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Abstract. A geometric graphis a graphG = (V, E) drawn in the plane so that the vertex
set V consists of points in general position and the edge setE consists of straight-line
segments between points ofV . Two edges of a geometric graph are said to beparallel if
they are opposite sides of a convex quadrilateral.

In this paper we show that, for any fixedk ≥ 3, any geometric graph onn vertices with
no k pairwise parallel edges contains at mostO(n) edges, and any geometric graph onn
vertices with nok pairwise crossing edges contains at mostO(n logn) edges. We also prove
a conjecture by Kupitz that any geometric graph onn vertices with no pair of parallel edges
contains at most 2n− 2 edges.

1. Introduction

A geometric graphis a graphG = (V, E) drawn in the plane so that the vertex set
V consists of points in general position and the edge setE consists of straight-line
segments between points ofV . See [9] for a survey of results about geometric graphs.
Two edges of a geometric graph are said to beparallel, if they are opposite sides of a
convex quadrilateral. Two edgescross, if their relative interiors intersect.
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Fig. 1. Kupitz’s construction forn = 7.

Pach and T¨orőcsik [11] proved that any geometric graph onn vertices with nok
pairwise disjoint edges contains at most(k − 1)4 n edges. In particular, their result
implies that for any fixedk ≥ 2 any geometric graph onn vertices with nok pairwise
disjoint edges contains at mostO(n) edges. In this paper we show that the number of
edges is at most linear inn also in a more general case.

Theorem 1. Let k≥ 2 be a constant. Then any geometric graph on n vertices with no
k pairwise parallel edges has at most O(n) edges.

The casek = 2 of Theorem 1 was considered first by Kupitz [7] who constructed,
for anyn ≥ 4, a geometric graph withn vertices and 2n− 2 edges containing no pair of
parallel edges (see Fig. 1). Kupitz [7] also conjectured that the lower bound 2n−2 given
by his construction is tight. A nearly tight upper bound 2n−1 was shown by Katchalski
and Last [5] and [8]. In this paper we show a refinement of the proof by Katchalski and
Last [5] and [8] giving Kupitz’s conjecture.

Theorem 2. For n ≥ 4, any geometric graph on n vertices with no pair of parallel
edges contains at most2n− 2 edges.

A related question is: How many edges can be contained in a geometric graph with
nok pairwise crossing edges? Fork = 2, Euler’s formula gives the upper bound 3n− 6
(n ≥ 3). Pach et al. [10] proved that any geometric graph onn vertices with nok pairwise
crossing edges contains at mostO(n log2k−4 n) edges (k ≥ 3). This bound was improved
to O(n log2k−6 n) in [2] (k ≥ 3) (thus, in particular, toO(n) for k = 3). For fixedk ≥ 4
we further improve this bound toO(n logn).

Theorem 3. Any geometric graph on n vertices with no k pairwise crossing edges has
at most ckn logn edges.

In a very recent paper [12], we give a different proof of Theorem 3 and generalize
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Theorem 3 to graphs whose vertices are represented by distinct points in the plane and
edges byx-monotone curves (Jordan arcs).

Theorem 3 is derived from Theorem 1. In the proof of Theorem 1 we apply a projection
method of Katchalski and Last [5] and [8], Dilworth’s theorem, and results on general-
ized Davenport–Schinzel sequences. Theorem 1 is proved in Section 2, Theorem 2 in
Section 3, and Theorem 3 in Section 4.

2. Geometric Graphs with Nok Pairwise Parallel Edges

2.1. Generalized Davenport–Schinzel Sequences

For l ≥ 1, a sequence is calledl-regular, if any l (or fewer) consecutive terms are
pairwise different. Forl ≥ 2, a sequence

S= s1, s2, . . . , s3l−2

of length 3l − 2 is said to beof typeup-down-up(l ), if the first l terms are pairwise
different and, fori = 1, 2, . . . , l ,

si = s2l−i = s(2l−2)+i .

Thus, a sequence is of type up-down-up(2) if and only if it is an alternating sequence
of length 4. It is well known [3] (and not difficult to prove) that any 2-regular sequence
over ann-element alphabet containing no alternating subsequence of length 4 has length
at most 2n− 1. In the proof of Theorem 1 we apply the following related result:

Theorem 4[6]. Let l ≥ 2 be a constant. Then the length of any l-regular sequence
over an n-element alphabet containing no subsequence of typeup-down-up(l ) is at
most O(n).

2.2. Proof of Theorem1

Let G = (V, E) be a geometric graph onn vertices, with nok pairwise parallel edges.
Let V = {v1, v2, . . . , vn}. Without loss of generality, we assume that no two points lie
on a horizontal line.

Let e ∈ E. An oriented edge−→e is defined as the edgee oriented upward. The
direction of e, dir(e), is defined as the direction of the vector−→vi vj , where−→e = (vi , vj ).
Let E = {e1, e2, . . . ,em}, where

0< dir(e1) < dir(e2) < · · · < dir(em) < π

(if necessary, we perturb the vertices ofG to make the directions of edges ofG pairwise
different).

Let P1 andP2 be the sequences ofm integers obtained from the sequence

−→e1 ,
−→e2 , . . . ,

−→em
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by replacing each edge−→ek = (vi , vj ) by integeri and by integerj , respectively. We call
the sequencesP1, P2 thepattern sequences of G. Inspired by [5] and [8], our proof of
Theorem 1 is based on a careful analysis of the pattern sequences.

Lemma 5. For each l≥ 1, at least one of the pattern sequences P1, P2 contains an
l-regular subsequence of length at least|E|/(4l ) = m/(4l ).

Lemma 6. Neither of the pattern sequences P1, P2 contains a subsequence of type
up-down-up(k3).

Before proving Lemmas 5 and 6 we complete the proof of Theorem 1.

Proof of Theorem1. According to Lemma 5, at least one of the sequencesP1, P2

contains ak3-regular subsequenceSof length at least|E|/(4k3). According to Lemma 6,
the sequenceS contains no subsequence of type up-down-up(k3). Theorem 4 implies
that the length ofS is at mostO(n). Consequently,

|E| ≤ 4k3 · O(n) = O(n).

It remains to prove Lemmas 5 and 6.

2.3. Proof of Lemma5

We apply a simple greedy algorithm [1] which, for given integerl ≥ 1 and finite sequence
A, returns anl -regular subsequenceB(A, l ) of A. In the first step, an auxiliary sequence
B is taken empty. Then the terms ofA are considered one by one from left to right, and
in each step the considered term is placed at the end ofB iff this does not violate the
l -regularity ofB. Finally, the obtainedl -regular subsequenceB of A is taken forB(A, l ).

For example, ifA = 1, 3, 1, 3, 5, 2, 2, 5, 1, 5, 1, 2 and l = 3, then the algorithm
returns the sequenceB(A, 3) = 1, 3, 5, 2, 1, 5, 2. We prove Lemma 5 by showing that,
given l ≥ 1, at least one of the sequencesB(P1, l ), B(P2, l ) obtained by the algorithm
has length at least|E|/(4l ) = m/(4l ).

Let l ≥ 1 be given. Fori = 1, 2 and for 1≤ j1 ≤ j2 ≤ m, let Pi,[ j1, j2] denote the part
of Pi starting with thej1th term and ending with thej2th term. Thus,Pi,[ j1, j2] consists
of j2− j1+ 1 terms.

Let |T | denote the length of a sequenceT , and I (T) the set of integers appearing
in T .

Claim 7. For each j= 1, 2, . . . ,m,

|B(P1,[1, j ], l )| + |B(P2,[1, j ], l )| ≥ j/(2l ).

Proof. First, consider two integersj1, j2 such that 1≤ j1 ≤ j2 ≤ m. Obviously,

{−→ej1 ,
−−→ej1+1, . . . ,

−→ej2 } ⊆ {(va, vb)|a ∈ I (P1,[ j1, j2]), b ∈ I (P2,[ j1, j2])}.
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Thus,

|{−→ej1 ,
−−→ej1+1, . . . ,

−→ej2 }| ≤ |{(va, vb)|a ∈ I (P1,[ j1, j2]), b ∈ I (P2,[ j1, j2])}|.
Consequently,

j2− j1+ 1≤ |I (P1,[ j1, j2])| · |I (P2,[ j1, j2])|.
By the inequality between algebraic and geometric means,

|I (P1,[ j1, j2])| + |I (P2,[ j1, j2])|
2

≥
√

j2− j1+ 1. (1)

We can now prove the claim by induction onj . If j ≤ min{16l 2,m}, then by (1) and
by j ≤ 16l 2

|B(P1,[1, j ], l )| + |B(P2,[1, j ], l )| ≥ |I (P1,[1, j ])| + |I (P2,[1, j ])|
≥ 2

√
j

≥ j/(2l ).

Suppose now that 16l 2 < j0 ≤ m and that Claim 7 holds forj = 1, 2, . . . , j0 − 1.
Since fori = 1, 2 each integer ofI (Pi,[ j0−4l 2+1, j0]) not appearing among the lastl − 1
terms inB(Pi,[1, j0−4l 2], l ) appears more times inB(Pi,[1, j0], l ) than in B(Pi,[1, j0−4l 2], l ),
we have

|B(Pi,[1, j0], l )| ≥ |B(Pi,[1, j0−4l 2], l )| + |I (Pi,[ j0−4l 2+1, j0])| − (l − 1).

Consequently, by the inductive hypothesis and by (1),

|B(P1,[1, j0], l )| + |B(P2,[1, j0], l )| ≥ ( j0− 4l 2)/(2l )+ 2
√

4l 2− 2(l − 1)

> j0/(2l ).

Proof of Lemma5. Lemma 5 follows easily from Claim 7 (withj = m) and from the
pigeon-hole principle.

2.4. Proof of Lemma6

In the proof of Lemma 6 we apply the following easy consequence of Dilworth’s
theorem [4]:

Theorem 8. If the union of three partial orderings on a set I of size at least(k−1)3+1
is a linear ordering on I, then at least one of the partial orderings contains a chain of
length k.

Proof. Let¹1, ¹2, ¹3 be the three partial orderings onI . If (I ,¹1) does not contain
a chain of lengthk then, by Dilworth’s theorem, it can be covered by at mostk − 1
antichains. Consequently, there is an antichainA of size(k − 1)2 + 1 in (I ,¹1). If we
restrict our attention toA and to orderings¹2, ¹3, another application of Dilworth’s
theorem givesk elements inA which form a chain with respect to¹2 or to¹3.
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Proof of Lemma6. Because of symmetry, it suffices to prove Lemma 6 for the pattern
sequenceP1. Suppose to the contrary thatP1 contains a subsequence of type up-down-
up(k3). Thus, there is a subsequence

S= s1, s2, . . . , s3k3−2

of P1 such that the integerss1, s2, . . . , sk3 are pairwise different and that, fori =
1, 2, . . . , k3, si = s2k3−i = s(2k3−2)+i . For simplicity of notation, suppose thatsi = i
(i = 1, . . . , k3) and thatS= P1,[1,3k2−2]. We obtain a contradiction by showing thatk
of the edgese1, e2, . . . ,e3k3−2 are pairwise parallel.

Define three partial orderings¹1,¹2,¹3 on the setI = {1, 2, . . . , k3} as follows:

Definition 9. Let i, j ∈ I , and let dir(−→vi vj ) denote the direction of the vector−→vi vj .
Then:

(i) i ≺1 j , if i < j and dir(−→vi vj ) ∈ [dir(−→ek3), π);
(ii) i ≺2 j , if i < j and dir(−→vi vj ) ∈ (π, π + dir(−−−→e2k3−1)); and

(iii) i ≺3 j , if i < j and dir(−→vi vj ) ∈ [π + dir(−−−→e2k3−1), 2π) ∪ (0, dir(−→ek3)).

Since the union of¹1, ¹2, ¹3 is a linear ordering onI , Theorem 8 implies that one
of the orderings¹1, ¹2, ¹3 contains a chaini1, i2, . . . , i k of lengthk. We distinguish
the corresponding three possible cases.

If i1 ≺1 i2 ≺1 · · · ≺1 i k, then the edgesei1, ei2, . . . ,eik are pairwise parallel. Indeed,
if 1 ≤ j < j ′ ≤ k, then the inequalities

0≤ dir(−→ei j ) < dir(−→ei j ′ ) ≤ dir(−→ek3) ≤ dir(−−→vi j vi j ′ ) < π

show that the edgesei j , ei j ′ are parallel (see Fig. 2).
Similarly, if i1 ≺2 i2 ≺2 · · · ≺2 i k, then the edgese(2k3−2)+i1, e(2k3−2)+i2, . . . ,e(2k3−2)+i k

are pairwise parallel, and ifi1 ≺3 i2 ≺3 · · · ≺3 i k, then the edgese2k3−i1, e2k3−i2, . . . ,e2k3−i k
are pairwise parallel.

Fig. 2. The edgesei j , ei j ′ are parallel.
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3. Proof of Kupitz’s Conjecture

In this section we prove Theorem 2. Our proof is based on the proof [5] of a weaker form
of Theorem 2 (with 2n− 2 replaced by 2n− 1).

In the proof we apply the following lemma from [5]:

Lemma 10. Let Ai , Aj , Ak, A` be four points appearing in this order on a closed
convex curveγ . Let P, Q be two points insideγ . Consider the four(closed) segments

P Ai , Q Aj , P Ak, Q A`

and assume that among them there is no segment s such that s contains only one of
the points P, Q and the line supporting s contains both of them. Then two of the four
segments are in convex position.

Proof of Theorem2. LetG be a geometric graph onn vertices with no pair of edges in
convex position. We use the definitions and notation from [5]. The following bound on
the number of edges inG was shown in [5]:

e≤ 2n− 1.

We need to show that

e< 2n− 1.

Suppose to the contrary thate= 2n− 1. It then follows from the proof in [5] that each
vertexvi of G has a leftmost edgevi vl (i ) and a rightmost edgevi vr (i ) (l (i ) 6= r (i )),
and that the length of the pattern sequencePS(G) is exactly 2n − 2 (see [5] for
definitions).

For each vertexvi of G, we define an intervalI (vi ) onC by

I (vi ) = C ∩ conv
(−−−→vi vl (i ) ∪ −−−→vi vr (i )

)
.

Certainly,I (vi ) contains all points ofD(G) colored by colori .

Observation 11. The intervals I(vi ), i = 1, . . . ,n, form a nested set, i.e., if two of
them intersect, then one of them is contained in the other one.

Proof. If two intervals I (vi ), I (vj ), i 6= j , intersect and none of them is contained in
the other one, then the pointsαi l (i ), αj l ( j ), αir (i ), αjr ( j ) appear in this order onC, and
Lemma 10 implies that two of the edgesvi vl (i ), vi vr (i ), vj vl ( j ), vj vr ( j ) are in convex
position, a contradiction.

Let vk be a vertex ofG such that the angle between−−−→vkvr (k) and−−−→vkvl (k) is maximal.
Consider the two pointsαr (k)k andαl (k)k. They both lie outsideI (vk), since the angle
between−−−→vkvr (k) and−−−→vkvl (k) is smaller thanπ .

Observation 12. No interval I(vi ) contains bothαr (k)k andαl (k)k.
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Proof. If an interval I (vi ) contains bothαr (k)k andαl (k)k, then, by the maximality of
the angle between−−−→vkvr (k) and−−−→vkvl (k), one of the rays−−−→vi vr (i ),

−−−→vi vl (i ) intersects one of
the rays−−−→vr (k)vk, −−−→vl (k)vk outsideC, and the corresponding two edges ofG are in convex
position.

It follows from Observation 12 that there are at least three maximal intervalsI (vi ) (the
interval I (vk) and the two maximal intervals containingαr (k)k andαl (k)k, respectively).

By Observation 11, maximal intervalsI (vi ) are pairwise disjoint.

Observation 13. Each maximal interval I(vi ) containing mi intervals I(vi ′) (includ-
ing the interval I(vi ) itself) contains at most2mi − 1 points of D(G).

Proof. The part ofPS(G) corresponding toI (vi ) ∩ D(G) is a Davenport–Schinzel
sequence of order 2 onmi integers (i.e., it contains no alternating subsequence of length
4). As we have already mentioned in Section 2.1, it is well known [3] that the length of
such a sequence is at most 2mi − 1.

Thus, the length ofD(G) (and also ofPS(G)) is at most

2n− (] of maximal intervalsI (vi )) ≤ 2n− 3,

a contradiction. This completes the proof of Theorem 2.

4. Graphs with No k Pairwise Crossing Edges

Here we show Theorem 3. Letk ≥ 2 be a constant, and letfk(n) be the maximum
number of edges in a geometric graph onn vertices with nok pairwise crossing edges.
Let G = (V, E) be a geometric graph onn vertices with nok pairwise crossing edges.
Introduce a Cartesian coordinate system so that they-axis partitionsV into two parts
which are as equal as possible, thus the sets

V− = {v ∈ V |thex-coordinate ofv is negative},

V+ = {v ∈ V |thex-coordinate ofv is positive},
have sizes

|V−| = bn/2c, |V+| = dn/2e.
Partition E into three subsetsE+, E−, E′ such thatE+ contains the edges with both
endpoints inV+, E− contains the edges with both endpoints inV−, andE′ contains the
edges crossing they-axis.

To obtain a bound on the size ofE′, consider the mappingT given by (x, y) 7→
(1/x, y/x) (x 6= 0). Further, consider the graph̃G on the vertex set̃V = {T(v)|v ∈ V}
with two verticesT(v), T(w) connected by an edge if and only if{v,w} ∈ E′. The graph
G̃ contains nok pairwise parallel edges, since otherwise the correspondingk edges in
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E′ would be pairwise crossing. By Theorem 1,G̃ containsO(n) edges. Consequently,

|E′| = O(n).

Obviously,

|E−| ≤ fk(bn/2c), |E+| ≤ fk(dn/2e).
Thus,

fk(n) ≤ fk(bn/2c)+ fk(dn/2e)+ O(n).

Consequently,

fk(n) = O(n logn).
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11. J. Pach and J. T¨orőcsik, Some geometric applications of Dilworth’s theorem,Discrete Comput. Geom.,
12 (1994), 1–7.

12. P. Valtr, Graph drawings with nok pairwise crossing edges, In:Graph Drawing(Rome), Lecture Notes
in Computer Science, vol. 1353, 1997, pp. 205–218.

Received January27, 1997,and in revised form March4, 1997,and June16, 1997.


