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Abstract

Let C be a set of geometric objects inRd. The combinatorial complexity of the unionU(C)
of C is the total number of faces of all dimensions, of the arrangement of the boundaries of the
objects, which lie on its boundary. We survey the known upperbounds on the complexity of
the union ofn geometric objects satisfying various natural conditions.These problems play
a central role in the design and analysis of many geometric algorithms arising in robotics,
molecular modeling, solid modeling, and shape matching, and the techniques used for their
solutions are interesting in their own right.

1 Introduction

Let C = {C1, . . . , Cn} be a set ofn geometric objects, such as disks or convex polygons in the
plane, or balls, cylinders, or convex polyhedra in three andhigher dimensions. LetU(C) =

⋃n
i=1 Ci

denote the union of the objects inC. The combinatorial complexity (or complexity for brevity)of
U(C) is the number of faces of the arrangement of the boundaries ofthe objects, which lie on the
boundary of the union; see below for a formal definition. Several combinatorial and algorithmic
problems in a wide range of applications, including linear programming, robotics, solid modeling,
molecular modeling, and geographic information systems, can be formulated as problems that seek
to calibrate the complexity of the union of a set of objects, or to compute their union. We begin by
reviewing some of these applications.
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Figure 1. An instance of two-dimensional linear programming: (a) Theshaded region denotes the feasible region
Tn

i=1
Ci; (b) The shaded region denotes

Sn

i=1
Ci.

Linear programming. Given a familyC = {C1, . . . , Cn} of n halfspaces inRd, we want to max-
imize a linear function over

⋂n
i=1Ci. Since the maximum (if it exists) is achieved at the boundaryof

the common intersection, the problem can be reformulated asminimizing a linear function over the
boundary of

⋃n
i=1 Ci, whereCi is the (closed) halfspace complementary toCi; see Figure 1. The

worst-case running time of the simplex algorithm, as well asmany other naı̈ve solutions to linear
programming, is proportional to the total number of vertices of U(C). According to McMullen’s
Upper Bound Theorem [96, 97], this number cannot exceed

(

n− dd/2e
bd/2c

)

+

(

n− 1 − d(d− 1)/2e
b(d− 1)/2c

)

,

with equality for cyclic polytopes and for all other simplicial neighborly polytopes. Regarding the
dimensiond as a constant, an assumption that we will follow throughout this paper, we can write
this bound asΘ(nbd/2c).

Robotics. Assume that we have a robot systemB with d degrees of freedom, i.e., we can rep-
resent each placement ofB as a point inRd. We call the space of all placements theconfigura-
tion spaceof B. Suppose the (say, three-dimensional) workspace ofB is cluttered with a family
O = {O1, . . . , Om} of polyhedral obstacles whose shapes and locations are known. B is allowed
to move freely in a motion that traces a continuous path in theconfiguration space, butB has to
avoid collision with the obstacles. For eachOi, letCi ⊆ R

d be the set of placements ofB at which
it collides with the obstacleOi. Ci is referred to as theC-obstacle(or expanded obstacle) induced
by Oi. SetC = {C1, . . . , Cm}. The free configuration spaceF = R

d \ U(C) is the set of allfree
placements ofB, i.e., placements at whichB does not intersect any obstacle.

For instance, letB be a convex polygonal object withr vertices, which is only allowed to
translate inR2. Let O = {O1, . . . , Om} be a set ofm convex polygonal obstacles inR2. Fix a
reference pointo (the origin) withinB. A placement ofB can be represented by specifying the
x- andy-coordinates ofo. B intersects an obstacleOi if and only if o belongs to the “expanded
obstacle”Ci = Oi ⊕ (−B), where⊕ denotes theMinkowski sum, i.e.,

Ci = {x− b | x ∈ Oi, b ∈ B}.
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Hence,F = R
2 \ U(C); see Figure 2.
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O3
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B

Figure 2. The space of free placements of the robotB is the complement of the union of the expanded obstaclesCi.

Going back to the general case, letZ ∈ R
d be a given initial free placement ofB. Then

the set of all free placements ofB that can be reached fromZ via a collision-free continuous
motion corresponds to the connected component ofF containingZ. The problem of determining
whether there exists a collision-free path from an initial configurationI to a final configurationF is
equivalent to determining whetherI andF lie in the same connected component ofF.

This close relationship between union of regions and motionplanning has been a major mo-
tivation for studying the former problem, and has led to considerable work on various aspects of
the union problem [11, 66, 89, 107, 109]. The complexity ofU(C) serves as a trivial lower bound
for the running time of many motion-planning algorithms that compute the entire free space. How-
ever, in view of the preceding discussion, there is also considerable interest in bounding the com-
binatorial complexity of, and constructing, a single connected component of the complement of
U(C) [65, 109].

Molecular modeling. A molecule can be modeled as the union of a family of balls, where the
radius of each ball depends on the atom that it models and the position of each ball depends on the
molecular structure. In theVan der Waals model, a molecule is a family of possibly overlapping
balls, where the radius of each ball is determined by the van der Waals radius of the correspond-
ing atom in the molecule; see Figure 3 (a). Lee and Richards [87] proposed another model, called
solvent accessiblemodel, which is used to study the interaction between the protein and solvent
molecules. A molecule is modeled as a family of balls in this model as well, but the balls repre-
senting the solvent molecules are shrunk to points and the balls representing atoms in the protein
are inflated by the same amount [105]. See Figure 3 (b). Even though these models ignore various
additional properties of molecules, they have been useful in a variety of applications. Many prob-
lems in molecular modeling can be formulated as problems related to geometric, combinatorial, or
topological properties of the union of balls. See [46, 67, 95] for more details.
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(a) (b)

Figure 3. Representing (chain A of) the protein 1A22 as the union of a set of balls: (a) atoms are drawn using van der
Waals radii, and (b) solvent accessible model.

Constructive solid geometry. Constructive solid geometry (CSG), a widely used techniquein
CAD and computer graphics, is a method for representing a complex object as a Boolean function of
simple objects (called primitives); see Figure 4. Often CSGprovides a rather simple representation
of a visually complex object, using a Boolean formula cleverly. A challenging problem in this area
is to compute the boundary representation of the complex object from the given Boolean function,
which basically reduces to the problem of computing the union or intersection of two (or more)
objects. Much work has been done in CSG on developing simple,robust, efficient algorithms for
computing the boundary representation. See [61, 86] for more details.

Figure 4. Representing a complex object as a Boolean function of primitives. The figure is taken from [1].
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Proximity problems. LetP andQ be two finite point sets inRd. Thedirected Hausdorff distance
from P toQ, denoted byh(P,Q), is (here‖ · ‖ denotes the Euclidean norm, but other metrics can
also be considered)

h(P,Q) = max
p∈P

min
q∈Q

‖p− q‖.

TheHausdorff distancebetweenP andQ is H(P,Q) = max{h(P,Q), h(Q,P )}. It is a widely
used metric to measure similarity between two point sets. Let B(x, r) denote the ball of radiusr
centered atx. Thenh(P,Q) ≤ r if and only if P is contained in the union

⋃

q∈QB(q, r). Hence,
the decision problem of computing the Hausdorff distance, i.e., whetherH(P,Q) ≤ r, can be
formulated as point location in the union of a set of congruent balls (or, more generally, of translates
of the unit ball of the given norm) [10, 72, 73].

Small-sizeε-nets. Given a point setP , and an admissible collectionR of ranges(subsets ofP ),
and a parameterε > 0, anε-netof (P,R) is a subsetN ⊆ P with the property that any range that
contains at leastε|P | points ofP contains at least one point ofN . By now, ε-nets are a standard
and useful tool in the design and analysis of geometric algorithms; see [92, 99] for more general
definitions and reviews. If theVC-dimensionof the range space has a finite valueδ (in geometry,
this is the case when the ranges have simple shape, such as halfspaces, balls, tetrahedra, etc.), there
existε-nets of size(cδ/ε) log(δ/ε), for some absolute constantc [71, 83]. A challenging question
is to identify the situations in which the logarithmic factor can be removed or replaced by a smaller
factor. See, e.g., Matoušek et al. [94] for a result of this kind, for the case when the ranges are
halfplanes in the plane or halfspaces in three dimensions. Clarkson and Varadarajan [34] have
recently shown that if the complexity of the union of anyr ranges inR is sufficiently close toO(r),
then the above general bound on the size of the smallestε-net for(P,R) can be improved.

Conflict-free colorings. A coloring of a familyC of regions in the plane is calledconflict-free
if for each pointp ∈ U(C), there is at least one region containingp whose color is unique among
all regions inC that containp. This definition was motivated by a frequency allocation problem
for cellular telephone networks [54]. Minimizing the number of frequencies used by the system
requires minimizing the number of colors in a conflict-free coloring of the transmission ranges of
the base-stations. Alon and Smorodinsky [12] showed that whenever the familyC has the property
that the complexity of the union of anyr ranges inC isO(r), there is a conflict-free coloring using
only O(log3D) colors, whereD denotes the maximum number of regions inC that intersect a
given region. For other results on conflict-free coloring that exploit the complexity of the union of
the regions to be colored, see Har-Peled and Smorodinsky [70].

These examples illustrate the wide scope of problems that can be formulated in terms of, or are
closely related to, the union of a collection of geometric objects. Before proceeding further, we
formalize our notation and introduce additional terminology.
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Preliminaries and notation. We assume that each objectCi in the given collectionC is a semi-
algebraic set.1 In many cases we will also assume that eachCi has constant description complexity,
which is the case, e.g., for balls, cylinders, or tetrahedra. However, we will also consider objects of
non-constant description complexity, such as convex polyhedra. Also, in many planar instances, we
will relax the condition, by considering fairly arbitrary curves, with the main restriction that each
pair of them intersect in a constant number of points.

Each face of U(C) (or, more precisely, of∂U(C)) is a maximal connected (relatively open)
subset of∂U(C) that lies in the intersection of the boundaries of a fixed subset of objects, and
avoids all other objects ofC. As usual, we refer to faces of dimension0 and1 asverticesandedges
(or elementary arcs), respectively. Thecombinatorial complexityof U(C), denoted byκ(C), is the
total number of faces, of all dimensions, that appear on∂U(C). Note that, in certain cases, this
notion of a face is too “liberal”: if the boundary of an objectC ∈ C is not a single algebraic surface,
we typically regard each maximal connected portion of it that lies on a single surface (variety) as
a separate “face” (this is the case, e.g., for convex polygons or polyhedra). In this case one may
want to define a face ofU(C) to be a maximal connected region that lies in the intersection of a
fixed subset of faces of individual objects inC (and avoids all other such faces and objects). In such
cases, we will continue to use the notationκ(C) to denote the combinatorial complexity ofU(C)
under this refined definition of a face.

The study of the union of geometric objects falls into the broad topic ofarrangementsof ge-
ometric objects, which has been studied since the seminal paper by J. Steiner in 1826 [112], and
which has received much attention in the last quarter century. Slightly modifying the traditional
definition, thearrangementof a finite collectionC of (full-dimensional) geometric objects inRd,
denoted asA(C), is the decomposition ofd-space into relatively open connected cells of dimensions
0, . . . , d induced byC, where each cell is a maximal connected set of points lying inthe intersection
of the interiors of a fixed subset ofC and of the boundaries of another fixed subset, and avoids all
other sets ofC; lower-dimensional faces are also referred to asfaces. (As above, if the boundaries
of the objects ofC do not have constant description complexity, the arrangement itself is refined
accordingly.) Note thatU(C) is a substructure ofA(C), in the sense that each face ofU(C) is also
a face ofA(C). U(C) typically contains in its interior many faces ofA(C), but they are ignored in
the analysis of its complexity. As such,κ(C) is bounded by the combinatorial complexity ofA(C),
which, in the worst case, isΘ(nd) if the objects inC are semi-algebraic sets of constant descrip-
tion complexity. In the worst case, the asymptotic bound onκ(C) can indeed beΘ(nd). This is
the case, for example, whenC is a family ofn large and flat “plates” inRd, each being the region
enclosed between a pair of parallel and sufficiently close hyperplanes. See Figure 5 for a simple
planar construction involving triangles. However, ifC satisfies certain natural conditions,κ(C) may
be smaller. For example, the case of halfspaces, mentioned above, yields the particularly favorable
boundΘ(nbd/2c) onκ(C). The challenge is thus to identify classes of objects for which the bound
on κ(C) is substantially smaller thanΘ(nd). As we shall see, in most of the cases that we will
review here,κ(C) is close toO(nd−1). Easily constructed matching lower bounds indicate that this

1A subset ofRd is called areal semi-algebraic setif it is described in terms of a bounded number of polynomialsof
bounded maximum degree in a bounded number of variables.
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is the best “order of magnitude” one can hope for in most of these favorable instances. We will oc-
cassionally use the shorthand notationO∗(f(n)) to denote bounds of the formCεf(n) · nε, which
hold for anyε > 0, where the constant of proportionalityCε depends onε, and typically tends to
∞ asε decreases to0.

Figure 5. n pairwise crossing triangles withΘ(n2) intersection points on the boundary of their union.

The rest of the survey is organized as follows. We review the known results on the complexity
of the union of planar objects in Section 2, and of three-dimensional objects in Section 3. We also
sketch proofs of some of the main results. We then briefly review in Section 4 the (very few) known
results in higher dimensions. Section 5 discusses the relationship between the union of objects and
generalized Voronoi diagrams, and gives a brief review of the recent progress in the analysis of the
complexity of these diagrams. We conclude in Section 6 with ashort discussion of the topic and its
relatives.

2 Union of Planar Objects

In this section we review the known results on the union of geometric objects in the plane. The
study of the union of planar objects goes back to at least the early 1980s, when researchers were
interested in the union of rectangles or disks, motivated byVLSI design, biochemistry, and other
applications [26, 77, 84, 104]. However, the early work focused on computing the union or its
measure, rather than bounding its complexity.

2.1 Union of pseudo-halfplanes

Let F = {f1, . . . , fn} be a set ofn totally defined continuous univariate functions. For eachfi,
let Ci be the set of points lying on one of the sides of (above or below) the graph offi. We refer
to Ci as apseudo-halfplane. If Ci lies below (resp., above)fi, it is called alower (resp.,upper)
pseudo-halfplane. SetC = {C1, . . . , Cn}. If eachfi is a linear function, then∂U(C) is the boundary
of a convex polygon, soκ(C) is linear. For more general functions, the bounds onκ(C) are more
involved, and are related to lower and upper envelopes, defined as follows.
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The lower envelopeof a collectionF of functions, as above, denoted byLF, is the pointwise
minimum of the functions inF, i.e.,

LF(x) = min
1≤i≤n

fi(x).

Theupper envelopeis defined as the pointwise maximum ofF, i.e.,

UF(x) = max
1≤i≤n

fi(x).

If eachCi is a lower pseudo-halfplane, thenU(C) is the region lying below the upper envelope of
F. Similarly, if eachCi is an upper pseudo-halfplane, thenU(C) is the region lying above the lower
envelope ofF. A fundamental observation (see [109]) is that if the graphsof any pair of functions
in F intersect in at mosts points, for any fixed constants, then the graph of the lower or upper
envelope ofF consists of at mostλs(n) elementary arcs, whereλs(n) is the maximum length of an
(n, s) Davenport-Schinzel sequence; see [109] for more details. Lettingα(n) denote the extremely
slow-growing inverse Ackermann function, the best known bounds onλs(n) are

λ1(n) = n,

λ2(n) = 2n− 1,

λ3(n) = Θ(nα(n)),

λ4(n) = Θ(n · 2α(n)),

λ2s+2(n) = n · 2Θ(αs(n)) for s > 1,

λ2s+3(n) = nα(n)O(αs(n)) for s ≥ 1.

Figure 6. Functions inF− (resp.,F+) are drawn with dashed (resp., solid) lines. The sandwich region betweenUF−

andLF+ , the complement ofU(C), is shaded.

The case when some of the regions ofC are lower pseudo-halfplanes and some are upper pseudo-
halfplanes is not that much harder. LetF− (resp.,F+) denote the subset of those functions in
F that bound lower (resp., upper) pseudo-halfplanes inC. ThenU(C) is the complement of the
sandwich region, consisting of those points that lie above the upper envelope UF− and below the
lower envelopeLF+ . See Figure 6. It is known (and easy to show) that the complexity of the
sandwich region is proportional to the sum of the complexities ofUF− and ofLF+. We thus have
the following result.

Theorem 2.1. Let C be a set ofn pseudo-halfplanes so that the boundaries of any pair of them
intersect in at mosts points. Thenκ(C) = O(λs(n)).
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2.2 Regions with few pairwise boundary intersections

Let C = {C1, C2, . . . , Cn} be a family ofn simply connected regions in the plane, each bounded
by a simple closed Jordan curve. Assume, for simplicity, that these curves are ingeneral position,
i.e., any two of them cross only a finite number of times (two curvesγ1 andγ2 are said tocrosseach
other at a point, ifγ1 passes from one side ofγ2 to the other side at this point), no two curves touch
each other, and no three curves pass through a common point.2

In this subsection we consider the case in which the boundaries of any pair of regions inC cross
in a small number of points, and derive linear, or near-linear bounds for the complexity of their
union.

Union of pseudo-disks. If the boundaries of any two distinct regions inC cross at most twice,
thenC is called a family ofpseudo-disks. See Figure 7. In this especially favorable case, we have
the following result.

(a) (b)

Figure 7. (a) A family of pseudo-disks. (b) Another family ofn pseudo-disks with6n − 12 elementary arcs on the
boundary of its union.

Theorem 2.2 (Kedem et al. [76]).LetC = {C1, C2, . . . , Cn} be a family ofn ≥ 3 pseudo-disks in
the plane. Then the boundary ofU(C) consists of at most6n − 12 elementary arcs, and this bound
is tight in the worst case.

We present the proof of Theorem 2.2 for the case of circular disks. (A more direct proof for the
union of circular disks based on the so-calledlifting transform, which extends to higher dimensions,
is given in Section 4.) Assign to eachCi its center,pi, and connectpi to pj by a straight-line segment
if and only if ∂Ci and∂Cj cross each other, and at least one of their crossing points belongs to
∂U(C); see Figure 8. It is easy to verify that no two segments in the resulting geometric graphG
cross each other, i.e.,G is planar. Therefore,G has at most3n−6 edges, each of which corresponds

2One can extend the general position assumption to other instances and to higher dimensions; see [109]. There is a
general perturbation-based argument [109] that shows thatthe asymptotic upper bound onκ(C) is not affected by the
general position assumption.
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to at most two vertices of∂U(C). Consequently, the number of crossings on∂U(C), and hence the
number of elementary arcs, is at most6n− 12. The proof for the case of general pseudo-disks also
uses planarity, and follows as a special case of the proof of amore general result (Theorem 2.5),
given later in this section.

In other words, thecomplexityof U(C) is at most linear inn. A lower-bound construction
(which can also be realized using normal disks), in which thenumber of elementary arcs is exactly
6n − 12, is shown in Figure 7(b). The proof for general pseudo-diskscan be found later in this
subsection, where a generalization of Theorem 2.2 is statedand proved (Theorem 2.5).

C1

C2

C5

p1

p4

p5

p5

p5
C8

p2

p3

C3

C7

p7
C6

C4

Figure 8. The proof of Theorem 2.2 for disks.

We conclude the discussion on pseudo-disks by giving two examples of pseudo-disks that arise
in practice. First, recall the example of translational motion planning in the plane. Because of this
application, the lemma is formulated in terms of the reflection−B of B, but it holds of course for
B too.

Lemma 2.3 (Kedem et al. [76]).LetO1, O2, be two disjoint convex bodies in the plane, and letB
be another convex body in the plane. Then the boundaries of the Minkowski sumsC1 = O1⊕ (−B)
andC2 = O2 ⊕ (−B) cross at most twice.

Proof: We argue thatC1 andC2 have exactly two common outer tangents, from which the lemma
follows easily. For a convex bodyC and for eachθ ∈ [0, 2π), definef(C, θ) to be the signed
distance from the origino to the unique tangentτ(C, θ) to C at orientationθ, which hasC lying
to its left; f(C, θ) is positive (resp., negative) ifo lies to the left (resp., right) ofτ(C, θ). It easily
follows from the definition of Minkowski sums that

f(C1, θ) = f(O1, θ) − f(B, θ)

f(C2, θ) = f(O2, θ) − f(B, θ).
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θ

Figure 9. The proof thatC1 andC2 have only two common outer tangents.

See Figure 9. Hence,τ(C1, θ) = τ(C2, θ), i.e.,C1 andC2 have a common outer tangent at ori-
entationθ, if and only if τ(O1, θ) = τ(O2, θ), i.e.,O1 andO2 have a common outer tangent at
orientationθ. SinceO1 andO2 are disjoint, they have exactly two common outer tangents, and the
claim follows. �

Lemma 2.3 implies that ifO = {O1, . . . , On} is a set ofn ≥ 3 pairwise-disjoint convex
obstacles andB is a convex “robot” translating in the plane, then∂F, the boundary of the free
space, has at most6n − 12 elementary arcs. IfB and the obstacles are convex polygons, so that
B hask vertices, and the total number of obstacle vertices iss, thenF hasO(kn + s) vertices, of
which at most6n− 12 are reflex intersection vertices.

Another commonly occurring example of pseudo-disks is the case ofhomothets. Let B be a
convex body in the plane, and for1 ≤ i ≤ n, letCi be a homothetic copy ofB, i.e.,Ci = λiB+ xi

for arbitrary parametersλi > 0 andxi ∈ R
2. SetC = {C1, . . . , Cn}. It is known (and easy to

show) thatC is a family of pseudo-disks. Hence,∂U(C) has at most6n− 12 elementary arcs.

Allowing three intersections. What happens if we somewhat weaken the condition in Theo-
rem 2.2, by assuming that the boundaries of any two members ofC cross at mostthree times,
rather than twice? At first glance this problem seems to be foolish because two closed curves in
general position can cross only anevennumber of times. However, by a slight modification we
obtain a meaningful question with a somewhat surprising answer.

Theorem 2.4 (Edelsbrunner et al. [44]).Let {γ1, γ2, . . . , γn} be a family ofn simple curves in
general position in the upper halfplane. Assume that the endpoints of each curve are on thex-axis,
and that any two curves cross at most three times. LetCi denote the bounded region enclosed byγi

and thex-axis (see Figure 10 (a)). Thenκ(C) = O(nα(n)), and this bound is asymptotically tight.

Note that if eachγi is anx-monotone curve, then Theorem 2.4 follows from Theorem 2.1.
However, as seen in Figure 10 (a), nonmonotone curves may cause holes in the union (i.e., bounded
components of the complement of the union), which makes the proof of the above theorem less
obvious and quite technical. The proof of Edelsbrunner et al. [44] proceeds by constructing a
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Figure 10. (a) Union of 3-intersecting regions. (b) The curveΓ; it switches from one input curve to another
at hollow circles, and the filled circles denote the verticesof the U(C) that are not switching points ofΓ; Σ =
〈1, 1, 2, 2, 3, 3, 4, 4, 4, 5, 4, 6, 6, 7, 7〉.

curveΓ that starts at−∞ on thex-axis and proceeds to the right, always following one of theγi,
consistently with its orientation, possibly switching arcs at intersection points, but never visiting a
point more than once, and eventually ending at+∞ on thex-axis. The curveΓ traces each arc
of U(C) exactly once, consistently with the orientation of the corresponding input curve, and all
holes ofU(C) lie outsideΓ, i.e., Γ can be continuously deformed withinU(C), so as to coincide
with the x-axis; see Figure 10 (b). The proof then continues by labeling each elementary arc of
Γ that appears on∂U(C) with the curve to which it belongs, producing a sequenceΣ of labels.
One can then show that if one removes every symbol ofΣ which is equal to its predecessor, then
the remaining sequence is an(n, 3) Davenport-Schinzel sequence, and thus its length isO(nα(n)).
One can also show that the number of deleted labels isO(nα(n)), which completes the proof of
Theorem 2.4. The details can be found in [44].

Beyond three intersections. If we allow the boundaries of two objects inC to cross at mostfour
times, then the situation completely deteriorates. As illustrated in Figure 5, every pair of then
triangles intersect in precisely four points, and all4

(n
2

)

intersection points belong to the boundary
of their union. However, Whitesides and Zhao [117] discovered that by excluding certain types
of crossings between the members ofC, it is still possible to prove a linear upper bound on the
complexity ofU(C) even if pairs of members ofC may intersect in more than two points. More
precisely, a familyC of simply connected regions bounded by simple closed curvesin general
position in the plane is calledk-admissible(with k even) if for any pairCi, Cj ∈ C,

(i) Ci \ Cj andCj \ Ci are connected, and

(ii) ∂Ci and∂Cj cross in at mostk points.

See Figure 11. Theorem 2.2 is a special case of the following theorem (withk = 2).

Theorem 2.5 (Whitesides and Zhao [117]).Let C = {C1, C2, . . . , Cn} be ak-admissible family
of n ≥ 3 simply connected regions in general position in the plane. Then∂U(C) consists of at most
k(3n − 6) elementary arcs, and this bound cannot be improved.
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C1

C2
C2

C1

Figure 11. A pair of regions belonging to a (a)4-admissible family, (b) nonadmissible family (C1 \C2 is disconnected).

Proof: We sketch the proof given in [101] (see also [103]). As usual,it suffices to bound the number
of vertices ofU(C). For everyCi that contributes at least one arc to∂U(C), we fix a pointpi in the
interior of such an arc. For any pairCi, Cj ∈ C that generate a vertexq on ∂U(C), we draw an
edge (but only one!)eij betweenpi andpj, as follows. Starting frompi, follow ∂Ci to q (in any
direction), and from there follow∂Cj to pj (in any direction). LetH be the resulting graph; see
Figure 12.

We claim that any two edges ofH not incident to the same vertex cross an even number of
times. We sketch the proof of this claim for the case of pseudo-disks (k = 2). Let eij andek` be two
edges ofH, where the first (resp., second) edge passes through an intersection pointqij (resp.,qk`)
of the boundaries ofCi, Cj (resp.,Ck, C`), which lies on the boundary of the union. Each of the
pointsqij, qk` splits its respective edge into two “half-edges.” We claim that any pair of half-edges
cross an even number of times, that is, either twice or not at all. If this were not the case, then the
two half-edges would cross exactly once, and then the pseudo-disk property is easily seen to imply
that one endpoint of each half-edge must lie in the interior of the other object, which is impossible,
since each half-edge starts and ends at a point on the boundary of the union. This argument also
applies to any evenk > 2, exploiting condition (i) above.

e(1, 2)

e(3, 4)

1

2

3

4

12

34

Figure 12. The union of pseudo-disks via a planarity argument. Each point pi is labeled asi, and pointsqij are labeled
asij. Heree(1, 2) ande(3, 4) cross each other six times.

A remarkable result by Chojnacki (alias Hanani) [33] (see also [116, 91], and [103] for a new
proof), states that if a graphG can be drawn in the plane so that any two of its edges not incident to
the same vertex cross an even number of times, thenG is planar. Hence, we can conclude thatH is
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planar, so it has at most3n− 6 edges. That is, there are at most3n− 6 pairs{Ci, Cj} contributing
vertices toU(C), and each of them can contribute at mostk such points. �

Counting regular vertices. If ∂Ci and∂Cj intersect in precisely two points, then we call these
intersection pointsregular; otherwise their intersection points are calledirregular. See Figure 13(a).
A vertex ofU(C) is regular if it is a regular intersection point, and irregular otherwise. IfC is a set
of pseudo-disks, thenU(C) does not have any irregular vertex. A natural way to generalize Theo-
rem 2.2 is to obtain sharp bounds on the number of regular vertices inU(C) even if the boundaries
of some pairs of objects inC intersect at more than two points.

(a) (b)

Figure 13. (a) Regular (darkly shaded circles) and irregular (lightlyshaded circles) vertices of planar unions. (b) A union
of convex polygons with quadratically many regular vertices.

LetC be a family ofn ≥ 3 convex regions in general position in the plane, and letR(C) andI(C)
denote, respectively, the number of regular and irregular vertices ofU(C). Pach and Sharir [101]
showed that

R(C) ≤ 2I(C) + 6n− 12. (1)

This result is sharper than Theorem 2.2, in the sense that, for establishing the upper bound
6n − 12 on the number of elementary arcs (or the number of intersection points) on∂U(C), one
does not have to insist that all boundary intersection points of pairs of objects ofC be regular. It
suffices to require that all vertices ofU(C) be regular. The extension of the above result to nonconvex
regions remains elusive:

Open Problem 1. Is it true that for every setC of n simply connected regions in general position in
the plane, one hasR(C) ≤ 2I(C) + 6n− 12?

It is not hard to show that the coefficient ofI(C) in (1) cannot be replaced by any constant
smaller than2. Moreover, in generalR(C) can beΘ(|C|2) = Θ(n2) in the worst case, as is illus-
trated in Figure 13(b), unless we limit the number of times the boundaries of a pair of curves inC

14



Figure 14. The lower-bound construction for the number of regular vertices on the union of rectangles and disks.

are allowed to cross each other (this number is not bounded bya constant in Figure 13(b)). How-
ever, we cannot expect alinear upper bound even under such an assumption (unless we deal with
pseudo-disks): For anyn, we can construct a familyC of n disks and rectangles in general position
in the plane satisfyingR(C) = Ω(n4/3), as follows. Take a system ofn/2 lines andn/2 points with
Θ(n4/3) incidences between them [99]. Fix two sufficiently small parameters0 < ε < ε′ < 2ε.
Shift each line by distancesε and2ε, and create a sufficiently long rectangle bounded by the shifted
copies. Expand each point into a disk of radiusε′. See Figure 14. With an appropriate choice of
ε, ε′, the resulting family of rectangles and disks hasΘ(n4/3) regular vertices on the boundary of
their union. For the special case of rectangles and disks, this bound is asymptotically tight [17]. If
C is a set ofn simply connected regions so that the boundaries of any pair of them intersect in at
mosts points, for some constants > 0, then there existsδ = δ(s) > 0 such thatU(C) hasO(n2−δ)
regular vertices [17]. Recently, the bound has been improved toO∗(n4/3), where the constant of
proportionality depends ons (and on the hiddenε > 0), if the objects inC areconvex[58]. See also
[56] for some related results.

Open Problem 2. Let C be a set of simply connected regions in general position in the plane, so
that the boundaries of any pair of them intersect in at most some constant number,s, of points.
Obtain a sharp bound onR(C), which depends only onn (ands), and not onI(C).

2.3 Union of fat objects

The construction depicted in Figure 5, showing that the union of n triangles may havequadratic
complexity, uses extremely narrow triangles. On the other hand, as we saw in Section 2.2, the
complexity of the union ofn circular disks or (axis-parallel) squares is linear, thereby raising the
question whether the union of “fat” objects has small complexity. In the last fifteen years this
question has been answered in the affirmative under various notions of fatness [13, 48, 50, 51, 93,
102]. In fact, these results have motivated the study of faster geometric algorithms, for a variety of
applications, for fat objects in two and three dimensions [4, 7, 35, 75, 85, 110, 111]. In this section
we review the known results on the complexity of the union of fat planar objects, starting with the
simplest but important case of fat triangles.
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Union of fat triangles. For any fixedα > 0, a triangle is calledα-fat if each of its angles is
at leastα. Matoušek et al. [93] proved that the complexity of the union of n α-fat triangles is
O(n log log n), for any fixedα > 0. Their proof is based on the fact that every familyC of n α-fat
triangles in the plane determines at most a linear number ofholes, namely, bounded components
of the complement ofU(C). The strongest known bound on the number of holes (in terms ofits
dependence onα) is the following.

Theorem 2.6 (Pach and Tardos [102]).Any familyC of n α-fat triangles in the plane determines
O((n/α) log(1/α)) holes. This bound is tight up to the logarithmic factor.

Proof: We sketch the earlier proof, given in [93], of an upper bound on the number of holes, which
is linear inn, but in which the dependence of the constant of proportionality on α is 1/α3.

Figure 15. Replacing a fat triangle by three canonical triangles.

We first replace each triangle∆ ∈ C by three(α/2)-fat triangles contained in∆, by bending the
edges of∆ inwards, as depicted in Figure 15, so that the directions of the edges of the new triangles
belong to the family of theO(1/α) so-called“canonical” directions jα/2, j = 0, 1, . . . During the
bending, the holes of the unionexpand, so their number can decrease only when two holes merge
into a common hole. However, this can happen only when the bending sweeps through a triangle
vertex, which can happen only once per vertex, and thus implies that the number of holes can go
down by at most3n.

Thus, we obtainO(1) canonical familiesof (α/2)-fat triangles with fixed edge directions, so
that each family consists ofhomothetic triangles, i.e., similar triangles in parallel positions. It
suffices to bound the number of holes in the union of these families. Since any vertex of the union
is also a vertex of the union of justtwo families, it suffices to establish a linear upper bound on the
number of holes determined by the union of two canonical families.

As stated in Section 2.2, the union of homothetic triangles has linear complexity, so the union
of all members of asinglecanonical family has linear size. Consider then the union oftwo families
R andG of “red” and “green” triangles, where the triangles in each family are ((α/2)-fat and)
homothetic to each other. For simplicity, assume|R| = |G| = n. We may ignore holes with a
“monochromatic” vertex (i.e., a vertex ofU(R) or of U(G)), as there are onlyO(n) such holes. It
is not hard to see that any remaining hole is either aconvex quadrangular hole(see Figure 16) or a
convex hexagonal hole. An easy application of Euler’s polyhedral formula impliesthat the number
of holes is dominated by the number of quadrangular holes, which we now proceed to bound.

We draw a graphH, whose vertices are represented by the elementary arcs of the boundary of
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Figure 16. Shaded regions denote bichromatic quadrangular holes;a, b, c, d, e are the elementary arcs ofU(R) that
induce these holes;(a, b), (c, e), (d, e) are the edges ofH .

U(R) and whose edges connect pairs of elementary arcs that bound acommon quadrangular hole;
we draw such an edge by connecting (only once!) the pair of redarcs across such a common hole.
Obviously,H is a planar graph. See Figure 16.

Hence, there are onlyO(n) pairs of elementary arcs ofU(R) that form a common quadrangular
hole. There areO(n) quadrangular holes that arefirst or last along some edge of a green triangle;
let us call themextremal. On the other hand, it can be shown by a simple trigonometric calculation,
illustrated in Figure 17, that each pair{e, e′} of elementary arcs ofU(R) can generate onlyO(1)
nonextremal quadrangular holes. �

e

e′

1

α

α

1

R1

R2

Figure 17. A fixed pair of elementary arcs ofU(R) generates onlyO(1/α2) (nonextremal, bichromatic, and quadrangu-
lar) holes.

This result can be used to establish a more general upper bound for the number of holes deter-
mined by a family of triangles with given angles.

Theorem 2.7 (Pach and Tardos [102]).Let C = {C1, C2, . . . , Cn} be a family ofn > 1 trian-
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gles in the plane, and letαi denote the smallest angle ofCi, for 1 ≤ i ≤ n. Suppose0 < α1 ≤
α2 ≤ · · · ≤ αn, and letk ≤ n be the largest integer satisfying

∑k
i=1 αi < π. ThenC deter-

minesO(nk log k) holes. Furthermore, there exists a familyC′ = {C ′
1, C

′
2, . . . , C

′
n}, whereC ′

i is
congruent toCi andC′ determinesΩ(nk) holes.

Proof: Note that eachCi, for k > i, is (π/k)-fat, so the union ofCk+1, . . . , Cn, denoted byU′, has
O(nk log k) holes. AddingC1, . . . , Ck to U′ creates at mostO(nk) new holes. �

If we considerinfinite wedges(i.e., convex cones) rather than triangles, then the same bound
holds not only for the number ofholes, but also for thecomplexityof the union. The following
result strengthens some earlier bounds in [13, 50].

Theorem 2.8 (Pach and Tardos [102]).Let C be a family ofn wedges in the plane with angles
0 < α1 ≤ α2 ≤ · · · ≤ αn < π. Let k ≤ n be the largest integer satisfying

∑k
i=1 αi < π.

If k ≥ 2, thenκ(C) is O(nk log k). Furthermore, there exists a family ofn wedges with angles
α1, α2, . . . , αn, which determinesΩ ((π − αn)nk) holes.

Using Theorem 2.6, we state a slightly strengthened versionof the result in [93].

Theorem 2.9. For any fixedα > 0, the boundary of the union ofn α-fat triangles in the plane
consists of at mostO((n/α) log log n log(1/α)) elementary arcs.

Matoušek et al. [93] also proved that if, in addition to being fat, all triangles have roughly
the same size (i.e., the ratio between any pair of diameters is bounded by a constant), then their
union has linear complexity. On the other hand, by slightly modifying theΩ(nα(n)) lower-bound
construction for the lower envelopes ofn segments [118], one can constructn equilateral (π/3-fat)
triangles, whose union has a slightly superlinear (i.e.,Ω(nα(n))) complexity.

We conclude the discussion on fat triangles by mentioning anobvious open problem.

Open Problem 3. What is the maximum complexity of the union ofn α-fat triangles?

Union of fat convex objects. Extending the notion of fatness to more general objects, we call
a convex bodyC in the planeα-fat, for α ≥ 1, if there exist two disksD,D′, such thatD ⊆
C ⊆ D′, and the ratio between the radii ofD′ andD is at mostα. See Figure 18. Note that
this extends the definition of fatness for triangles: anα-fat triangle is easily seen to beα′-fat as a
convex body, for a suitableα′ ≥ 1, and vice versa. Efrat and Sharir [51] showed that the complexity
of the union ofn simply shaped convexα-fat objects in the plane isO∗(n), where the constant of
proportionality depends on (the hiddenε, and on) the maximum number of intesections between any
pair of boundaries. The proof uses both the bound on the complexity of the union of fat triangles,
and the bound on the number of regular vertices of the union (see (1)).

We also remark that the complexity of the union ofn arbitrary convexpolygonswith a total of
s vertices isO(n2 + sα(n)) [19].
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Figure 18. Fat-like planar objects with near-linear union complexity.

Union of fat non-convex objects. There are other, more general, notions of “fatness” that extend
to non-convex objects, and for which the combinatorial complexity of the union ofn “fat” planar
objects remainsO∗(n). For instance, call a possibly non-convex objectC α-round if for each
point p ∈ ∂C, there exists a diskD of radiusαdiam(C) which passes throughp and which is
contained inC; see Figure 18. Informally,α-round objects cannot have convex corners, nor can
they have very thin bottlenecks (but they can have reflex corners). Efrat and Katz [49] have shown
that the complexity of the union ofn α-round objects isO(λs(n) log n), wheres is a constant that
depends on the description complexity of the input objects.This result has been further extended
by Efrat [48] to so-called(α, β)-covered objects: An objectC is (α, β)-coveredif for each point
p ∈ ∂C, there exists anα-fat triangleT that hasp as a vertex, is contained inC, and each of its
edges is at leastβ diam(C) long; see Figure 18. Thus, these objects are not necessarilysmooth,
but their corners cannot be too sharp. Efrat [48] has shown that if C is a collection ofn (α, β)-
covered objects, each pair of whose boundaries intersect inat mosts = O(1) points, thenκ(C) =
O(λs+2(n) log2 n log log n). See also [85, 110, 111] for other related results.

3 Union of Objects in Three Dimensions

3.1 Overview

Starting in the mid 1990s, research on the complexity of the union of geometric objects has shifted
to the study of instances in three and higher dimensions. As mentioned in the introduction, the
maximum complexity of the union ofn simply shaped objects inR3 is Θ(n3), and this bound can
already be attained by flat boxes. There are very few particularly favorable cases for which the union
complexity is linear inn, including the cases of halfspaces and of axis-parallel unit cubes [31, 28].
In general, though, the goal is to find classes of objects for which the maximum complexity of the
union is nearly quadratic. Indeed, in most of the cases studied so far (as will be reviewed below), the
complexity of the union can be quadratic (and sometimes slightly super-quadratic) in the worst case.
This is the case, e.g., for balls, cubes, congruent cylinders, and halfspaces bounded byxy-monotone
surfaces of constant description complexity.

As the evidence discovered so far suggests, there are several important classes of objects inR3

19



whose union has at most nearly-quadratic complexity, in complete analogy to the planar situation.
One such class is the class offat objects, where, in complete analogy with the planar case, a compact
convex objectC is calledα-fat if the ratio between the radii of the smallest enclosing balland of
the largest inscribed ball ofC is at mostα. Other notions of fatness, such asα-roundness, have
also been extended toR3. A prevailing conjecture is that the maximum complexity of the union of
such fat objects is indeed at most nearly quadratic. Such a bound has however proved quite elusive
to obtain for general fat objects, and this has been recognized as one of the major open problems in
computational geometry [37, Problem 4]. Nevertheless, considerable progress towards establishing
this bound has recently been made, as we will shortly review.

As in the plane, another candidate class of objects with small union complexity are Minkowski
sums of pairwise disjoint convex objects with a fixed convex object. In the plane, this class was
handled by showing that its members are pseudo-disks, and then by applying the general linear
bound of [76] (Theorem 2.2). However, the analysis of the union of such Minkowski sums is
considerably harder in 3-space (because they are not “pseudo-balls”—see below), and there are only
a few (albeit important) instances for which a near-quadratic bound has been established [11, 20];
see Section 3.4.

A third class of objects with small union complexity arepseudo-halfspaces, i.e., regions lying
above or below anxy-monotone surface (the graph of a continuous totaly defined function). This
extends the class of pseudo-halfplanes, and was one of the first classes to be studied.

We note that extending the notion of pseudo-disks to three dimensions does not seem to lead
to any new insights. A family of regions inR3 is said to consist ofpseudo-balls, if the boundaries
of any two members intersect in a single closed curve, and theboundaries of any three members
intersect in at most two points. It is trivial to show that thecomplexity of the union of a collection
C of n pseudo-balls isO(n2), by considering the portion of the union boundary on the boundary of
each member ofC separately, and by applying Theorem 2.2. Hence, in particular, the complexity
of the union ofn balls inR

3 isO(n2); it is easy to construct examples where the union hasΘ(n2)
vertices, even with unit balls, and even when the unit balls all have a common point; see [29].
Somewhat surprisingly, Minkowski sums of disjoint convex bodies with a fixed convex body are
not pseudo-balls; see a more detailed discussion below.

3.2 Union of pseudo-halfspaces

Let F = {f1, . . . , fn} be a family ofn continuous totally defined bivariate functions (inx, y). As
in Section 2.1, we refer to the region lying below (resp., above) the graph offi as the lower (resp.,
upper)pseudo-halfspacebounded by that graph. For each1 ≤ i ≤ n, let Ci be one of these two
pseudo-halfspaces, and letC denote the collection{C1, . . . , Cn}.

Halperin and Sharir [68] proved that if each function infi is of constant description complexity,
then the complexity of the lower or upper envelope ofF isO∗(n2). This immediately implies that if
all theCi’s are lower (or all are upper) pseudo-halfspaces, then their union hasO∗(n2) complexity.
Agarwal et al. [9] have established anO∗(n2) bound on the complexity of the sandwich region
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between the lower and upper envelopes of two respective families of a total ofn bivariate functions,
each of constant description complexity. The proof is basedon the following interesting result: Let
F andG be two collections of a total ofn bivariate functions, as above, and letMF (resp.,MG)
denote theminimization diagramof F (resp.,G), namely, thexy-projection of the lower envelope of
F (resp.,G). Then theoverlayof the two minimization diagrams hasO∗(n2) complexity. Note that
we make no assumption on any relation betweenF andG. Also, the result continues to hold when
one or both diagrams are replaced by the respectivemaximization diagram, i.e., thexy-projection
of the respective upper envelope. This implies the following result.

Theorem 3.1 (Agarwal et al. [9]). LetC be a set ofn pseudo-halfspaces inR3, each of which is a
semi-algebraic set of constant description complexity. Then the complexity ofU(C) isO∗(n2).

3.3 Union of convex polyhedra

As already remarked, an easy extension of the planar construction shown in Figure 5 shows that
the maximum complexity of the union ofn (axis-aligned or arbitrarily aligned) boxes (or wedges,
or tetrahedra) inR3 is Θ(n3); see Figure 19. Moreover, we can easily adapt this construction to
show that the maximum union complexity of threenonconvexpolyhedra with a total ofs facets is
Θ(s3). A natural question is whether a similar lower bound also exists for the complexity of the
union of convex polyhedra, i.e., a bound that is cubic in the number of facets. The following result
by Aronov et al. [21] answers this question in the negative, and calibrates, more or less, the true
maximum complexity of such a union.

Figure 19. Union ofn boxes inR
3 with Θ(n3) complexity.

Theorem 3.2 (Aronov et al. [21]). The complexity of the union ofn convex polyhedra inR3 with a
total of s facets isO(n3 + sn log n). This complexity can beΩ(n3 + snα(n)) in the worst case.

It is interesting to note that the above bound is cubic only inthe number of polyhedra, but it
is only linear in s. (Compare with the boundO(n2 + sα(n)) for the case of convex polygons
in the plane [19].) The cubic term disappears in the special case where the polyhedra inC are
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Minkowski sums of pairwise-disjoint convex polyhedra withanother fixed convex polyhedron—see
the following subsection for details.

The proof of Theorem 3.2 given in [21] is rather technical; wehighlight two of its key ingredi-
ents that have been proved useful in some other contexts too.We note that techniques for analyzing
the union of objects inR3 (and in higher dimensions) are rather scarce; we will mention some of
these techniques as we encounter instances in which they canbe exploited.

Special quadrilaterals and special cubes—Junctions in theunion. Let C be a family ofn con-
vex polyhedra with a total ofs facets, and letC1, C2, C3 be three members ofC with the following
property. There exists a facetF1 of C1, such thatQ = F1 ∩ C2 ∩ C3 is a quadrilateral, having two
opposite edges on∂C2 and two opposite edges on∂C3, and no other member ofC intersectsQ. In
this case, we callQ aspecial quadrilateral; see Figure 20.
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F1

C2
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F1

Figure 20. A special quadrilateral in the union of polyhedra.

Aronov et al. [20, 21] have introduced this notion, and showed that, for arbitrary collections
C as above, the complexity of the union ofC is O∗(n2 + Q(n, s)), whereQ(n, s) is an upper
bound on the number of special quadrilaterals in any subcollection ofC. They have then shown
that, for collectionsC of Minkowski sums of pairwise disjoint convex polyhedra with another fixed
polyhedron,Q(n, s) = O(ns).

Pach et al. [100] have extended this notion to that ofspecial cubes, where a special cube is an
intersection of three members ofC, which has the combinatorial structure of a cube, where eachof
the three intersecting polyhedra contributes a pair of opposite facets to the intersection, and no other
member ofC meets the “cube”. Pach et al. have shown that the union complexity of C is roughly
n2+ the number of special cubes in any subcollection ofC.

Thus, the problem of bounding the complexity of the union reduces to that of bounding the
number of special quadrilaterals or cubes. This has been done for special quadrilaterals, in the
context of Minkowski sums of pairwise disjoint convex polyhedra, in [20], using a fairly intricate
topological argument, and for special cubes, in the contextof arbitrarily aligned nearly congruent
cubes in [100], using a plane sweeping argument.
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Charging schemes. This technique can be used in a variety of scenarios. Here we sketch in a
special case how it can be applied to convex polyhedra.

Let C be a family ofn convex polyhedra inR3, each with a constant number of facets, and
consider the problem of bounding the complexity ofU(C). Clearly, the number of vertices ofU(C)
that are vertices of some member ofC or are double-intersection points lying on an edge of some
member and on a facet of another isO(n2). Therefore, we have to bound the number of triple-
intersection points on the boundary ofU(C), i.e., points that belong to the boundaries of three
distinct members ofC. (Assuming that the sets are in general position, no point can belong to the
boundaries of more than three distinct members.)

Consider the arrangementA induced by the boundaries of the polyhedra inC. Define thelevel
of a vertex of this arrangement to be the number of members ofC that containv in their interior.
The number of triple-intersection vertices at leveli is denoted byVi = Vi(C). We have to bound
V0(C), that is, the number of triple-intersection vertices at level 0.

Each vertexv of the union is incident to three edges of the arrangementA, each leadingaway
from the union boundary; that is, each such edge is containedin the intersection segment of two of
the facets containingv, and leads into the interior of the third polyhedron. We follow each of these
edges, and chargev to the three vertices that are the other endpoints of these edges. See Figure 21.

v

Figure 21. The charging scheme. The three dashed edges emanating fromv lead into the interior of the union.

The favorable situation is when all three charged vertices are triple-intersection vertices at level
1. In this case, each of them can be charged at most three times (see Figure 21), so the number of
charging verticesv of this kind is at mostV1(C), the number of triple-intersection vertices at level
1. The case where one of the charged vertices is not a triple intersection is easy, because there are
only O(n2) such vertices (in the entire arrangement), and each is charged only a constant number
of times, so there can be at mostO(n2) charging verticesv of this kind.

Let us denote byV ∗
0 (C) the number of verticesv at level0 for which at least one of the charged

vertices is a triple intersection vertex that also lies at level 0. We thus obtain the inequality

V0(C) ≤ V1(C) + V ∗
0 (C) +O(n2).

23



The main difficulty is in obtaining a nearly quadratic bound onV ∗
0 (C). In general, this is impossible:

for instance, when the members ofC are large and thin plates that form a grid, one can easily check
thatV0(C) = V ∗

0 (C) = Θ(n3). Suppose, however, that we are in a favorable situation, andhave
somehow managed to show thatV ∗

0 (C) = O∗(n2). Then we get

V0(C) ≤ V1(C) +O∗(n2).

Let R be a random subset ofC, obtained by removing one element uniformly at random. An easy
calculation shows that

E(V0(R)) =
n− 3

n
V0(C) +

1

n
V1(C).

Combining this with the preceding inequality, and writingV0(m) for the maximum value ofV0(C)
for |C| = m, we obtain

1

n
V0(C) ≤ 1

n
V1(C)+O∗(n) = E(V0(R))−n− 3

n
V0(C)+O∗(n) ≤ V0(n−1)−n− 3

n
V0(C)+O∗(n),

or
n− 2

n
V0(n) ≤ V0(n− 1) +O∗(n).

Dividing this by(n− 1)(n− 2), we obtain a telescoping recurrence that solves toV0(n) = O∗(n2).
If the overhead termV ∗

0 (C) is strictlyO(n2), the recurrence solves toO(n2 log n).

The above scheme is a special instance of a technique developed by Tagansky [113, 114], built
upon earlier cruder charging schemes. As already noted, thereal challenge is to boundV ∗

0 (C). One
way of doing so is to apply the charging scheme repeatedly, where in the next stage we want to
bound the number of level-1 edges of the arrangement with both endpoints at level0, by charging
them to more complex local structures that have three level-0 vertices connected by two level-1
edges, and so on. This multi-stage scheme ends when the overhead term is the number of special
quadrilaterals defined above (or can be pushed further untilthe overhead term counts the number of
special cubes). See [100, 113] for details.

An interesting feature, hidden in this quick review, is thatthe only bottleneck in the analysis is to
bound the number of special qudrilaterals. In contrast, it is relatively easy to give a quadratic upper
bound for the number of “special polygons” with more than four vertices, where such a polygonQ
is the intersection of a facet of one member ofC with two other members ofC, so that no fourth
member ofC meetsQ.

3.4 Robots with three degrees of freedom: Complexity of the free space

A special class of problems that involve unions in three dimensions arises in motion planning for
robots with three degrees of freedom. Recall that in this case theconfiguration space, which rep-
resents all possible placements of the given robotB, is 3-dimensional, and each obstacleO in the
physical environment (the workspace ofB) generates anexpanded obstacle(or C-obstacle)O∗,
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which is the locus of all placements ofB at which it intersectsO. The free portionF of the config-
uration space is then the complement of the union of the C-obstacles.

In this subsection we review several results that arise in this context. As already discussed in the
general setting, the naive bound on the complexity ofF is cubic in the number of possible contacts
between features ofB and features of the obstacles. In many instances, this boundcan be attained,
but there are several special cases where better, nearly quadratic, bounds can be established.

LetB be a robot with three degrees of freedom, so that each placement ofB can be parametrized
by three real parameters. For simplicity, let us assume thatthe configuration space, the set of all
placements ofB, is R

3. Two special cases of such a robot that we consider are: a planar object that
is allowed to translate and rotate amid obstacles inR

2, and a three-dimensional object allowed only
to translate amid obstacles inR3. Bounding the complexity ofF in the former case was one of the
first applications that led to the study of the union of objects inR

3 [89, 90].

Translation and rotation in 2D. Let B be a convex polygon inR2 that is allowed to translate
and rotate in the plane amid a setO = {O1, . . . , On} of pairwise openly disjoint obstacles, each of
which is a convex polygon, with a total ofs vertices. To parametrize the configuration space, we
fix a point o ∈ B and a rayρ emanating fromo and rigidly attached toB. A placement ofB is
then parametrized by a point(a, b, tan(θ/2)) ∈ R

3, where(a, b) are the coordinates ofo andθ is
the counterclockwise angle from thex-axis toρ; see Figure 22(a). A placement ofB is free if B
does not intersect any obstacle at this placement, andsemi-freeif B makes contact with one or more
obstacles at this placement but does not intersect the interior of any obstacle. A generic contact
between the boundaries ofB and an obstacle can be represented by a pair(σ, ω) whereσ is a vertex
of B andω is an edge of the obstacle, orσ is an edge ofB andω is a vertex of the obstacle.

B

ρ

x

y

o θ

(a, b)
B

O1

O2

O3

(a) (b)

Figure 22. (a) Representation of a placement ofB. (b) A triple contact.

For each obstacleOi, let Ci denote the corresponding expanded obstacle, which is the set of
placements at whichB intersectsOi; Ci is a semi-algebraic set whose complexity depends on that
of B andOi. As noted, puttingC = {C1, . . . , Cn}, we haveF = R

3 \ U(C), and∂F is the locus
of all semi-free placements. A vertex ofF formed by the intersection of the boundaries of three
expanded obstacles corresponds to a placement ofB at which it makes three distinct contacts with
the obstacles (see Figure 22(b)); these placements are referred to ascritical semifree placements
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or critical vertices(of F). It can easily be argued that ifB is a polygon withk vertices then the
complexity ofF is proportional tok2s2 plus the number of critical vertices.

B

Figure 23. A nonconvex polygon withΩ(n3) critical semi-free placements.

If B is a nonconvex polygon, thenF can haveΩ(n3) critical vertices, as shown in Figure 3.4.
However, the bound improves considerably whenB is convex. For instance, ifB is a line seg-
ment, then, as shown in several early works (around the mid 1980s),F hasO(s2) vertices [27, 90].
Recently, Agarwal et al. [2] improved the bound toO(ns); this improved bound holds even if the
obstacles inO are not pairwise disjoint. In fact, if the obstacles are pairwise disjoint, then the num-
ber of critical vertices ofF is onlyO(n2 + s); however, the number of vertices formed by a pair of
expanded obstacles (edge-face intersection points) can beΘ(ns).

The main result for this scenario is:

Theorem 3.3 (Leven and Sharir [89]).If B is a convexk-gon, then the complexity ofF isO(ksλ6(ks)).

Since the number of combinatorially different contacts betweenB and the obstacles isΘ(ks),
this bound is nearly quadratic in the number of contacts. Here is a brief sketch of the analysis
in [89]. Let φ be a (vertex-edge or edge-vertex) contact between the boundaries ofB and of an
obstacle, and letΓφ ⊆ R

3 denote the set of all placements ofB at which the contactφ is made;Γφ

is a two-dimensional algebraic surface patch. For each contactφ, we define a familyCφ of O(ks)
pseudo-halfplanes inΓφ, where each pseudo-halfplaneh represents placements at whichφ is made
and another contactφ′ is “violated”—φ′ is made at placements on∂h, andB and the corresponding
obstacle intersect at placements withinh. The boundaries of any pair of these pseudo-halfplanes
intersect in at most six points. The main observation in the analysis is that ifB and the obstacles
are in general position, and if the complexity ofF is more thank2s2, then at least a fraction of the
vertices ofC are vertices ofU(Cφ), over all contactsφ. By Theorem 2.1,κ(Cφ) isO(λ6(ks)), for
eachφ, and thus the complexity ofF isO(ksλ6(ks)). The details of the proof can be found in [89].

Combining this overall approach with a few new observations, and performing a more careful
analysis, Agarwal and Gujgunte [5] have recently improved the bound on the complexity ofF to
O(ksλ6(kn)).
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Van der Stappen et al. [111] studied the case in which the obstacles are fat, and proved a linear
bound on the complexity ofF, under certain reasonable assumptions. We refer the readerto their
paper for more details.

Translational motion planning in R
3. LetB be a convex object inR3 that is allowed to translate

amid a setO = {O1, . . . , On} of n obstacles, each of which is a convex polytope. We fix a point
o ∈ B and represent a placement ofB by specifying the coordinates(x, y, z) of o. As mentioned in
the introduction, the expanded obstacleCi generated byOi is now the Minkowski sumOi ⊕ (−B)
of Oi and the reflected image−B of B, and, as usual,F = R

3 \ U(C), whereC = {C1, . . . , Cn}.
This has led to the extensive study of the complexity of (and algorithms for constructing) the union
of a familyC of Minkowski sums of this kind inR3.

In the planar case, the crucial property of such a collectionof Minkowski sums was that each pair
of boundaries cross at most twice, so the collection is a family of pseudo-disks. The corresponding
property inR

3 (assuming general position) is that each pair of boundariesintersect in a single
connected closed curve [76]. However, a triple of boundaries can intersect in an arbitrarily large
number of points, which makes the analysis of the union complexity considerably harder than in the
plane. Near-quadratic bounds have been established for only a few special cases, summarized in
the following theorems. (In each part,s effectively denotes the overall complexity of the individual
Minkowski sums inC, but its precise definition is slightly different in each case.)

Theorem 3.4 (Halperin and Yap [69]). If B is a cube, the complexity ofU(C) (and thus ofF) is
O(s2α(s)), wheres denotes the overall number of faces of the original polytopes inO.

Theorem 3.5 (Aronov and Sharir [20]). If B is a convex polytope, the complexity ofU(C) is
O(ns log n), wheres denotes the overall number of faces of the polytopes inC. There exist con-
structions where the union complexity isΩ(nsα(n)).

Theorem 3.6 (Agarwal and Sharir [11]). If B is a ball, the complexity ofU(C) isO∗(s2), where
s is the total number of faces of the polytopes inO. In particular takingO to be a set ofn lines in
3-space, the complexity of the union ofn congruent infinite cylinders inR3 isO∗(n2).

The proofs of these theorems are rather different, and each of them is very technical. The proof
of Theorem 3.4 is based on ideas similar to those used by Levenand Sharir [89]. The proof of The-
orem 3.5 is a special case of the analysis of the union of arbitrary convex polyhedra, given in [21],
where the main new ingredient is an intricate topological argument that shows that the number of
special quadrilaterals in the union isO(ns). The proof of Theorem 3.6 is the most involved; it uses a
rather complicated charging scheme, and is based on severalgeometric observations that reduce the
problem to that of bounding the complexity of sandwich regions between upper and lower envelopes
of bivariate functions.

These results lead to a few natural questions that remain elusive:

Open Problem 4. What is the maximum complexity of the union ofn congruent cones or tori?
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Open Problem 5. What is the maximum complexity of the union ofn cylinders of different radii?

Although the upper bound for all these cases is conjectured to beO∗(n2), no subcubic upper
bounds are known to date.

3.5 Union of fat objects

Similar to the planar case, a compact convex objectC is calledα-fat, for some constantα ≥ 1, if
the ratio between the radii of the smallest enclosing ball and of the largest inscribed ball ofC is at
mostα. In this subsection we review some of the recent (and slightly less recent) developments in
the analysis of the complexity of the union of fat objects in 3-space.

Union of axis-aligned cubes. We begin by considering the simple case of axis-aligned cubes.

Theorem 3.7 (Boissonnat et al. [28]; see also [31]).The complexity of the union ofn axis-aligned
cubes inR3 isO(n2). The bound reduces toO(n) if the cubes are of the same (or nearly the same)
size. Both bounds are tight in the worst case.

Proof: This result is sufficiently simple to allow us to provide a complete proof. We only need to
count the number of vertices of the union that are incident tothree facets of three distinct respec-
tive cubes; the number of all other vertices (of the entire arrangement of the cube boundaries) is
only O(n2). Let v be such a vertex, incident to facetsF1, F2, F3 of three distinct respective cubes
C1, C2, C3, so thatC1 is the largest cube among them. Follow the intersection segmentF2 ∩ F3

from v intoC1. This segment has to end withinC1, at a point that lies on an edge ofC2 orC3, and
on the remaining facetF3 or F2. The number of such terminal points is clearly onlyO(n2), and
each of them can be encountered in such a tracing from only a constant number of verticesv of the
union. Hence, the number of these vertices, and thus the complexity of the union, isO(n2). The
proof for congruent cubes is also simple, but we omit it. �

Union of arbitrary nearly congruent cubes. If the cubes are not axis-parallel, the problem be-
comes much harder. Pach et al. [100] have studied the case where the cubes have equal (or “almost
equal”) size, and have shown3 that the complexity of their union isO∗(n2). The key observation in
their analysis is that one can lay out a regular grid, where the size of its cells is somewhat smaller
than that of the given cubes, so that (a) each cube meets only aconstant number of cells, and (b) no
two opposite facets of a cube meet the same cell. This allows us to consider the union separately in
each cell, and observe that in each cell the union becomes a union of unbounded halfspaces, (right-
angle) dihedral wedges, and (orthant-like) trihedral wedges. The analysis thus reduces to that of
bounding the complexity of the union of such wedges. The maintechnical ingredient in the analysis
of [100] is:

3We do not highlight this result, because it is now subsumed bythe result of Ezra and Sharir [60], which we will
shortly present.
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Theorem 3.8 (Pach et al. [100]).The complexity of the union ofn α-fat dihedralwedges isO∗(n2),
where the constant of proportionality depends on (the hidden ε and on)α.

Pach et al. were not as successful in analyzing the complexity of the union ofα-fat trihedral
wedges (wedges whose solid angle is at leastα), for any constantα > 0, and managed to establish
a nearly quadratic bound only when the wedges are “substantially fat”, a case that includes wedges
formed at a vertex of a cube, but not wedges formed at a vertex of a regular tetrahedron.

A major observation in the analysis of [100] is that, for any triple of α-fat dihedral wedges,
there are many directionsu, such that a plane orthogonal tou cuts each of the three wedges in a
cross-section which is itselfα′-fat, for someα′ > 0 that depends onα. This allows the analysis
to proceed by sweeping the given wedges by a plane, considering only those wedges that meet the
plane in fat cross-sections, and by analyzing critical events when the boundaries of three of the
swept wedges become concurrent. (Finding such a good sweeping direction for triples of trihedral
wedges is harder; in general this is impossible unless the wedges are really “substantially fat”.) The
analysis then combines the study of special cubes (as reviewed above) with some other tricks, to
conclude that the complexity of the union of such wedges is nearly quadratic.

To recap, the technique of [100], powerful as it were, could not handle cubes of arbitrary sizes
(the grid reduction does not work then), nor could it handle other kinds of fat polyhedra (for
which the wedges formed at their vertices are not sufficiently fat); even the special case of regu-
lar tetrahedra remained open. Both of these shortcomings have recently been overcome by Ezra
and Sharir [60], who have obtained a nearly quadratic bound for the complexity of the union ofn
arbitrary fat tetrahedra. We will review this result below,and we note that it immediately implies a
nearly quadratic bound for the union complexity ofn arbitrary cubes inR3 (of arbitrary sizes).

Union of fat tetrahedra and of cubes. We say that a tetrahedron isα-fat if each of its solid angles
is at leastα. This definition is compatible with the other standard definitions of fatness. Specifically,
the ratio between the radii of the smallest enclosing ball and the largest inscribed ball of anα-fat
tetrahedron is at mostα′ = O(1/

√
α). Conversely, if this ratio is at mostα′ for some tetrahedron,

then it must beα-fat withα = Ω(1/(α′)2).

Trihedral
Dihedral

W

W

Figure 24. An α-fat trihedral wedge and anα-fat dihedral wedge.

To simplify the presentation, let us assume for the moment that we are given a collectionC of
n α-fat tetrahedra ofnearly equal size, meaning that the diameters of the tetrahedra inC are within
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some constant ratio of each other. Then there is an easy grid-based argument, similar to the one used
for nearly equal cubes, to reduce the analysis of their unionto that of the union ofα-fat trihedral
wedges, namely, trihedral wedges whose solid angles are at leastα (see Figure 24). Specifically,
assume, for simplicity, that all the diameters lie in the interval [1, c], for a fixed constantc. We lay
out a grid of sufficiently small (but constant) cell size, so that (a) for any tetrahedronτ of C and any
grid cell ∆, at most three facets ofτ meet∆, and (b) each tetrahedron inC crosses onlyO(1) grid
cells. Hence, within each grid cell∆, we need to bound the complexity of the union of somen∆

α-fat trihedral wedges(which can also degenerate further to dihedral wedges or halfspaces).

Suppose that we have a bound ofO∗(m2) on the complexity of the union ofm α-fat trihedral
wedges, with a constant of proportionality that depends onα. This bound, combined with the
above reduction, implies that the complexity of the union ofn nearly-equalα-fat tetrahedra is
∑

∆O
∗(n2

∆) = O∗(n2). (The case of nearly equal cubes is now an easy corollary of this result.)

The analysis in [60] applies also to the case where the tetrahedra have arbitrary sizes (diam-
eters). It is somewhat involved, and we sketch here only someof its highlights. To simplify the
presentation, we only consider the case of fat trihedral wedges. Let thenC be a family ofn α-fat
trihedral wedges. The main technical tool in the analysis of[60] is the following lemma.

Lemma 3.9 (Ezra and Sharir [60]). (a) LetR be a set ofr planes inR
3, and letW be an arbitrary

trihedral wedge. The number of cells ofA(R) that meet all three facets ofW is onlyO(r).

(b) LetP be a convex polyhedron withr facets inR
3, and letΣ be the family of tetrahedra into

whichP is decomposed by the Dobkin-Kirkpatrick hierarchical decomposition scheme [38]. The
number of tetrahedra inΣ that meet all three facets ofW is onlyO(log r).

See Figure 25(b) for an illustration. Note that the lemma applies to any trihedral wedge, not
necessarily fat. Note also that the planar version of the lemma is trivial: In an arrangement ofr
lines in the plane, at mostone cellcan meet all three edges of a given triangle (Figure 25(a)). As
another trivial variant in the plane, the number of cells that meet both sides of awedgeisO(r).

(a) (b)

Figure 25. (a) In the plane, only one cell of the arrangement can meet allthree edges of a given triangle. (b) InR
3, many

cells (but onlyO(r)) can meet all three facets of a given trihedral wedge (a schematic view from the apex of the wedge).

Lemma 3.9 suggests the following recursive decomposition scheme. Take a random sample
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R of r planes that support the facets of the wedges ofC. Construct the arrangementA(R) and
decompose each of its cells into tetrahedra, using the Dobkin-Kirkpatrick scheme. We obtain a
decompositionΞ of 3-space intoO(r3) tetrahedra, with the property that for each wedgeW of C,
the number of tetrahedra that meet all three facets ofW is only O(r log r). Hence, on average,
each tetrahedron is crossed by at mostO

(

n
r2 log r

)

wedges ofC with this property. Moreover, the
standard theory of random sampling [71] allows us to assume thatR has the property that each of
the simplices ofΞ is crossed by the boundaries of at mostO

(

n
r log r

)

wedges ofC. To recap, we
obtainO(r3) subproblems, each involving at mostO

(

n
r log r

)

wedges, of which, on average, only
O

(

n
r2 log r

)

are trihedral wedges, and the rest are dihedral wedges (or halfspaces).

To obtain the asserted near-quadratic bound, the analysis in [60] applies the decomposition
repeatedly, takingr to be a sufficiently large constant, and involves a rather careful counting of the
vertices that are not passed down the recursion. Instead of reconstructing this somewhat involved
analysis, let us consider the following simpler quick-and-dirty approach. If we chooser =

√
n, we

obtainO(n3/2) subproblems, each involving some numberm of trihedral wedges (which is only
logarithmic on average), andO∗(n1/2) dihedral wedges. The number of vertices of the union that
are formed by three dihedral wedges isO∗((n1/2)2) = O∗(n) [100], and the number of vertices that
lie on the boundary of at least one trihedral wedge isO∗(mn) (using a rough quadratic bound for
each trihedral wedge separately). Summing over the tetrahedra, and using the fact that them’s sum
toO(nr log r) = O∗(n3/2), yields the overall bound ofO∗(n5/2) for the complexity of the union.
With the more careful and recursive analysis in [60], this bound drops toO∗(n2).

The above analysis can also be applied to the case of fat tetrahedra rather than wedges (Lemma 3.9
obviously carries over to this case), but then considerablymore effort is needed to count vertices
that are not passed down the main recursion. The analysis of [60] culminates at the following result.

Theorem 3.10 (Ezra and Sharir [60]).The complexity of the union ofn arbitrary α-fat tetrahedra
in R

3 isO∗(n2), where the constant of proportionality depends onα (and on the hiddenε > 0).

Union of α-round objects. Let C be a family ofn α-roundobjects inR
3. That is, for eachC ∈ C,

any pointp ∈ ∂C is incident to a ball of radiusα times the diameter ofC, which is fully contained
in C. We first consider a special case of this problem, in which we further assume that the diameter
of each member ofC is between1 andD, for some constantD. This will allow us to introduce one
of the techniques for analyzing unions in three dimensions.We may therefore assume that all the
balls used in the definition of roundness are of the same radiusα.

These assumptions are easily seen to imply that ifv is a vertex of the union, incident to the
boundaries of three setsC1, C2, C3, then, with at least some constant probability, a random direction
u has the property that the line throughp at directionu intersects each of the setsC1, C2, C3 in an
interval of length at leastα′ = βα, for some sufficiently small but absolute constantβ > 0. We call
a vertex satisfying the above property for a directionu a u-feasiblevertex. To prove thatκ(C) is
O∗(n2), it suffices to establish a near-quadratic bound on the number of u-feasible vertices for any
fixed directionu. Suppose, without loss of generality, thatu is thez-direction.

PartitionR
3 into horizontal slabs of widthα′. For each slabS, let C+

S ,C
−
S denote the family
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v

Figure 26. Reducing the union of nearly equalα-round objects inR3 to sandwich regions.

of objects ofC that intersect the top and bottom boundaries ofS respectively, clipped to withinS.
Moreover, retain, for each objectC ∈ C

−
S , the portion of its top boundary consisting of those points

x ∈ S for which the vertical segment fromx to the bottom boundary ofS is fully contained inC.
Apply a symmetric trimming process to the bottom boundariesof the objects ofC+

S . Putns = |C+
S |+

|C−
S |. It can be checked that eachu-feasible vertex that lies in the slabS is a vertex of the sandwich

region between (the trimmed portions of) the upper envelopeof the top boundaries of objects inC−
S

and the lower envelope of the bottom boundaries of objects inC+
S . See Figure 26. As mentioned in

Section 3.2, the number of vertices on the sandwich region isO∗(n2
S). However,

∑

S nS = O(n),
because each object inC can cross onlyO(1) slabs. Thereforeκ(C) =

∑

S O
∗(n2

S) = O∗(n2).

The above argument fails when the diameters of the objects inC differ significantly. This has
been overcome by Aronov et al. [18], who have extended the nearly quadratic bound to this case, us-
ing a somewhat more involved technique, which is also based on reducing the problem to sandwich
regions between envelopes.

Theorem 3.11 (Aronov et al. [18]; Agarwal and Sharir [11]). LetC be a family ofn 3-dimensional
α-round objects of constant description complexity. Then the complexity ofU(C) isO∗(n2).

In spite of all the progress reviewed in this section, the following general question is still open.

Open Problem 6. What is the maximum complexity of the union ofn α-fat (convex) objects of
constant description complexity inR3?

4 Beyond Three Dimensions

In higher dimensions, the problem of bounding the complexity of the union of geometric objects
becomes even more complicated, and only very few results areknown, which we duly review here.

Union of pseudo-halfspaces. As already mentioned in the introduction, the complexity ofthe
union ofn halfspaces (each bounded by a hyperplane) inR

d is O(nbd/2c). For pseudo-halfspaces
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(regions lying above or below the graph of some continuous function of constant description com-
plexity), the bounds are not that small. As shown by Sharir [108], the complexity of the lower
(or upper) envelope ofn (d− 1)-variate functions of constant description complexity isO∗(nd−1).
Hence, the union ofn pseudo-halfspaces, all of which are lower (or all upper) isO∗(nd−1).

However, this is not known to hold in the mixed case, where some pseudo-halfspaces are lower
and some are upper, ind ≥ 5 dimensions. As in two and three dimensions, we seek bounds onthe
complexity of the sandwich region between a lower and an upper envelope, which turns out to be a
hard problem when the dimensiond increases. AnO∗(n3) bound on the complexity of the sandwich
region inR

4 was proved by Koltun and Sharir [81]. (As in the three-dimensional case, this is based
on a nearly cubic bound, established in [81], on the complexity of the overlay of two minimization
and/or maximization diagrams, this time of trivariate functions.) This yields a nearly cubic bound
on the complexity of the union ofn pseudo-halfspaces of constant description complexity inR

4.
The problem of whether sandwich regions have asymptotically smaller complexity than that of the
entire arrangement is still open ford ≥ 5.

Open Problem 7. What is the maximum complexity of the union ofn pseudo-halfspaces of constant
description complexity inRd, for d ≥ 5?

Linearization. The so-called linearization technique can be used to bound the complexity of the
union of certain classes of regions, by transforming these regions to halfspaces. Specifically, let
f(x, a) be a(d + p)-variate polynomial, withx ∈ R

d anda ∈ R
p. Let a1, . . . , an ben points in

R
p, and setF = {fi(x) ≡ f(x, ai) | 1 ≤ i ≤ n}; thusF is a collection ofd-variate polynomials.

For eachi, letCi be one of the two regionsfi ≥ 0 or fi ≤ 0, and setC = {C1, . . . , Cn}. Suppose
thatf(x, a) can be expressed in the form

f(x, a) = ψ0(a) + ψ1(a)ϕ1(x) + · · · + ψk(a)ϕk(x), (2)

whereψ0, . . . , ψk arep-variate polynomials andϕ1, . . . , ϕk ared-variate polynomials. We define
the mapϕ : R

d → R
k by

ϕ(x) = (ϕ1(x), . . . , ϕk(x)).

Then the imageΓ = {ϕ(x) | x ∈ R
d} of R

d is ad-dimensional surface inRk (assumingk ≥ d),
and for anya ∈ R

p, f(x, a) maps to thek-variate linear function

ha(y1, . . . , yk) = ψ0(a) + ψ1(a)y1 + · · · + ψk(a)yk,

in the sense that for anyx ∈ R
d, f(x, a) = ha(ϕ(x)). The regionCi maps to one of the two

halfspaces bounded by the hyperplanehai
(more precisely, to the intersection ofΓ with such a half-

space). We refer tok as thedimensionof the linearizationϕ, and say thatF admits a linearization
of dimensionk. Agarwal and Matoušek [8] describe an algorithm that computes a linearization of
the smallest dimension under certain mild assumptions. IfF admits a linearization of dimensionk,
then the complexity ofU(C) is bounded by the complexity of the union ofn halfpsaces inRk+1,
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and it is thereforeO(ndk/2e). The most popular example of linearization is perhaps the so-called
lifting transform(see Section 2.2 for the planar case), which is constructed from the polynomial

f(x, a) = (x1 − a1)
2 + · · · + (xd − ad)

2 − a2
d+1,

for x ∈ R
d anda ∈ R

d+1. The resulting lifting transformation itself is then

ϕ(x) = (x1, x2, . . . , xd, x
2
1 + · · · + x2

d).

This mapsRd to the standard paraboloidxd+1 = x2
1 + · · ·+x2

d in R
d+1, and a ball inRd is mapped

to a halfspace inRk+1, which implies that the complexity of the union ofn balls inR
d isO(ndd/2e).

Axis-aligned cubes. Boissonnat et al. [28] provide an upper bound ofO(ndd/2e) for the union
of n axis-parallel cubes inRd, which improves toO(nbd/2c) when the cubes have equal (or nearly
equal) size. The complexity of the union ofn simply-shaped convex bodies inRd with a common
interior point o is O∗(nd−1), which follows from the observation that the boundary of their union
can be interpreted as the upper envelope ofn (d − 1)-variate functions (in spherical coordinates
abouto). A slightly refined bound for polyhedra inR3 with a common interior point was given in
[73].

Koltun and Sharir [81] extended Theorem 3.11 toR
4, by proving that the complexity of the

union ofn convexα-round objects inR4 with equal diameters isO∗(n3). These results have been
further generalized by Aronov et al. [18] for (not necessarily convex)α-round objects. The only
obstacle to obtaining analogous results inR

d, for d ≥ 5, is our inability to establish sharp upper
bounds on the complexity of sandwich regions (as discussed above) ind ≥ 5 dimensions.

Open Problem 8. What is the maximum complexity of the union ofn α-round objects of constant
description complexity inRd, with (or without) nearly equal diameters, ford ≥ 5?

5 Generalized Voronoi Diagrams

Voronoi diagrams are closely related to unions of geometricobjects, in the following manner. Let
C be a set ofn pairwise disjoint convex objects inRd, each of constant description complexity, and
let ρ be a metric (or aconvex distance function[115]). For a pointx ∈ R

d, let Φ(x) denote the set
of objects ofC that are nearest tox, i.e.,

Φ(x) = {C ∈ C | ρ(x,C) ≤ ρ(x,C ′) for eachC ′ ∈ C}.

TheVoronoi diagramVorρ(C) of C under the metricρ (sometimes also simply denoted asVor(C))
is the partition ofRd into maximal connected regions of various dimensions, so that, for each region
V , the setΦ(x) is the same for allx ∈ V . For each full-dimensional region (cell),Φ(·) generally
consists of a single siteC, and the cell is called the Voronoi cell ofC. Fori = 1, . . . , n, letγi be the
graph of the functionxd+1 = ρ(x,Ci), for x ∈ R

d, and setΓ = {γi}n
i=1. Edelsbrunner and Seidel
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[47] made the rather obvious observation thatVorρ(C) is theminimization diagramof Γ, that is, the
projection ontoRd of the lower envelope of the surfaces inΓ.

To see the connection between generalized Voronoi diagramsand unions of objects, letC andρ
be as above (say, for the 3-dimensional case). For an objectC ∈ C and a parameterr ≥ 0, define
B(C, r) = {x ∈ R

3 | ρ(x,C) ≤ r}. For a fixedr, the unionKr =
⋃

C∈C B(C, r) is the region
consisting of all pointsx ∈ R

3 whose smallestρ-distance from a site inC is at mostr. This in turn
can be interpreted as a “cross-section” ofVor(C)—it is in fact a cross-section at heightx4 = r of the
lower envelope of the corresponding collectionΓ. Moreover, for each siteCi ∈ C, the intersection
of ∂Kr with the Voronoi cell ofCi is equal to the intersection of∂B(Ci, r) with that cell.

In general, if the metricρ is a norm or a distance function induced by some convex bodyB,
that is,ρ(x, y) = min{λ | y ∈ x + λB}, the resulting “balls”B(C, r) are theMinkowski sums
C⊕(−rB), forC ∈ C (the minus sign is superfluous ifρ is a metric). Thus the union of Minkowski
sums of this kind is a substructure of the corresponding Voronoi diagram. Of course, this connection
also holds in any higher dimension.

One immediate conclusion is that the complexity ofVor(C) is at least as large as that ofKr.
In practice, establishing a tight bound on the latter complexity is a considerably easier task, and in
many instances the corresponding question concerning the complexity of the entire Voronoi diagram
is still open. For instance, consider the case in whichC is a set of lines in 3-space, andρ is the
Euclidean metric. Then the expanded sitesB(C, r), for C ∈ C, aren congruent infinite cylinders
in R

3, of radiusr. As mentioned above, it is shown in [11] that the complexity of the unionKr

of these cylinders isO∗(n2), but it is a major open problem to establish a similar nearly quadratic
bound on the complexity ofVorρ(C) (see an Open Problem below). There are (rare) cases in which
the complexity of the entire Voronoi diagram is an order of magnitude larger than that ofKr. For
example, the complexity of the multiplicatively weighted Voronoi diagram of a point set in the plane
can have quadratic complexity [25], while the size ofKr in this case is only linear.

In the classical case, whenρ is the Euclidean metric and the objects inC are singletons (points),
the graphs of the distance functionsρ(x,Ci) can be replaced by a collection ofn hyperplanes in
R

d+1, using a straightforward linearization technique, without affecting the minimization diagram.
Hence, the maximum possible complexity ofVor(C) is O(ndd/2e), and this is tight in the worst
case (see, e.g., [78, 106]). In more general settings, though, this reduction is not possible, and the
complexity of the Voronoi diagram can be much higher. Applying the observation of [47], and
the bounds in Section 4 on the complexity of lower (or upper) envelopes, we obtain that, under
reasonable assumptions onρ and on the objects inC, the complexity of the Voronoi diagram is
O∗(nd). While this bound is nontrivial (the trivial one isO(nd+1)), in general it is not expected
to be tight. For example, in the case of planar Voronoi diagrams, this bound is near-quadratic, but
the complexity of “almost every” planar Voronoi diagram is only O(n). Nevertheless, as mentioned
above, for certain “pathological” distance functions, thecorresponding planar Voronoi diagram can
indeed have quadratic complexity [25].
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Voronoi diagrams of points in R
3. As noted above, the complexity of the Euclidean Voronoi

diagram ofn points inR
3 is Θ(n2). It has been a long-standing open problem to determine whether

a similar quadratic or nearly quadratic bound holds inR
3 for more general objects and metrics (here

the known bounds on the complexity of lower envelopes only give an upper bound ofO∗(n3)).
The problem stated above calls for improving this bound by roughly another factor ofn. Since we
are aiming for a bound that is “two orders of magnitude” better than the complexity ofA(Γ), this
appears to be a considerably more difficult problem than the problem of bounding the complexity
of lower envelopes. The only hope of making progress here is to exploit the special structure of the
distance functionsρ(x,C).

Boissonnat et al. [28] have shown that the maximum complexity of theL1-Voronoi diagram of a
set ofn points inR

3 is Θ(n2). Tagansky [113] proved that the complexity of the three-dimensional
Voronoi diagram of point sites under a general polyhedral convex distance function (induced by a
polytope withO(1) facets) isO(n2 log n). The bound was subsequently improved by Icking and
Ma [74] toO(n2).

Voronoi diagrams of lines in R
3. Let ρ be a convex distance function inR3 whose unit ball is

a convex polytope with a constant number of facets. (Recall that not every distance functionρ is
necessarily a metric—ρ fails to be symmetric if the defining polytope (its unit ball)is not centrally
symmetric.) Chew et al. [32] showed that the complexity of the Voronoi diagram ofn lines inR

3

with respect toρ isO(n2α(n) log n). Clearly, theL1 andL∞ metrics satisfy the above assumptions.
In these special cases, the best known lower bound for the complexity of the diagram isΩ(n2α(n)).
Koltun and Sharir [82] extended the theorem of Chew et al. [32] to arbitrary collections of pairwise
disjoint line segments and triangles, where the respectiveupper bounds on the complexity of the
diagram areO(n2α(n) log n) andO∗(n2).

As already mentioned, in spite of some recent progress, little is known about the complexity of
the Euclidean Voronoi diagram of lines in 3-space.

Open Problem 9. What is the maximum complexity of the Euclidean Voronoi diagram ofn lines or
triangles inR

3?

If the input lines have a constant number of orientations, then the complexity of their Euclidean
Voronoi diagram isO∗(n2), as shown by Koltun and Sharir [80]. Dwyer [40] has shown thatthe
expected complexity of the (Euclidean) Voronoi diagram of aset ofn randomly selected lines inR3

is onlyO(n3/2). For the general case, a recent work by Everettet al. [55] sheds some light on the
geometric and toplogical structure of bisectors and trisectors defined by a pair (resp., triple) of lines
in space.

Voronoi diagram of moving points in the plane. An interesting special case of generalized
Voronoi diagrams aredynamic Voronoi diagramsfor moving points in the plane. LetC be a set
of n points in the plane, each moving along some line at some fixed velocity. The goal is to bound
the number of combinatorial changes of the Euclidean diagram Vor(C) over time. This dynamic
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Voronoi diagram can easily be transformed into a static three-dimensional Voronoi diagram, by
adding the timet as a third coordinate. The points become lines inR

3, and the “metric”4 is a
distance function induced by a horizontal disk (that is, thedistance from a pointp(x0, y0, t0) to a
line ` is the Euclidean distance fromp to the point of intersection of̀ with the horizontal plane
t = t0). Cubic or nearly cubic bounds are known for this problem, even under more general settings
[62, 64, 108], but subcubic bounds are known only in some veryspecial cases [30, 79].

Open Problem 10. What is the maximum complexity of the dynamic (Euclidean) Voronoi diagram
of n moving points in the plane? What if all points move at the samespeed?

A recent study by Agarwal et al. [3] presents some necessary conditions for the diagram to have
large complexity, and thereby offers some intuition on why “typical” dynamic Voronoi diagrams are
expected to have small complexity. The expected complexityof the dynamic Voronoi diagram ofn
points movingrandomlyin the plane isO(n3/2) [41].

Voronoi diagrams in higher dimensions. Next, consider the problem of bounding the complex-
ity of generalized Voronoi diagrams in higher dimensions. As mentioned above, when the objects
in C aren points inR

d and the metric is Euclidean, the complexity ofVor(C) is O(ndd/2e). As d
increases, this becomes significantly smaller than the naiveO(nd+1) bound or the improved bound,
O∗(nd), obtained by viewing the Voronoi diagram as a lower envelopein R

d+1. The same bound of
O(ndd/2e) has been obtained in [28] for the complexity of theL∞-diagram ofn points inR

d; this
bound too was shown to be tight in the worst case. It was thus tempting to conjecture that the maxi-
mum complexity of generalized Voronoi diagrams in higher dimensions is close tondd/2e. However,
this conjecture was disproved by Aronov [16], who established a lower bound ofΩ(nd−1). The sites
used in his construction are lower-dimensional flats, and the distance is either Euclidean or a poly-
hedral convex distance function. (It is interesting that the lower bound in Aronov’s construction
depends on the affine dimension0 ≤ k ≤ d − 2 of the sites: It isΩ(max {nk+1, nd(d−k)/2e}).)
Thus, ford = 3, this lower bound does not contradict the conjecture made above, that the complex-
ity of generalized Voronoi diagrams should be at most near-quadratic in this case. Also, in higher
dimensions, the conjecture mentioned above is still not refuted when the sites are singleton points.
However, very little is known about this problem. For instance, the following problem remains
open.

Open Problem 11. What is the maximum complexity of the Voronoi diagram of a setof points in
R

d under polyhedral metrics or convex distance functions whose unit balls haveO(1) facets?

Finally, for the general case, Aronov’s construction stillleaves a gap of roughly a factor ofn be-
tween the best known upper and lower bounds, and thus suggests the conjecture that the complexity
of such diagrams isO∗(nd−1). This is still a major open problem.

4This is not really a metric, because the distance between twopoints is defined only when they have the samet-
coordinate.
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Open Problem 12. Is it true that, for a setC ofn pairwise disjoint convex sites of constant descrip-
tion complexity inRd, and for a metric (or convex distance function)ρ whose unit ball has constant
description complexity, the complexity ofVor(C) is alwaysO∗(nd−1)?

Medial axis. A special case of Voronoi diagrams is themedial axis. Here we are given a regionC
with a complex boundary, e.g., a (not necessarily convex) polyhedron with many faces. We regard
each feature of∂C (vertex, edge, face) as a separate site, and consider the Voronoi diagram of
these sites within the interior ofC. The lower-dimensional faces of the diagram yield a “skeletal”
representation ofC, which has several advantages in practice [23]. A particularly difficult, and still
open, special case is the following.

Open Problem 13. LetC be a collection ofn balls in R
3. What is the maximum complexity of the

medial axis ofU(C)? What is the maximum complexity when all the balls have the same radius?

In fact (see Amenta and Kolluri [15]), it suffices to bound thecomplexity of the Voronoi diagram
of the vertices ofU(C) within the union. Since the union may haveΘ(n2) vertices in the worst case,
and the complexity of the Voronoi diagram of that many pointsin R

3 can in general be quadratic
in their number, a naive upper bound on the complexity of the medial axis isO(n4). However, the
best known lower bound is only quadratic, and closing the gapbetween the bounds is a challenging
open problem.

Voronoi diagrams of regularly sampled points. Dwyer [39] proved that the expected size of the
(Euclidean) Voronoi diagram of a set of uniformly distributed random points inside a ball inRd is
linear. Later, Erickson [52, 53] studied the complexity of the Voronoi diagram of a point setP in
R

3 in terms of thespreadof P , which is the ratio of the largest and the smallest pairwise distances
between the points ofP . Erickson proved that the complexity of the Voronoi diagramof a set of
points inR

3 with spread∆ isO(∆3). He also proved that this bound is tight in the worst case, by
showing anΩ(n3/2) lower bound for a set ofn point nicely distributed on a cylinder, so that their
spread isO(

√
n).

Motivated by the problem of surface reconstruction from a set of sample points, a considerable
amount of work has been dedicated to bounding the complexityof the Voronoi diagram of a set
of regularly sampled points on a surfaceΓ in R

3. Golin and Na [63] showed that the expected
complexity of the Voronoi diagram ofn uniformly distributed random points on a polyhedral surface
Γ in R

3 isO(n log4 n). A setS ⊂ Γ is called an(ε, λ)-sampleif any ball of radiusε centered at a
point ofΓ contains at least one and at mostλ points ofS. Attali and Boissonnat [22] proved that if
S ⊂ R

3 is an(ε, λ)-sample on a polyhedral surface, then the size of its Voronoidiagram is linear.
Attali et al. [24] proved that ifS ⊂ R

3 is an(ε, λ)-sample of sizen on a generic (smooth) surface,
then its Voronoi diagram hasO(n log n) complexity. Roughly speaking, a surface isgeneric if
the points on the surface at which one of the principal curvature is locally maximal, form a finite
set of curves with bounded length; spheres and cylinders arenot generic surfaces. Note that the
assumption of genericity is probably crucial in the proof of[24], because of Erickson’s lower-bound
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construction for points on cylinders [52]. Recently, Amenta et al. [14] proved that the complexity
of the Voronoi diagram ofn nicely distributed points on a convexp-dimensional polyhedron inRd

is O(n(d−1)/p); see the original paper for details on the sampling condition and other issues. We
conclude this discussion by mentioning the following open problem:

Open Problem 14. What is the maximum complexity of the Voronoi diagram of a setof n points
regularly sampled on (or sufficiently near) a smooth manifold in R

d?

6 Discussion

In this survey we have reviewed the extensive work concerning the complexity of the union of a
family of geometric objects in two, three, and higher dimensions. We also reviewed the state of the
art concerning the complexity of generalized Voronoi diagrams in three and higher dimensions.

However, we have not discussed algorithms for computing theunion of geometric objects. Sev-
eral deterministic divide-and-conquer, randomized divide-and-conquer, and randomized incremen-
tal algorithms have been proposed to compute the union for a varieaty of special cases [11, 57, 59].
Motivated by many applications, considerable work has addressed related issues, such as computing
the volume of the union, the gradient of the volume of union ofballs inR

3 (regarding the volume
of the union as a function fromR3n to R), or certain geometric or topological properties of the
union of balls. It is beyond the scope of this survey to reviewthese results, and we refer the reader
to [6, 43, 45, 46, 88, 98] and the references therein for a sample of such results.
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and Massive Data Exploration(T. Möller, B. Hamann, and B. Russell, eds.), Springer-Verlag, to appear.

[24] D. Attali, J.-D. Boissonnat, and A. Lieutier, Complexity of the Delaunay triangulation of points on
surfaces the smooth case,Proc. 19th Annu. Sympos. Comput. Geom., 2003, 201–210.

[25] F. Aurenhammer and R. Klein, Voronoi diagrams, inHandbook of Computational Geometry(J.-R. Sack
and J. Urrutia, eds.), Elsevier Science, Amsterdam, 2000, pp. 201–290.

40



[26] J. L. Bentley, Algorithms for Klee’s rectangle problems. Unpublished notes, Computer Science Depart-
ment, Carnegie Mellon University, 1977.

[27] B. K. Bhattacharya and J. Zorbas, Solving the two-dimensional findpath problem using a line-triangle
representation of the robot,J. Algorithms9 (1988), 449–469.

[28] J.-D. Boissonnat, M. Sharir, B. Tagansky, and M. Yvinec, Voronoi diagrams in higher dimensions under
certain polyhedral distance functions,Discrete Comput. Geom.19 (1998), 485–519.
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