60]). The complexity of the union efarbitrary o-fat tetrahedra
in R3 is O*(n?), where the constant of proportionality dependsco@nd on the hiddea > 0).

Union of a-round objects. Let @ be a family ofn. a-roundobjects inR3. That is, for eaclC € C,
any pointp € 9C'is incident to a ball of radiua times the diameter af’, which is fully contained

in C. We first consider a special case of this problem, in whichuvéhér assume that the diameter
of each member of is betweenl and D, for some constanb. This will allow us to introduce one
of the techniques for analyzing unions in three dimensidlie.may therefore assume that all the
balls used in the definition of roundness are of the samesadiu

These assumptions are easily seen to imply thati#f a vertex of the union, incident to the
boundaries of three sef§, Cs, C3, then, with at least some constant probability, a randoecdion
u has the property that the line througtat directionu intersects each of the sei§, Cs, C3 in an
interval of length at least’ = Sa, for some sufficiently small but absolute constant 0. We call
a vertex satisfying the above property for a direction u-feasiblevertex. To prove that(C) is
O*(n?), it suffices to establish a near-quadratic bound on the nuofhefeasible vertices for any
fixed directionu. Suppose, without loss of generality, thais the z-direction.

PartiionR? into horizontal slabs of width/'. For each slat$, let €, C5 denote the family
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Figure 26. Reducing the union of nearly equairound objects ilR® to sandwich regions.

of objects ofC that intersect the top and bottom boundaries wespectively, clipped to withity'.
Moreover, retain, for each objeCt € Cg, the portion of its top boundary consisting of those points
x € S for which the vertical segment fromto the bottom boundary o is fully contained inC'.
Apply a symmetric trimming process to the bottom boundasfeke objects o€ . Putn, = |C&|+
|C4|. It can be checked that eagHeasible vertex that lies in the slabis a vertex of the sandwich
region between (the trimmed portions of) the upper envetdjiiee top boundaries of objects @y
and the lower envelope of the bottom boundaries of objeo@finSee Figure 26. As mentioned in
Section 3.2, the number of vertices on the sandwich regioh {&%). However,>" ¢ ng = O(n),
because each object thcan cross only)(1) slabs. Therefore(C) = 3" O*(n%) = O*(n?).

The above argument fails when the diameters of the objedtsdiffer significantly. This has
been overcome by Aronov et al. [18], who have extended theyng@adratic bound to this case, us-
ing a somewhat more involved technique, which is also baseéducing the problem to sandwich
regions between envelopes.

Theorem 3.11 (Aronov et al. [18]; Agarwal and Sharir [11]). LetC be a family of: 3-dimensional
a-round objects of constant description complexity. Thencttmplexity of((C) is O*(n?).

In spite of all the progress reviewed in this section, thifeing general question is still open.

Open Problem 6. What is the maximum complexity of the uniomofi-fat (convex) objects of
constant description complexity R??

4 Beyond Three Dimensions

In higher dimensions, the problem of bounding the compjesftthe union of geometric objects
becomes even more complicated, and only very few resultkreman, which we duly review here.

Union of pseudo-halfspaces. As already mentioned in the introduction, the complexityttod
union ofn halfspaces (each bounded by a hyperplan@drs O(nl%2]). For pseudo-halfspaces
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(regions lying above or below the graph of some continuoustfan of constant description com-
plexity), the bounds are not that small. As shown by Sha@8[lthe complexity of the lower
(or upper) envelope of (d — 1)-variate functions of constant description complexityignd—1).
Hence, the union of, pseudo-halfspaces, all of which are lower (or all uppet)ign—1).

However, this is not known to hold in the mixed case, whereespseudo-halfspaces are lower
and some are upper, ih> 5 dimensions. As in two and three dimensions, we seek bounttseon
complexity of the sandwich region between a lower and an uepeclope, which turns out to be a
hard problem when the dimensidrincreases. AiD*(n?) bound on the complexity of the sandwich
region inR* was proved by Koltun and Sharir [81]. (As in the three-dimenal case, this is based
on a nearly cubic bound, established in [81], on the complefithe overlay of two minimization
and/or maximization diagrams, this time of trivariate ftiois.) This yields a nearly cubic bound
on the complexity of the union of pseudo-halfspaces of constant description complexifin
The problem of whether sandwich regions have asymptotisatialler complexity than that of the
entire arrangement is still open far> 5.

Open Problem 7. What is the maximum complexity of the uniom @seudo-halfspaces of constant
description complexity iiR?, for d > 5?

Linearization. The so-called linearization technique can be used to bdumddamplexity of the
union of certain classes of regions, by transforming theggons to halfspaces. Specifically, let
f(z,a) be a(d + p)-variate polynomial, with: € R? anda € RP. Letal,...,a" ben points in
RP, and setf = {fi(x) = f(x,a’) | 1 < i < n}; thusTF is a collection ofd-variate polynomials.
For eachi, let C; be one of the two regiong > 0 or f; < 0, and seC = {C1,...,C,}. Suppose
that f(x, a) can be expressed in the form

f(z,a) = ola) + P1(a)p1(x) + - - - + Yrla)pr(x), (@)

wherey, . .., arep-variate polynomials ang, ..., ¢, ared-variate polynomials. We define
the mapy : R — R* by

p(x) = (1(2),.. ., or(x)).
Then the imag& = {¢(z) | = € R?} of R? is ad-dimensional surface iR* (assumingc > d),
and for anya € RP, f(z,a) maps to thé-variate linear function

ha(y1, .- yk) = Yo(a) +¥1(a)yr + - - + Yr(a)yr,

in the sense that for any € RY, f(x,a) = hq(e(z)). The regionC; maps to one of the two
halfspaces bounded by the hyperpl&pe(more precisely, to the intersection bvith such a half-
space). We refer té as thedimensionof thelinearization ¢, and say thaf admits a linearization
of dimensionk. Agarwal and MatouSek [8] describe an algorithm that comga linearization of
the smallest dimension under certain mild assumption$.dfimits a linearization of dimensidn
then the complexity of((C) is bounded by the complexity of the union ofhalfpsaces iR**1,
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and it is thereforeO(n““m). The most popular example of linearization is perhaps theafled
lifting transform(see Section 2.2 for the planar case), which is constructed the polynomial

f(z,a) = (1 —a1)2 NI (wd—ad)Q _a?l+17
for € R? anda € R¥+1. The resulting lifting transformation itself is then
SO('%') = (1'1,.%'2,.. . 7xd71-% R +1'?l)

This mapsR? to the standard paraboloig,; = 2 + - - - + 2% in R%*1, and a ball inR¢ is mapped
to a halfspace iR***, which implies that the complexity of the unionmballs inR¢ is O(n/4/21),

Axis-aligned cubes. Boissonnat et al. [28] provide an upper boundaianﬂ) for the union

of n axis-parallel cubes ¢, which improves ta)(n%/2)) when the cubes have equal (or nearly
equal) size. The complexity of the union wfsimply-shaped convex bodies Rf* with a common
interior point o is O*(n?~1), which follows from the observation that the boundary oiithion
can be interpreted as the upper envelope: ¢tl — 1)-variate functions (in spherical coordinates
abouto). A slightly refined bound for polyhedra iR? with a common interior point was given in
[73].

Koltun and Sharir [81] extended Theorem 3.11Rb, by proving that the complexity of the
union ofn convexa-round objects irR* with equal diameters i©*(n?). These results have been
further generalized by Aronov et al. [18] for (not necedgarbnvex) a-round objects. The only
obstacle to obtaining analogous resultsRify for d > 5, is our inability to establish sharp upper
bounds on the complexity of sandwich regions (as discusseded ind > 5 dimensions.

Open Problem 8. What is the maximum complexity of the uniomaf-round objects of constant
description complexity ilR?, with (or without) nearly equal diameters, fdr> 5?

5 Generalized Voronoi Diagrams

Voronoi diagrams are closely related to unions of geomefjects, in the following manner. Let
€ be a set of pairwise disjoint convex objects iR¢, each of constant description complexity, and
let p be a metric (or @onvex distance functigii15]). For a pointz € R?, let () denote the set
of objects ofC that are nearest tg, i.e.,

®(x) ={C € €| p(x,C) < p(x,C") for eachC’ € C}.

The Voronoi diagramVor,(€) of € under the metrip (sometimes also simply denoted Vs (C))

is the partition ofR¢ into maximal connected regions of various dimensions, ag tbr each region
V, the setd(x) is the same for alik € V. For each full-dimensional region (cell®(-) generally
consists of a single sit€, and the cell is called the Voronoi cell 6f. Fori = 1,...,n, lety; be the
graph of the function:4,; = p(x, C;), for z € R?, and sef” = {;}?_,. Edelsbrunner and Seidel
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[47] made the rather obvious observation that,(C) is theminimization diagranof I', that is, the
projection ontdR? of the lower envelope of the surfaceslin

To see the connection between generalized Voronoi diagaahsinions of objects, I& andp
be as above (say, for the 3-dimensional case). For an abjeetC and a parameter > 0, define
B(C,r) = {z € R® | p(z,C) < r}. For afixedr, the unionk, = (JoceB(C,7) is the region
consisting of all points: € R? whose smallest-distance from a site i€ is at most-. This in turn
can be interpreted as a “cross-section’Vof (C)—it is in fact a cross-section at height = r of the
lower envelope of the corresponding collectionMoreover, for each sit€’; € C, the intersection
of 0K, with the Voronoi cell ofC; is equal to the intersection 6B (C;, ) with that cell.

In general, if the metrip is a norm or a distance function induced by some convex bedy
that is, p(z,y) = min{\ | y € z + AB}, the resulting “balls"B(C,r) are theMinkowski sums
Ca@(—rB), for C € € (the minus sign is superfluousgfis a metric). Thus the union of Minkowski
sums of this kind is a substructure of the corresponding nairdiagram. Of course, this connection
also holds in any higher dimension.

One immediate conclusion is that the complexity\of:(C) is at least as large as that Af,..
In practice, establishing a tight bound on the latter coxiplds a considerably easier task, and in
many instances the corresponding question concerningpthplexity of the entire Voronoi diagram
is still open. For instance, consider the case in witidls a set of lines in 3-space, apdis the
Euclidean metric. Then the expanded sig€¢’, ), for C' € €, aren congruent infinite cylinders
in R3, of radiusr. As mentioned above, it is shown in [11] that the complexitythe union K.
of these cylinders i©*(n?), but it is a major open problem to establish a similar neaugdyatic
bound on the complexity dfor,(C) (see an Open Problem below). There are (rare) cases in which
the complexity of the entire Voronoi diagram is an order ofgmitude larger than that ot .. For
example, the complexity of the multiplicatively weightedrgnoi diagram of a point set in the plane
can have quadratic complexity [25], while the sizefgf in this case is only linear.

In the classical case, wheris the Euclidean metric and the object<iare singletons (points),
the graphs of the distance functiopgr, C;) can be replaced by a collection nfhyperplanes in
R+ using a straightforward linearization technique, withaffiecting the minimization diagram.
Hence, the maximum possible complexity b (C) is O(n/4/21), and this is tight in the worst
case (see, e.g., [78, 106]). In more general settings, thahg reduction is not possible, and the
complexity of the Voronoi diagram can be much higher. Apmlythe observation of [47], and
the bounds in Section 4 on the complexity of lower (or upperetopes, we obtain that, under
reasonable assumptions prand on the objects i€, the complexity of the Voronoi diagram is
O*(n%). While this bound is nontrivial (the trivial one ©(n?*1)), in general it is not expected
to be tight. For example, in the case of planar Voronoi diaxgathis bound is near-quadratic, but
the complexity of “almost every” planar Voronoi diagram i#yO(n). Nevertheless, as mentioned
above, for certain “pathological” distance functions, tioeresponding planar Voronoi diagram can
indeed have quadratic complexity [25].
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Voronoi diagrams of points in R3. As noted above, the complexity of the Euclidean Voronoi
diagram ofn points inR? is ©(n?). It has been a long-standing open problem to determine wheth
a similar quadratic or nearly quadratic bound holdR#for more general objects and metrics (here
the known bounds on the complexity of lower envelopes ong gin upper bound aP*(n?)).
The problem stated above calls for improving this bound lmghty another factor of. Since we
are aiming for a bound that is “two orders of magnitude” bettan the complexity ofA(T"), this
appears to be a considerably more difficult problem than thblem of bounding the complexity
of lower envelopes. The only hope of making progress heméxploit the special structure of the
distance functiong(z, C).

Boissonnat et al. [28] have shown that the maximum compl@fithe L,-Voronoi diagram of a
set ofn points inR? is ©(n?). Tagansky [113] proved that the complexity of the threeatisional
Voronoi diagram of point sites under a general polyhedralver distance function (induced by a
polytope withO(1) facets) isO(n?logn). The bound was subsequently improved by Icking and
Ma [74] to O(n?).

Voronoi diagrams of lines inR3. Let p be a convex distance function &* whose unit ball is

a convex polytope with a constant number of facets. (Rebatl hot every distance functignis
necessarily a metricp-fails to be symmetric if the defining polytope (its unit basi)not centrally
symmetric.) Chew et al. [32] showed that the complexity @f Yoronoi diagram of: lines inR?
with respect tg is O(n?a(n) log n). Clearly, thel; and L., metrics satisfy the above assumptions.
In these special cases, the best known lower bound for theleaity of the diagram i§2(n%a/(n)).
Koltun and Sharir [82] extended the theorem of Chew et al| {82rbitrary collections of pairwise
disjoint line segments and triangles, where the respeciiyeer bounds on the complexity of the
diagram areD(na(n) log n) andO*(n?).

As already mentioned, in spite of some recent progredg, istkknown about the complexity of
the Euclidean Voronoi diagram of lines in 3-space.

Open Problem 9. What is the maximum complexity of the Euclidean Voronoirdiagofn lines or
triangles inR3?

If the input lines have a constant number of orientationsn tthe complexity of their Euclidean
Voronoi diagram is0*(n?), as shown by Koltun and Sharir [80]. Dwyer [40] has shown that
expected complexity of the (Euclidean) Voronoi diagram sétofn randomly selected lines iR?
is only O(n3/2). For the general case, a recent work by Evesetil. [55] sheds some light on the
geometric and toplogical structure of bisectors and ttigssalefined by a pair (resp., triple) of lines
in space.

Voronoi diagram of moving points in the plane. An interesting special case of generalized
Voronoi diagrams arelynamic Voronoi diagramfr moving points in the plane. Let be a set
of n points in the plane, each moving along some line at some figkxty. The goal is to bound
the number of combinatorial changes of the Euclidean dimgvar(C) over time. This dynamic
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Voronoi diagram can easily be transformed into a staticetfienensional Voronoi diagram, by
adding the timet as a third coordinate. The points become line®Rif) and the “metric* is a
distance function induced by a horizontal disk (that is,dtance from a poinp(z, yo,to) to a
line ¢ is the Euclidean distance fromto the point of intersection of with the horizontal plane
t = tp). Cubic or nearly cubic bounds are known for this problengneamder more general settings
[62, 64, 108], but subcubic bounds are known only in some spegial cases [30, 79].

Open Problem 10. What is the maximum complexity of the dynamic (Euclideargridd diagram
of n moving points in the plane? What if all points move at the sspsed?

A recent study by Agarwal et al. [3] presents some necessegitions for the diagram to have
large complexity, and thereby offers some intuition on wtypical” dynamic Voronoi diagrams are
expected to have small complexity. The expected compl@fitiie dynamic Voronoi diagram of
points movingrandomlyin the plane i) (n3/?) [41].

Voronoi diagrams in higher dimensions. Next, consider the problem of bounding the complex-
ity of generalized Voronoi diagrams in higher dimensions. Mentioned above, when the objects
in C aren points inR?% and the metric is Euclidean, the complexity\afr(€) is O(nl¥/21). Asd
increases, this becomes significantly smaller than theerfw?+!) bound or the improved bound,
O*(n%), obtained by viewing the Voronoi diagram as a lower envelogg?*!. The same bound of
O(nfdm) has been obtained in [28] for the complexity of thg -diagram ofn points inR?; this
bound too was shown to be tight in the worst case. It was thaptiag to conjecture that the maxi-
mum complexity of generalized Voronoi diagrams in highenelsions is close tol%/21. However,
this conjecture was disproved by Aronov [16], who estaklish lower bound o (n¢~1). The sites
used in his construction are lower-dimensional flats, aeddtbtance is either Euclidean or a poly-
hedral convex distance function. (It is interesting tha kbwer bound in Aronov’s construction
depends on the affine dimension< k < d — 2 of the sites: It isQ(max {nF*1, nl(d=k)/211) )
Thus, ford = 3, this lower bound does not contradict the conjecture madeelthat the complex-
ity of generalized Voronoi diagrams should be at most neadeatic in this case. Also, in higher
dimensions, the conjecture mentioned above is still natteef when the sites are singleton points.
However, very little is known about this problem. For instanthe following problem remains
open.

Open Problem 11. What is the maximum complexity of the Voronoi diagram of abebints in
R¢ under polyhedral metrics or convex distance functions whost balls haveO(1) facets?

Finally, for the general case, Aronov’s construction stiflves a gap of roughly a factor ohbe-
tween the best known upper and lower bounds, and thus ssggestonjecture that the complexity
of such diagrams i©*(n?~!). This is still a major open problem.

“This is not really a metric, because the distance betweerptimts is defined only when they have the same
coordinate.
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Open Problem 12.1s it true that, for a set of n pairwise disjoint convex sites of constant descrip-
tion complexity irR?, and for a metric (or convex distance functignivhose unit ball has constant
description complexity, the complexity\afr(C) is alwaysO* (n4=1)?

Medial axis. A special case of Voronoi diagrams is tiredial axis Here we are given a regiafi
with a complex boundary, e.g., a (not necessarily convelghedron with many faces. We regard
each feature obC (vertex, edge, face) as a separate site, and consider tlomdiodiagram of
these sites within the interior @f. The lower-dimensional faces of the diagram yield a “sledlet
representation of’, which has several advantages in practice [23]. A partibudifficult, and still
open, special case is the following.

Open Problem 13. Let € be a collection of: balls inR3. What is the maximum complexity of the
medial axis ofl(C)? What is the maximum complexity when all the balls have theesadius?

In fact (see Amenta and Kolluri [15]), it suffices to bound tdoenplexity of the Voronoi diagram
of the vertices ot((€) within the union. Since the union may haén?) vertices in the worst case,
and the complexity of the Voronoi diagram of that many point®3 can in general be quadratic
in their number, a naive upper bound on the complexity of teelial axis isO(n*). However, the
best known lower bound is only quadratic, and closing thelween the bounds is a challenging
open problem.

Voronoi diagrams of regularly sampled points. Dwyer [39] proved that the expected size of the
(Euclidean) Voronoi diagram of a set of uniformly distriedtrandom points inside a ball i&? is
linear. Later, Erickson [52, 53] studied the complexity loé foronoi diagram of a point sét in

R3 in terms of thespreadof P, which is the ratio of the largest and the smallest pairwistadces
between the points aP. Erickson proved that the complexity of the Voronoi diagrafra set of
points inR? with spreadA is O(A3). He also proved that this bound is tight in the worst case, by
showing ar2(n?/2) lower bound for a set of. point nicely distributed on a cylinder, so that their

spread i9)(y/n).

Motivated by the problem of surface reconstruction fromtao§sample points, a considerable
amount of work has been dedicated to bounding the complefitile Voronoi diagram of a set
of regularly sampled points on a surfatein R3. Golin and Na [63] showed that the expected
complexity of the Voronoi diagram af uniformly distributed random points on a polyhedral suefac
I'in R%is O(nlogtn). A setS c I'is called an(e, \)-sampleif any ball of radius: centered at a
point of I" contains at least one and at magpoints of S. Attali and Boissonnat [22] proved that if
S c R?is an(e, \)-sample on a polyhedral surface, then the size of its Vordizgram is linear.
Attali et al.[24] proved that ifS C R? is an(e, \)-sample of size: on a generic (smooth) surface,
then its Voronoi diagram ha®(nlogn) complexity. Roughly speaking, a surfacegenericif
the points on the surface at which one of the principal cureats locally maximal, form a finite
set of curves with bounded length; spheres and cylindera@rgeneric surfaces. Note that the
assumption of genericity is probably crucial in the proof2#], because of Erickson’s lower-bound
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construction for points on cylinders [52]. Recently, Arreeat al.[14] proved that the complexity
of the Voronoi diagram of. nicely distributed points on a convexdimensional polyhedron iR¢

is O(n(?=1/P); see the original paper for details on the sampling conlitind other issues. We
conclude this discussion by mentioning the following opesbfem:

Open Problem 14. What is the maximum complexity of the Voronoi diagram of aketpoints
regularly sampled on (or sufficiently near) a smooth madifalR4?

6 Discussion

In this survey we have reviewed the extensive work concgritie complexity of the union of a
family of geometric objects in two, three, and higher dimens. We also reviewed the state of the
art concerning the complexity of generalized Voronoi diggs in three and higher dimensions.

However, we have not discussed algorithms for computingitiien of geometric objects. Sev-
eral deterministic divide-and-conquer, randomized divéghd-conquer, and randomized incremen-
tal algorithms have been proposed to compute the union fariaaty of special cases [11, 57, 59].
Motivated by many applications, considerable work haseskird related issues, such as computing
the volume of the union, the gradient of the volume of uniomalfs inR? (regarding the volume
of the union as a function frorR3” to R), or certain geometric or topological properties of the
union of balls. It is beyond the scope of this survey to revikese results, and we refer the reader
to [6, 43, 45, 46, 88, 98] and the references therein for a Eaofsuch results.
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