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Abstract. A geometric graplis a graphG = (V, E) drawn in the plane so that the vertex
setV consists of points in general position and the edgeEsebnsists of straight-line
segments between points ¥t Two edges of a geometric graph are said tgpbasllel if
they are opposite sides of a convex quadrilateral.

In this paper we show that, for any fix&d> 3, any geometric graph anvertices with
no k pairwise parallel edges contains at m@sin) edges, and any geometric graphron
vertices with ndk pairwise crossing edges contains at nfogh logn) edges. We also prove
a conjecture by Kupitz that any geometric grapmarertices with no pair of parallel edges
contains at mostr2— 2 edges.

1. Introduction

A geometric graphis a graphG = (V, E) drawn in the plane so that the vertex set
V consists of points in general position and the edgeEsebnsists of straight-line
segments between points \df See [9] for a survey of results about geometric graphs.
Two edges of a geometric graph are said tgheallel, if they are opposite sides of a
convex quadrilateral. Two edgesoss if their relative interiors intersect.

* Research was supported by the DIMACS Center, by the Czech Republic Gr&R G294/1996, and
by Charles University Grants Nos. 1A396 and 1941996.
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Fig. 1. Kupitz’s construction fon = 7.

Pach and @i6csik [11] proved that any geometric graph orvertices with nok
pairwise disjoint edges contains at makt— 1)*n edges. In particular, their result
implies that for any fixek > 2 any geometric graph amvertices with ndk pairwise
disjoint edges contains at modt(n) edges. In this paper we show that the number of
edges is at most linear malso in a more general case.

Theorem 1. Letk > 2be a constantThen any geometric graph on n vertices with no
k pairwise parallel edges has at mos{1©) edges

The cas&k = 2 of Theorem 1 was considered first by Kupitz [7] who constructed,
for anyn > 4, a geometric graph with vertices and 2 — 2 edges containing no pair of
parallel edges (see Fig. 1). Kupitz [7] also conjectured that the lower baur@2jiven
by his construction is tight. A nearly tight upper bourmd-21 was shown by Katchalski
and Last [5] and [8]. In this paper we show a refinement of the proof by Katchalski and
Last [5] and [8] giving Kupitz’s conjecture.

Theorem 2. For n > 4, any geometric graph on n vertices with no pair of parallel
edges contains at moah — 2 edges

A related question is: How many edges can be contained in a geometric graph with
nok pairwise crossing edges? Hoe 2, Euler’s formula gives the upper bound 3 6
(n > 3). Pach et al. [10] proved that any geometric graph wertices with nk pairwise
crossing edges contains at maxin log*~* n) edgesk > 3). This bound was improved
to O(nlog®~®n)in [2] (k > 3) (thus, in particular, t®(n) for k = 3). For fixedk > 4
we further improve this bound t®(nlogn).

Theorem 3. Any geometric graph on n vertices with no k pairwise crossing edges has
at most gnlogn edges

In a very recent paper [12], we give a different proof of Theorem 3 and generalize



On Geometric Graphs with NoPairwise Parallel Edges 463

Theorem 3 to graphs whose vertices are represented by distinct points in the plane and
edges by-monotone curves (Jordan arcs).

Theorem 3is derived from Theorem 1. In the proof of Theorem 1 we apply a projection
method of Katchalski and Last [5] and [8], Dilworth’s theorem, and results on general-
ized Davenport—Schinzel sequences. Theorem 1 is proved in Section 2, Theorem 2 in
Section 3, and Theorem 3 in Section 4.

2. Geometric Graphs with Nok Pairwise Parallel Edges
2.1. Generalized Davenport—Schinzel Sequences

Forl > 1, a sequence is callderegular, if any | (or fewer) consecutive terms are
pairwise different. For > 2, a sequence

SZS].?&""’%I_Z

of length 3 — 2 is said to beof typeup-down-upk), if the firstl terms are pairwise
differentand, foi = 1,2,...,1,

S =S = S2-2)+i-

Thus, a sequence is of type up-down-up(2) if and only if it is an alternating sequence
of length 4. It is well known [3] (and not difficult to prove) that any 2-regular sequence
over am-element alphabet containing no alternating subsequence of length 4 has length
at most 2 — 1. In the proof of Theorem 1 we apply the following related result:

Theorem 4[6]. Let!| > 2 be a constantThen the length of any I-regular sequence
over an n-element alphabet containing no subsequence ofugsown-upk) is at
most Q(n).

2.2. Proof of Theoreni

Let G = (V, E) be a geometric graph anvertices, with nd pairwise parallel edges.
LetV = {v1, vy, ..., vp}. Without loss of generality, we assume that no two points lie
on a horizontal line.

Lete € E. An oriented edg€€ is defined as the edgeoriented upward. The
direction of e dir(e), is defined as the direction of the vecior;, where € = (v;, vj).
LetE = {e}, &, ..., en}, Where

0 < dir(e) < dir(ep) < --- < dir(en) <7

(if necessary, we perturb the vertices®to make the directions of edges®fpairwise
different).
Let P, and P, be the sequences of integers obtained from the sequence

—

§1>7§2>7"'7en’1
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by replacing each edg& = (v;, vj) by integeri and by integeij, respectively. We call
the sequenceB;, P, the pattern sequences of .®spired by [5] and [8], our proof of
Theorem 1 is based on a careful analysis of the pattern sequences.

Lemmab5. Foreachl> 1, at least one of the pattern sequences B contains an
I-regular subsequence of length at led&t/(4l) = m/(4l).

Lemma 6. Neither of the pattern sequences, PP, contains a subsequence of type
up-down-upk®).

Before proving Lemmas 5 and 6 we complete the proof of Theorem 1.

Proof of Theoremi.. According to Lemma 5, at least one of the sequerfegsP,
contains &3-regular subsequen&of length at leastE |/ (4k®). According to Lemma 6,
the sequenc& contains no subsequence of type up-dowrké)p(Theorem 4 implies
that the length o is at mostO(n). Consequently,

|E| < 4k3. O(n) = O(n). O

It remains to prove Lemmas 5 and 6.

2.3. Proof of Lemma&

We apply a simple greedy algorithm [1] which, for given intelger 1 and finite sequence
A, returns an-regular subsequend(A, I) of A. In the first step, an auxiliary sequence
B is taken empty. Then the terms Afare considered one by one from left to right, and
in each step the considered term is placed at the erlififthis does not violate the
I-regularity ofB. Finally, the obtainettregular subsequen&eof Ais taken forB(A, ).

For example, ifA = 1,3,1,3,5,2,2,5,1,5,1,2 andl = 3, then the algorithm
returns the sequend A, 3) = 1, 3,5, 2,1, 5, 2. We prove Lemma 5 by showing that,
givenl > 1, at least one of the sequend®&y, |), B(P,, ) obtained by the algorithm
has length at leasE|/(4l) = m/(4l).

Letl > 1 begiven. Foir = 1,2 and for 1< j; < jo < m, letR,;, j,) denote the part
of B starting with thej;th term and ending with th@th term. ThusR, [, j,; consists
of jo— j1 + 1terms.

Let | T| denote the length of a sequenteandl (T) the set of integers appearing
inT.

Clam?7. Foreachj=1,2,...,m,
[B(Pyi1, i1, DI+ I1B(P2 i1, DI = j/(2).
Proof. First, consider two integerjs, j» such that 1< j; < j» < m. Obviously,

(&, 841, ---» 8.} S {(va, vp)|@a € 1 (Pyjip)s b € 1 (Pajyin)}-
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Thus,
8. Gt - B} < {(va, vo)la € 1 (Puy,. o). b e 1 (Pogy, i)}
Consequently,

Jo=Ja+ 1< 1Py oD - TPy o]
By the inequality between algebraic and geometric means,

(P i, i)+ 1 (P, s i i
|1 (Py; ,,])Izl (P2 fjy.j21)| Y r—— (1)

We can now prove the claim by induction ¢nif j < min{1612, m}, then by (1) and
by j <162
IB(PLa.j1, DI+ 1B(P2p1j1, DI = [T (Pl + [T (P2 jpl

2/j

>
> j/@.

Suppose now that 16 < jo < mand that Claim 7 holds fof = 1,2,..., jo — 1.
Since fori = 1, 2 each integer of (P, [j,_4241 j;) NOt appearing among the ldst- 1
terms inB(P [, j,—47, |) appears more times B(P, |1 j,j, ) than inB(R [y j—a7, D,
we have

IB(Pi.iwjo1> DI = 1B(P 11, jo-a2, D1 + 11 (P [jo—ai241,jo)| — ( = D).
Consequently, by the inductive hypothesis and by (1),

IB(PLp1,jo1> DI+ IB(Pop1, i, DI = (jo— A2/ @) +2v/A2 — 2(1 — 1)
> jo/(2). O

Proof of Lemm&. Lemma 5 follows easily from Claim 7 (with = m) and from the
pigeon-hole principle. O

2.4. Proof of Lemmd&

In the proof of Lemma 6 we apply the following easy consequence of Dilworth’s
theorem [4]:

Theorem 8. Ifthe union of three partial orderings on a set | of size at letst 1)+ 1
is a linear ordering on | then at least one of the partial orderings contains a chain of
length k

Proof. Let=<;, <5, <3 be the three partial orderings dnlf (I, <;) does not contain
a chain of lengttk then, by Dilworth’s theorem, it can be covered by at mlost 1
antichains. Consequently, there is an antich&iof size(k — 1) 4+ 1 in (I, <1). If we
restrict our attention téA and to orderings<,, <3, another application of Dilworth's
theorem give& elements inA which form a chain with respect tg, or to <. O
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Proof of Lemm&. Because of symmetry, it suffices to prove Lemma 6 for the pattern
sequencd;. Suppose to the contrary thBf contains a subsequence of type up-down-
upk®). Thus, there is a subsequence

S=5,%,...,%u_2

of P; such that the integers;, s, ..., S¢ are pairwise different and that, for =
1,2,...,k3 s = spej = Seke—2)+i - For simplicity of notation, suppose thgt = i
(i =1,...,k% and thatS = Py 3 3_5. We obtain a contradiction by showing tHat
of the edge®y, &, .. ., e3s_p are pairwise parallel.

Define three partial orderings;, <», <z onthe sel = {1, 2, ..., k%} as follows:

Definition 9. Leti, j € |, and let ditv;vj) denote the direction of the vectory;.
Then:

@) i <q1j,ifi <jand dil(ﬁj) € [dir(83), n);
(i) i <2 j,ifi <jand dil(ﬁ,-) € (r, 7 +dir(&xe_1)); and
(i) i <3j,ifi <jand dir(ﬁ,—) € [ + dir(&e_1), 27) U (0, dir(83)).

Since the union ok, <5, <3 is a linear ordering o, Theorem 8 implies that one
of the orderings<i, <5, <3 contains a chaimy, i, ..., ix of lengthk. We distinguish
the corresponding three possible cases.

If iy <1i2 <1 -+ <1 ik, thenthe edges,, e,, ..., g, are pairwise parallel. Indeed,
if1 <j < j <k, thenthe inequalities

0 < dir(&)) < dir(g)) <dir(§3) < dir(v ;) <7

show that the edges , &, are parallel (see Fig. 2).

Similarly, ifiy <oip <2 -+ <2 ik, thenthe edgeﬁzp,z)ﬂl, €2k3—2)+ips + - - » E2K3—2) ik
are pairwise parallel, andiff <3 i» <3 -+ <3 ik, thenthe edgesy:_i,, €x_i,. - - - » €43,
are pairwise parallel. O

[
&
J
Vi,
J
=

’UI‘J

Fig. 2. The edges;, 8, are parallel.
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3. Proof of Kupitz's Conjecture

In this section we prove Theorem 2. Our proof is based on the proof [5] of a weaker form
of Theorem 2 (with & — 2 replaced by & — 1).
In the proof we apply the following lemma from [5]:

Lemma10. Let A, A;j, A, A, be four points appearing in this order on a closed
convex curve . Let P, Q be two points inside. Consider the fou(closed segments

PA,QA,PA. QA

and assume that among them there is no segment s such that s contains only one of
the points P Q and the line supporting s contains both of th@en two of the four
segments are in convex position

Proof of Theoren2. LetG be a geometric graph anvertices with no pair of edges in
convex position. We use the definitions and notation from [5]. The following bound on
the number of edges i@ was shown in [5]:

e<2n-1

We need to show that
e<2n—-1.

Suppose to the contrary that= 2n — 1. It then follows from the proof in [5] that each
vertexv; of G has a leftmost edge v, and a rightmost edge v, (1) # r(i)),
and that the length of the pattern seque®8(G) is exactly 2 — 2 (see [5] for
definitions).

For each vertex; of G, we define an intervdl(v;) onC by

I(vi)=Cn COﬂV(Ui Vi) U v Ur(i))~
Certainly, | (vi) contains all points oD (G) colored by coloi.

Observation 11. The intervals (vj),i = 1,...,n, form a nested set.e, if two of
them intersegtthen one of them is contained in the other one

Proof. If two intervalsl (vi), I (vj), 1 # ], intersect and none of them is contained in
the other one, then the poindg ), «;ji(j), ir i), @jr(j) appear in this order o€, and
Lemma 10 implies that two of the edgesu ), vivr), vjui(j), vjvr(j) are in convex
position, a contradiction. O

Let vk be a vertex ofG such that the angle betweegu; (k’) and vy (k;) is maximal.
Consider the two points; yx anda k. They both lie outside (vy), since the angle
betweervkvr(k’) andugy (k’) is smaller tharr.

Observation 12. No interval I(v;) contains bothy ok andaj k.
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Proof. If an intervall (v;) contains bothy, )k anda gk, then, by the maximality of
the angle betweebyv, (k’) and vy (k;), one of the raygv; (i’), vy (ﬁ) intersects one of
the raysuy (k)v;k, V) k) Uk outsideC, and the corresponding two edges®fre in convex
position. O

It follows from Observation 12 that there are at least three maximal inter¢als(the
interval | (v¢) and the two maximal intervals containiagyk ando; ik, respectively).
By Observation 11, maximal intervalgv;) are pairwise disjoint.

Observation 13. Each maximal interval (vj) containing m intervals I(v;-) (includ-
ing the interval I(v;) itself) contains at mos2m; — 1 points of O G).

Proof. The part of P S(G) corresponding td (v;) N D(G) is a Davenport—Schinzel
sequence of order 2 am; integers (i.e., it contains no alternating subsequence of length
4). As we have already mentioned in Section 2.1, it is well known [3] that the length of
such a sequence is at most;2— 1. O

Thus, the length oD (G) (and also ofP S(G)) is at most
2n — (# of maximal intervald (vi)) < 2n — 3,

a contradiction. This completes the proof of Theorem 2. O

4. Graphs with No k Pairwise Crossing Edges

Here we show Theorem 3. L&t > 2 be a constant, and Id{(n) be the maximum
number of edges in a geometric graphrovertices with ndk pairwise crossing edges.
Let G = (V, E) be a geometric graph anvertices with ndk pairwise crossing edges.
Introduce a Cartesian coordinate system so thatthgis partitionsV into two parts
which are as equal as possible, thus the sets

V™ = {v € V|thex-coordinate ol is negativé,

V* = {v € V|thex-coordinate ofv is positive,
have sizes
V7| = [n/2], V*| = [n/2].

Partition E into three subsetE™, E~, E’ such thatE* contains the edges with both
endpoints iV, E~ contains the edges with both endpoint¥/in, andE’ contains the
edges crossing thg-axis.

To obtain a bound on the size &', consider the mapping@ given by (X, y) —
(1/x, y/x) (x # 0). Further, consider the graghon the vertex se¥ = {T (v)|v € V}
with two verticesT (v), T (w) connected by an edge if and onlyif, w} € E’. The graph
G contains ndk pairwise parallel edges, since otherwise the corresporidetpes in
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E’ would be pairwise crossing. By Theorem@ containsO(n) edges. Consequently,

|E'| = O(n).

Obviously,

[E7] < fk(ln/2D), [E*| < f([n/2]).
Thus,

fi(n) = f(ln/2) + fi(Tn/2]) + O(n).
Consequently,
fk(n) = O(nlogn). |
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