

On Geometric Graphs with No k Pairwise Parallel Edges*

P. Valtr

Department of Applied Mathematics, Charles University, Malostranské nám. 25, 118 00 Praha 1, Czech Republic valtr@kam.ms.mff.cuni.cz and DIMACS Center, Rutgers University, P.O. Box 1179, Piscataway, NJ 08855, USA valtr@dimacs.rutgers.edu

Communicated by János Pach.

Abstract. A *geometric graph* is a graph G = (V, E) drawn in the plane so that the vertex set V consists of points in general position and the edge set E consists of straight-line segments between points of V. Two edges of a geometric graph are said to be *parallel* if they are opposite sides of a convex quadrilateral.

In this paper we show that, for any fixed $k \ge 3$, any geometric graph on *n* vertices with no *k* pairwise parallel edges contains at most O(n) edges, and any geometric graph on *n* vertices with no *k* pairwise crossing edges contains at most $O(n \log n)$ edges. We also prove a conjecture by Kupitz that any geometric graph on *n* vertices with no pair of parallel edges contains at most 2n - 2 edges.

1. Introduction

A geometric graph is a graph G = (V, E) drawn in the plane so that the vertex set V consists of points in general position and the edge set E consists of straight-line segments between points of V. See [9] for a survey of results about geometric graphs. Two edges of a geometric graph are said to be *parallel*, if they are opposite sides of a convex quadrilateral. Two edges *cross*, if their relative interiors intersect.

^{*} Research was supported by the DIMACS Center, by the Czech Republic Grant GAČR 0194/1996, and by Charles University Grants Nos. 193/1996 and 194/1996.

Fig. 1. Kupitz's construction for n = 7.

Pach and Törőcsik [11] proved that any geometric graph on n vertices with no k pairwise disjoint edges contains at most $(k - 1)^4 n$ edges. In particular, their result implies that for any fixed $k \ge 2$ any geometric graph on n vertices with no k pairwise disjoint edges contains at most O(n) edges. In this paper we show that the number of edges is at most linear in n also in a more general case.

Theorem 1. Let $k \ge 2$ be a constant. Then any geometric graph on n vertices with no k pairwise parallel edges has at most O(n) edges.

The case k = 2 of Theorem 1 was considered first by Kupitz [7] who constructed, for any $n \ge 4$, a geometric graph with n vertices and 2n - 2 edges containing no pair of parallel edges (see Fig. 1). Kupitz [7] also conjectured that the lower bound 2n - 2 given by his construction is tight. A nearly tight upper bound 2n - 1 was shown by Katchalski and Last [5] and [8]. In this paper we show a refinement of the proof by Katchalski and Last [5] and [8] giving Kupitz's conjecture.

Theorem 2. For $n \ge 4$, any geometric graph on *n* vertices with no pair of parallel edges contains at most 2n - 2 edges.

A related question is: How many edges can be contained in a geometric graph with no *k* pairwise crossing edges? For k = 2, Euler's formula gives the upper bound 3n - 6 $(n \ge 3)$. Pach et al. [10] proved that any geometric graph on *n* vertices with no *k* pairwise crossing edges contains at most $O(n \log^{2k-4} n)$ edges $(k \ge 3)$. This bound was improved to $O(n \log^{2k-6} n)$ in [2] $(k \ge 3)$ (thus, in particular, to O(n) for k = 3). For fixed $k \ge 4$ we further improve this bound to $O(n \log n)$.

Theorem 3. Any geometric graph on n vertices with no k pairwise crossing edges has at most $c_k n \log n$ edges.

In a very recent paper [12], we give a different proof of Theorem 3 and generalize

Theorem 3 to graphs whose vertices are represented by distinct points in the plane and edges by *x*-monotone curves (Jordan arcs).

Theorem 3 is derived from Theorem 1. In the proof of Theorem 1 we apply a projection method of Katchalski and Last [5] and [8], Dilworth's theorem, and results on generalized Davenport–Schinzel sequences. Theorem 1 is proved in Section 2, Theorem 2 in Section 3, and Theorem 3 in Section 4.

2. Geometric Graphs with No k Pairwise Parallel Edges

2.1. Generalized Davenport–Schinzel Sequences

For $l \ge 1$, a sequence is called *l-regular*, if any *l* (or fewer) consecutive terms are pairwise different. For $l \ge 2$, a sequence

$$S = s_1, s_2, \ldots, s_{3l-2}$$

of length 3l - 2 is said to be *of type* up-down-up(*l*), if the first *l* terms are pairwise different and, for i = 1, 2, ..., l,

$$s_i = s_{2l-i} = s_{(2l-2)+i}$$
.

Thus, a sequence is of type up-down-up(2) if and only if it is an alternating sequence of length 4. It is well known [3] (and not difficult to prove) that any 2-regular sequence over an *n*-element alphabet containing no alternating subsequence of length 4 has length at most 2n - 1. In the proof of Theorem 1 we apply the following related result:

Theorem 4 [6]. Let $l \ge 2$ be a constant. Then the length of any *l*-regular sequence over an *n*-element alphabet containing no subsequence of type up-down-up(*l*) is at most O(n).

2.2. Proof of Theorem 1

Let G = (V, E) be a geometric graph on *n* vertices, with no *k* pairwise parallel edges. Let $V = \{v_1, v_2, ..., v_n\}$. Without loss of generality, we assume that no two points lie on a horizontal line.

Let $e \in E$. An oriented edge \overrightarrow{e} is defined as the edge e oriented upward. The *direction of e*, dir(*e*), is defined as the direction of the vector $\overrightarrow{v_i v_j}$, where $\overrightarrow{e} = (v_i, v_j)$. Let $E = \{e_1, e_2, \dots, e_m\}$, where

$$0 < \operatorname{dir}(e_1) < \operatorname{dir}(e_2) < \cdots < \operatorname{dir}(e_m) < \pi$$

(if necessary, we perturb the vertices of G to make the directions of edges of G pairwise different).

Let P_1 and P_2 be the sequences of *m* integers obtained from the sequence

$$\overrightarrow{e_1}, \overrightarrow{e_2}, \ldots, \overrightarrow{e_m}$$

by replacing each edge $\overrightarrow{e_k} = (v_i, v_j)$ by integer *i* and by integer *j*, respectively. We call the sequences P_1 , P_2 the *pattern sequences of G*. Inspired by [5] and [8], our proof of Theorem 1 is based on a careful analysis of the pattern sequences.

Lemma 5. For each $l \ge 1$, at least one of the pattern sequences P_1 , P_2 contains an *l*-regular subsequence of length at least |E|/(4l) = m/(4l).

Lemma 6. Neither of the pattern sequences P_1 , P_2 contains a subsequence of type up-down-up(k^3).

Before proving Lemmas 5 and 6 we complete the proof of Theorem 1.

Proof of Theorem 1. According to Lemma 5, at least one of the sequences P_1 , P_2 contains a k^3 -regular subsequence S of length at least $|E|/(4k^3)$. According to Lemma 6, the sequence S contains no subsequence of type up-down-up(k^3). Theorem 4 implies that the length of S is at most O(n). Consequently,

$$|E| \le 4k^3 \cdot O(n) = O(n).$$

It remains to prove Lemmas 5 and 6.

2.3. Proof of Lemma 5

We apply a simple greedy algorithm [1] which, for given integer $l \ge 1$ and finite sequence A, returns an l-regular subsequence B(A, l) of A. In the first step, an auxiliary sequence B is taken empty. Then the terms of A are considered one by one from left to right, and in each step the considered term is placed at the end of B iff this does not violate the l-regularity of B. Finally, the obtained l-regular subsequence B of A is taken for B(A, l).

For example, if A = 1, 3, 1, 3, 5, 2, 2, 5, 1, 5, 1, 2 and l = 3, then the algorithm returns the sequence B(A, 3) = 1, 3, 5, 2, 1, 5, 2. We prove Lemma 5 by showing that, given $l \ge 1$, at least one of the sequences $B(P_1, l)$, $B(P_2, l)$ obtained by the algorithm has length at least |E|/(4l) = m/(4l).

Let $l \ge 1$ be given. For i = 1, 2 and for $1 \le j_1 \le j_2 \le m$, let $P_{i,[j_1,j_2]}$ denote the part of P_i starting with the j_1 th term and ending with the j_2 th term. Thus, $P_{i,[j_1,j_2]}$ consists of $j_2 - j_1 + 1$ terms.

Let |T| denote the length of a sequence T, and I(T) the set of integers appearing in T.

Claim 7. For each j = 1, 2, ..., m,

$$|B(P_{1,[1,i]},l)| + |B(P_{2,[1,i]},l)| \ge j/(2l).$$

Proof. First, consider two integers j_1 , j_2 such that $1 \le j_1 \le j_2 \le m$. Obviously,

 $\{\overrightarrow{e_{j_1}}, \overrightarrow{e_{j_1+1}}, \dots, \overrightarrow{e_{j_2}}\} \subseteq \{(v_a, v_b) | a \in I(P_{1, [j_1, j_2]}), b \in I(P_{2, [j_1, j_2]})\}.$

Thus,

$$|\{\vec{e_{j_1}}, \vec{e_{j_1+1}}, \dots, \vec{e_{j_2}}\}| \le |\{(v_a, v_b)|a \in I(P_{1, [j_1, j_2]}), b \in I(P_{2, [j_1, j_2]})\}|.$$

Consequently,

$$j_2 - j_1 + 1 \le |I(P_{1,[j_1,j_2]})| \cdot |I(P_{2,[j_1,j_2]})|.$$

By the inequality between algebraic and geometric means,

$$\frac{|I(P_{1,[j_1,j_2]})| + |I(P_{2,[j_1,j_2]})|}{2} \ge \sqrt{j_2 - j_1 + 1}.$$
(1)

We can now prove the claim by induction on j. If $j \le \min\{16l^2, m\}$, then by (1) and by $j \le 16l^2$

$$|B(P_{1,[1,j]},l)| + |B(P_{2,[1,j]},l)| \ge |I(P_{1,[1,j]})| + |I(P_{2,[1,j]})|$$

$$\ge 2\sqrt{j}$$

$$> j/(2l).$$

Suppose now that $16l^2 < j_0 \le m$ and that Claim 7 holds for $j = 1, 2, ..., j_0 - 1$. Since for i = 1, 2 each integer of $I(P_{i,[j_0-4l^2+1,j_0]})$ not appearing among the last l - 1 terms in $B(P_{i,[1,j_0-4l^2]}, l)$ appears more times in $B(P_{i,[1,j_0]}, l)$ than in $B(P_{i,[1,j_0-4l^2]}, l)$, we have

$$|B(P_{i,[1,j_0]},l)| \ge |B(P_{i,[1,j_0-4l^2]},l)| + |I(P_{i,[j_0-4l^2+1,j_0]})| - (l-1).$$

Consequently, by the inductive hypothesis and by (1),

$$|B(P_{1,[1,j_0]},l)| + |B(P_{2,[1,j_0]},l)| \ge (j_0 - 4l^2)/(2l) + 2\sqrt{4l^2} - 2(l-1)$$

> $j_0/(2l)$.

Proof of Lemma 5. Lemma 5 follows easily from Claim 7 (with j = m) and from the pigeon-hole principle.

2.4. Proof of Lemma 6

In the proof of Lemma 6 we apply the following easy consequence of Dilworth's theorem [4]:

Theorem 8. If the union of three partial orderings on a set I of size at least $(k-1)^3 + 1$ is a linear ordering on I, then at least one of the partial orderings contains a chain of length k.

Proof. Let \leq_1, \leq_2, \leq_3 be the three partial orderings on *I*. If (I, \leq_1) does not contain a chain of length *k* then, by Dilworth's theorem, it can be covered by at most k - 1 antichains. Consequently, there is an antichain *A* of size $(k - 1)^2 + 1$ in (I, \leq_1) . If we restrict our attention to *A* and to orderings \leq_2, \leq_3 , another application of Dilworth's theorem gives *k* elements in *A* which form a chain with respect to \leq_2 or to \leq_3 .

Proof of Lemma 6. Because of symmetry, it suffices to prove Lemma 6 for the pattern sequence P_1 . Suppose to the contrary that P_1 contains a subsequence of type up-down-up(k^3). Thus, there is a subsequence

$$S = s_1, s_2, \ldots, s_{3k^3-2}$$

of P_1 such that the integers $s_1, s_2, \ldots, s_{k^3}$ are pairwise different and that, for $i = 1, 2, \ldots, k^3$, $s_i = s_{2k^3-i} = s_{(2k^3-2)+i}$. For simplicity of notation, suppose that $s_i = i$ $(i = 1, \ldots, k^3)$ and that $S = P_{1,[1,3k^2-2]}$. We obtain a contradiction by showing that k of the edges $e_1, e_2, \ldots, e_{3k^3-2}$ are pairwise parallel.

Define three partial orderings \leq_1, \leq_2, \leq_3 on the set $I = \{1, 2, \dots, k^3\}$ as follows:

Definition 9. Let $i, j \in I$, and let $dir(\overline{v_i v_j})$ denote the direction of the vector $\overline{v_i v_j}$. Then:

(i) $i \prec_1 j$, if i < j and $\operatorname{dir}(\overline{v_i v_j}) \in [\operatorname{dir}(\overline{e_k^3}), \pi)$; (ii) $i \prec_2 j$, if i < j and $\operatorname{dir}(\overline{v_i v_j}) \in (\pi, \pi + \operatorname{dir}(\overline{e_{2k^3-1}}))$; and (iii) $i \prec_3 j$, if i < j and $\operatorname{dir}(\overline{v_i v_j}) \in [\pi + \operatorname{dir}(\overline{e_{2k^3-1}}), 2\pi) \cup (0, \operatorname{dir}(\overline{e_k^3}))$.

Since the union of \leq_1, \leq_2, \leq_3 is a linear ordering on *I*, Theorem 8 implies that one of the orderings \leq_1, \leq_2, \leq_3 contains a chain i_1, i_2, \ldots, i_k of length *k*. We distinguish the corresponding three possible cases.

If $i_1 \prec_1 i_2 \prec_1 \cdots \prec_1 i_k$, then the edges $e_{i_1}, e_{i_2}, \ldots, e_{i_k}$ are pairwise parallel. Indeed, if $1 \leq j < j' \leq k$, then the inequalities

$$0 \leq \operatorname{dir}(\overrightarrow{e_{i_j}}) < \operatorname{dir}(\overrightarrow{e_{i_{j'}}}) \leq \operatorname{dir}(\overrightarrow{e_{k^3}}) \leq \operatorname{dir}(\overrightarrow{v_{i_j}v_{i_{j'}}}) < \pi$$

show that the edges e_{i_j} , $e_{i_{i'}}$ are parallel (see Fig. 2).

Similarly, if $i_1 \prec_2 i_2 \prec_2 \cdots \prec_2 i_k$, then the edges $e_{(2k^3-2)+i_1}$, $e_{(2k^3-2)+i_2}$, \ldots , $e_{(2k^3-2)+i_k}$ are pairwise parallel, and if $i_1 \prec_3 i_2 \prec_3 \cdots \prec_3 i_k$, then the edges $e_{2k^3-i_1}$, $e_{2k^3-i_2}$, \ldots , $e_{2k^3-i_k}$ are pairwise parallel.

Fig. 2. The edges e_{i_i} , $e_{i_{i'}}$ are parallel.

3. Proof of Kupitz's Conjecture

In this section we prove Theorem 2. Our proof is based on the proof [5] of a weaker form of Theorem 2 (with 2n - 2 replaced by 2n - 1).

In the proof we apply the following lemma from [5]:

Lemma 10. Let A_i , A_j , A_k , A_ℓ be four points appearing in this order on a closed convex curve γ . Let P, Q be two points inside γ . Consider the four (closed) segments

$$PA_i, QA_j, PA_k, QA_\ell$$

and assume that among them there is no segment s such that s contains only one of the points P, Q and the line supporting s contains both of them. Then two of the four segments are in convex position.

Proof of Theorem 2. Let *G* be a geometric graph on *n* vertices with no pair of edges in convex position. We use the definitions and notation from [5]. The following bound on the number of edges in *G* was shown in [5]:

$$e \leq 2n - 1.$$

We need to show that

$$e < 2n - 1.$$

Suppose to the contrary that e = 2n - 1. It then follows from the proof in [5] that each vertex v_i of G has a leftmost edge $v_i v_{l(i)}$ and a rightmost edge $v_i v_{r(i)}$ $(l(i) \neq r(i))$, and that the length of the pattern sequence PS(G) is exactly 2n - 2 (see [5] for definitions).

For each vertex v_i of G, we define an interval $I(v_i)$ on C by

$$I(v_i) = C \cap \operatorname{conv}\left(\overrightarrow{v_i v_{l(i)}} \cup \overrightarrow{v_i v_{r(i)}}\right).$$

Certainly, $I(v_i)$ contains all points of D(G) colored by color *i*.

Observation 11. The intervals $I(v_i)$, i = 1, ..., n, form a nested set, i.e., if two of them intersect, then one of them is contained in the other one.

Proof. If two intervals $I(v_i)$, $I(v_j)$, $i \neq j$, intersect and none of them is contained in the other one, then the points $\alpha_{il(i)}$, $\alpha_{jl(j)}$, $\alpha_{ir(i)}$, $\alpha_{jr(j)}$ appear in this order on *C*, and Lemma 10 implies that two of the edges $v_i v_{l(i)}$, $v_i v_{r(i)}$, $v_j v_{l(j)}$, $v_j v_{r(j)}$ are in convex position, a contradiction.

Let v_k be a vertex of G such that the angle between $\overrightarrow{v_k v_{r(k)}}$ and $\overrightarrow{v_k v_{l(k)}}$ is maximal. Consider the two points $\alpha_{r(k)k}$ and $\alpha_{l(k)k}$. They both lie outside $I(v_k)$, since the angle between $\overrightarrow{v_k v_{r(k)}}$ and $\overrightarrow{v_k v_{l(k)}}$ is smaller than π .

Observation 12. No interval $I(v_i)$ contains both $\alpha_{r(k)k}$ and $\alpha_{l(k)k}$.

Proof. If an interval $I(v_i)$ contains both $\alpha_{r(k)k}$ and $\alpha_{l(k)k}$, then, by the maximality of the angle between $\overrightarrow{v_k v_{r(k)}}$ and $\overrightarrow{v_k v_{l(k)}}$, one of the rays $\overrightarrow{v_i v_{r(i)}}$, $\overrightarrow{v_i v_{l(i)}}$ intersects one of the rays $\overrightarrow{v_{r(k)} v_k}$, $\overrightarrow{v_{l(k)} v_k}$ outside *C*, and the corresponding two edges of *G* are in convex position.

It follows from Observation 12 that there are at least three maximal intervals $I(v_i)$ (the interval $I(v_k)$ and the two maximal intervals containing $\alpha_{r(k)k}$ and $\alpha_{l(k)k}$, respectively). By Observation 11, maximal intervals $I(v_i)$ are pairwise disjoint.

Observation 13. Each maximal interval $I(v_i)$ containing m_i intervals $I(v_{i'})$ (including the interval $I(v_i)$ itself) contains at most $2m_i - 1$ points of D(G).

Proof. The part of PS(G) corresponding to $I(v_i) \cap D(G)$ is a Davenport–Schinzel sequence of order 2 on m_i integers (i.e., it contains no alternating subsequence of length 4). As we have already mentioned in Section 2.1, it is well known [3] that the length of such a sequence is at most $2m_i - 1$.

Thus, the length of D(G) (and also of PS(G)) is at most

 $2n - (\ddagger \text{ of maximal intervals } I(v_i)) \le 2n - 3,$

a contradiction. This completes the proof of Theorem 2.

4. Graphs with No k Pairwise Crossing Edges

Here we show Theorem 3. Let $k \ge 2$ be a constant, and let $f_k(n)$ be the maximum number of edges in a geometric graph on *n* vertices with no *k* pairwise crossing edges. Let G = (V, E) be a geometric graph on *n* vertices with no *k* pairwise crossing edges. Introduce a Cartesian coordinate system so that the *y*-axis partitions *V* into two parts which are as equal as possible, thus the sets

 $V^- = \{v \in V | \text{the } x \text{-coordinate of } v \text{ is negative} \},\$

 $V^+ = \{v \in V | \text{the } x \text{-coordinate of } v \text{ is positive} \},\$

have sizes

$$|V^{-}| = \lfloor n/2 \rfloor, \qquad |V^{+}| = \lceil n/2 \rceil.$$

Partition E into three subsets E^+ , E^- , E' such that E^+ contains the edges with both endpoints in V^+ , E^- contains the edges with both endpoints in V^- , and E' contains the edges crossing the y-axis.

To obtain a bound on the size of E', consider the mapping T given by $(x, y) \mapsto (1/x, y/x)$ $(x \neq 0)$. Further, consider the graph \tilde{G} on the vertex set $\tilde{V} = \{T(v) | v \in V\}$ with two vertices T(v), T(w) connected by an edge if and only if $\{v, w\} \in E'$. The graph \tilde{G} contains no k pairwise parallel edges, since otherwise the corresponding k edges in

E' would be pairwise crossing. By Theorem 1, \tilde{G} contains O(n) edges. Consequently,

$$|E'| = O(n).$$

Obviously,

$$|E^{-}| \le f_k(\lfloor n/2 \rfloor), \qquad |E^{+}| \le f_k(\lceil n/2 \rceil).$$

Thus,

$$f_k(n) \le f_k(\lfloor n/2 \rfloor) + f_k(\lceil n/2 \rceil) + O(n).$$

Consequently,

$$f_k(n) = O(n \log n).$$

Acknowledgments

I would like to thank Meir Katchalski for bringing Kupitz's conjecture to my attention, and Martin Klazar for valuable comments.

References

- R. Adamec, M. Klazar, and P. Valtr, Generalized Davenport–Schinzel sequences with linear upper bound, Discrete Math., 108 (1992), 219–229.
- P. K. Agarwal, B. Aronov, J. Pach, R. Pollack, and M. Sharir, Quasi-planar graphs have a linear number of edges, In: *Graph Drawing* (Passau), Lecture Notes in Computer Science, vol. 1027, 1995, pp. 1–7.
- H. Davenport and A. Schinzel, A combinatorial problem connected with differential equations, *Amer. J. Math.*, 87 (1965), 684–694.
- 4. R. Dilworth, A decomposition theorem for partially ordered sets, Ann. of Math., 51 (1950), 161–166.
- 5. M. Katchalski and H. Last, On geometric graphs with no two edges in convex position, *Discrete Comput. Geom.*, this issue, pp. 399–404.
- 6. M. Klazar and P. Valtr, Generalized Davenport-Schinzel sequences, Combinatorica, 14 (1994), 463-476.
- 7. Y. Kupitz, *Extremal Problems in Combinatorial Geometry*, Aarhus University Lecture Notes Series, vol. 53, 1979.
- 8. H. Last, Turán type problems for geometric graphs, Ms.C. Thesis, Technion-I.I.T., Haifa, 1994. In Hebrew.
- 9. J. Pach and P. K. Agarwal, Combinatorial Geometry, Wiley Interscience, New York, 1995.
- 10. J. Pach, F. Shahrokhi, and M. Szegedy, Applications of the crossing number, *Algorithmica*, **16** (1996), 111–117.
- J. Pach and J. Törőcsik, Some geometric applications of Dilworth's theorem, *Discrete Comput. Geom.*, 12 (1994), 1–7.
- P. Valtr, Graph drawings with no k pairwise crossing edges, In: Graph Drawing (Rome), Lecture Notes in Computer Science, vol. 1353, 1997, pp. 205–218.

Received January 27, 1997, and in revised form March 4, 1997, and June 16, 1997.