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matrix searching [50, 51, 52, 53, 55]. We mention these alternative techniquesin Section 3.Almost concurrently with the development of the parametric searching tech-nique, Megiddo devised another ingenious technique for solving linear program-ming and several related optimization problems [89, 90]. This technique, nowknown as decimation or prune-and-search, was later re�ned and extended byDyer [41], Clarkson [30], and others. The technique can be viewed as an opti-mized version of parametric searching, in which certain special properties of theproblem allows one to improve further the e�ciency of the algorithm. For ex-ample, it yields linear-time deterministic algorithms for linear programming andfor several related problems, such as the smallest enclosing ball problem, whenthe dimension is �xed. (However, the dependence of the running time of thesealgorithms on the dimension is at least exponential.) We present the techniqueand its applications in Section 4. Section 5 enumerates many recent applicationsof the techniques reviewed so far.In the past decade, randomized algorithms have been developed for a widevariety of problems in computational geometry and in other �elds; see, e.g., thebooks by Mulmuley [96] and by Motwani and Raghavan [95]. In particular,Clarkson [31] and Seidel [103] gave randomized algorithms for linear program-ming, whose expected time is linear in any �xed dimension, which are much sim-pler than their earlier deterministic counterparts, and the dependence of theirrunning time on the dimension is better (though still exponential). Additionalsigni�cant progress was made about four years ago, when new randomized algo-rithms for linear programming were obtained independently by Kalai [68], andby Matou�sek et al. [86, 110] (these two algorithms are essentially dual versions ofthe same technique). The expected number of arithmetic operations performedby these algorithms is `subexponential' in the input size, and is still linear inany �xed dimension, so they constitute an important step toward the still opengoal of obtaining strongly-polynomial algorithms for linear programming. (Re-call that the polynomial-time algorithms by Khachiyan [73] and Karmarkar [69]are not strongly polynomial, as the number of arithmetic operations performedby these algorithms depends on the size of coe�cients of the input constraints.)This new technique is presented in Section 6. The algorithm in [86, 110] isformulated in a general abstract framework, which �ts not only linear program-ming but many other problems. Such `LP-type' problems are also reviewed inSection 6, including the connection, recently noted by Amenta [19, 20], betweenabstract linear programming and `Helly-type' theorems.2 Parametric Searching2.1 Outline of the TechniqueThe parametric searching technique of Megiddo [87, 88] can be described in thefollowing general terms (which are not as general as possible, but su�ce for ourpurposes). Suppose we have a decision problem P(�) that depends on a realparameter �, and is monotone in �, meaning that if P(�0) is true for some �0,then P(�) is true for all � < �0. Our goal is to �nd the maximum � for which



P(�) is true, assuming such a maximum exists. Suppose further that P(�) canbe solved by a (sequential) algorithm As(�) whose input is a set of data objects(independent of �) and �, and whose control 
ow is governed by comparisons,each of which amounts to testing the sign of some low-degree polynomial in�. Megiddo's technique then runs As `generically' at the unknown optimum��. Whenever As reaches a branching point that depends on some comparisonwith an associated polynomial p(�), it computes all the roots of p and runs (thestandard, non-generic version of) As with the value of � equal to each of theseroots. The outputs of these runs of As con�ne �� to an interval between twoadjacent roots, which then enables the generic As to determine the sign of p(��),thereby resolving the comparison and allowing the generic execution to proceed.As this generic computation advances, the interval known to contain �� keepsshrinking as a result of resolving further comparisons, and, at the end, eitherthe interval becomes a singleton, which is thus the desired ��, or else �� canbe shown to be equal to its upper endpoint. (A third possibility is that thealgorithm �nds �� `accidentally', during one of its comparison-resolving steps.)If As runs in time Ts and makes Cs comparisons, then the cost of the pro-cedure just described is O(CsTs), and is thus generally quadratic in the originalcomplexity. To speed up the execution, Megiddo proposes to implement thegeneric algorithm by a parallel algorithm Ap (under Valiant's comparison modelof computation [115]). If Ap uses P processors and runs in Tp parallel steps,then each parallel step involves at most P independent comparisons; that is,we do not need to know the output of such a comparison to be able to executeother comparisons in the same `batch'. We can then compute the roots of all thepolynomials associated with these comparisons, and perform a binary search tolocate �� among them, using (the non-generic) As at each binary step. The costof simulating a parallel step of Ap is thus O(P + Ts logP ), for a total runningtime of O(PTp + TpTs logP ). In most cases, the second term dominates therunning time. The technique has been generalized further in [10, 37, 112, 113].2.2 An Example: The Slope Selection ProblemAs an illustration, consider the slope selection problem, which we formulate ina dual setting, as follows: We are given a set L of n nonvertical lines in theplane, and an integer 1 � k � �n2�, and we wish to �nd an intersection pointbetween two lines of L that has the k-th smallest x-coordinate. (We assume, forsimplicity, general position of the lines, so that no three lines are concurrent, andno two intersection points have the same x-coordinate.) We are thus seeking thek-th leftmost vertex of the arrangement A(L) of the lines in L; see [45, 108] formore details concerning arrangements. (The name of the problem comes fromits primal setting, where we are given a set of n points and a parameter k asabove, and wish to determine a segment connecting two input points that hasthe k-th smallest slope among all such segments.)The parameter that we seek is the x-coordinate �� of the vertical line passingthrough the desired vertex, and the decision step is to compare �� with a given�, that is, to determine how many vertices of A(L) lie to the left of (or on) theline x = �. If we denote this number by k�, then we have �� < � (resp. �� > �,



�� = �) if and only if k� > k (resp. k� < k, k� = k).Let (`1; `2; : : : ; `n) denote the sequence of lines in L sorted in the decreasingorder of their slopes, and let (`�(1); `�(2); : : : ; `�(n)) denote the sequence of theselines sorted by their intercepts with x = �. An easy observation is that two lines`i, `j , with i < j, intersect to the left of x = � if and only if �(i) > �(j). In otherwords, the number of intersection points to the left of x = � can be counted, inO(n logn) time, by counting the number of inversions in the permutation � [78]:Construct a balanced binary tree T storing the lines of L in its leaves, in thedecreasing slope order `1; : : : ; `n, by adding the lines one after the other, in theorder `�(1); : : : ; `�(n). When a line `q is added, count the number of lines thatare already present in T and have a larger index, and add up these counts, toobtain the total number of inversions. Since the insertion of a line can be done inO(logn) time, the whole decision procedure takes O(n logn) time. Any parallelsorting algorithm, which runs in O(logn) time using O(n) processors [15], cancount the number of inversions within the same time and processor bounds.(Notice that the construction of T itself does not involve any comparison thatdepends on the value of �, and so need not be performed at all in the genericexecution.) Plugging these algorithms into the parametric searching paradigm,we obtain an O(n log3 n)-time algorithm for the slope selection problem.2.3 Improvements and ExtensionsCole [35] observed that in certain applications of parametric searching, includingthe slope selection problem, the running time can be improved to O((P +Ts)Tp),as follows. Consider a parallel step of the above generic algorithm. Supposethat, instead of invoking the decision procedure O(logn) times in this step,we call it only O(1) times, say, three times. This will determine the outcomeof 7=8 of the comparisons, and will leave 1=8 of them unresolved. Supposefurther that each of the unresolved comparisons can in
uence only a constant(and small) number of (say, two) comparisons executed at the next parallelstep. Then 3=4 of these comparisons can still be simulated generically withthe currently available information. This modi�ed scheme mixes the parallelsteps of the algorithm, since it forces us to perform together new comparisonsand yet unresolved old comparisons. Nevertheless, Cole shows that, if carefullyimplemented, the number of parallel steps of the algorithm increases only by aconstant factor, which leads to the improvement stated above. An ideal setupfor Cole's improvement is when the parallel algorithm is described as a circuit(or network), each of whose gates has a constant fan-out.Cole's idea improves the running time of the slope selection algorithm toO(n log2 n). Later, Cole et al. [36] gave an optimal O(n logn)-time solution.They observe that one can compare �� with a value � that is `far away' from��, in a faster manner, by counting inversions only approximately. This approx-imation is progressively re�ned as � approaches �� in subsequent comparisons.Cole et al. show that the overall cost of O(logn) calls to the approximating de-cision procedure is only O(n logn), so this also bounds the running time of thewhole algorithm. This technique was subsequently simpli�ed in [22]. Chazelleet al. [24] have shown that the algorithm of [36] can be extended to compute, in



O(n logn) time, the k-th leftmost vertex in an arrangement of n line segments.Multi-dimensional parametric searching. The parametric searchingtechnique can be extended to higher dimensions in a natural manner. Sup-pose we have a decision problem P(�) as above, but now � varies in Rd. Assumealso that the set � of points at which the answer of P(�) is true is a convexregion. We wish to compute the lexicographically largest point �� for whichP (�) is true. Let As be, as above, an algorithm that solves P(�0) at any given�0, and can also compare �0 with �� (lexicographically). As above, we run Asgenerically at ��. Each comparison depending on � now amounts to evaluatingthe sign of some d-variate polynomial p(�1; : : : ; �d).First consider the case when p is a linear function of the form a0+P1�i�d ai�i,such that ad 6= 0. Consider the hyperplane h : �d = �(a0 +Pd�1i=1 ai�i)=ad, andlet h+; h� be the two open halfspaces bounded by h. Evaluating the sign ofp(��) is equivalent to determining whether �� lies in h, h+, or h�. We solvethis problem by considering the following more general problem: Let h be ak-
at in Rd, and let ĥ be the vertical d-hyperplane erected on h. If � intersectsĥ, we wish to return the lexicographically largest point of � \ ĥ. Otherwise,we wish to determine which of the two open half-spaces bounded by ĥ contains�. Inductively, assume that we have an algorithm A(k�1)d that can solve thisproblem for any (k � 1)-dimensional 
at. Notice that A0d = As, and that k = dcorresponds to the original problem. By running A(k�1)d generically, such that �varies over ĥ, one can determine whether � intersects ĥ, and, if not, determinewhich of the two halfspaces contains �. The details of this algorithm can befound in [13, 34, 81, 98]. Recently, Toledo [114] showed how to handle nonlinearpolynomials, using Collins' cylindrical algebraic decomposition scheme [35].3 Alternatives Approaches to Parametric SearchingDespite its power and versatility, the parametric searching technique, neverthe-less, has some shortcomings:(i) Parametric searching requires the design of an e�cient parallel algorithmfor the generic version of the decision procedure. This is not always easy,and it often tends to make the overall solution quite complicated andimpractical.(ii) The generic algorithm requires exact computation of the roots of the poly-nomials whose signs determine the outcome of the comparisons made bythe algorithm. Such computation is possible, using standard computa-tional algebra techniques, but it is often a time-consuming step.(iii) Finally, from an aesthetic point of view, the execution of an algorithmbased on parametric searching may appear to be somewhat chaotic, andits behavior is often di�cult to explain in terms of the geometry of theproblem.These shortcomings have led several researchers to look for alternative ap-proaches to parametric searching for geometric optimization problems. Roughly



speaking, parametric searching e�ectively conducts an implicit binary searchover a set � = f�1; : : : ; �tg of `critical values' of the parameter �, to locatethe optimum �� among them. (For example, in the slope selection problem, thecritical values are the �(n2) x-coordinates of the vertices of the arrangementA(L).) The power of the technique stems from its ability to generate only asmall number of critical values during the search.There are alternative ways of generating a small number of critical values incertain special cases. For example, one can use randomization: Suppose we knowthat �� lies in some interval I = [�; �]. If we can randomly choose an element�0 2 I \�, where each item is chosen with probability 1=jI \�j, then it followsthat, with high probability, the size of I\� will shrink signi�cantly by performingjust a few comparisons with the randomly chosen elements. Proceeding alongthese lines, Matou�sek [79] gave a very simple algorithm for the slope selectionproblem, which runs in O(n logn) expected time. Other randomized techniquesin geometric optimization will be mentioned in Section 5.This randomized approach can be derandomized, without a�ecting the asymp-totic running time, using standard techniques, such as expanders and geometricpartitionings. Ajtai and Megiddo [16] gave an e�cient parallel linear program-ming algorithm based on expanders, and later Katz [70] and Katz and Sharir[71, 72] applied expanders to solve several geometric optimization problems,including the slope selection problem. Br�onniman and Chazelle [22] used geo-metric partitionings (also known as cuttings), to obtain a simplerO(n logn)-timedeterministic algorithm for the slope selection problem.An entirely di�erent approach to parametric searching was proposed by Fred-erickson and Johnson [50, 51, 52, 53], which is based on searching in sorted ma-trices. It is applicable in cases where the set � of candidate critical values forthe optimum parameter �� can be stored in an n � n matrix A, each of whoserows and columns is sorted. The size of the matrix is too large for explicit bi-nary search through its elements, so an implicit search is needed. This is donein a logarithmic number of iterations. In each stage, we have a collection ofsubmatrices of A. We decompose each matrix into four submatrices, and runthe decision procedure on the median value of the smallest elements in each sub-matrix, and on the median value of the largest elements in each submatrix. Itis shown in [50, 52, 53] that this allows us to discard many submatrices, so thatthe number of matrices only roughly doubles at each stage, and the �nal numberof matrices is only O(n). This implies that the technique can be implementedwith only O(logn) calls to the decision procedure and with only O(n) otherconstant-time operations. The technique, when applicable, is both e�cient andsimple, as compared with standard parametric searching.4 Prune-and-Search TechniqueLike parametric searching, the prune-and-search (or decimation) technique alsoperforms an implicit binary search over the �nite set of candidate values for ��,but, while doing so, it also tries to eliminate input objects that can be determinednot to a�ect the value of ��. Each phase of the technique eliminates a constantfraction of the remaining objects, so that, after a logarithmicnumber of steps, the



problem size becomes a constant, and the problem can be solved in a �nal, brute-force step. The overall cost of the resulting algorithm remains proportional to thecost of a single pruning stage. The prune-and-search technique was originallyintroduced by Megiddo [89, 90], in developing an O(22dn)-time algorithm forlinear programmingwith n constraints inRd, but was later applied to many othergeometric optimization problems (see Section 5). We illustrate the technique bydescribing Megiddo's two-dimensional linear programming algorithm.We are given a set H = fh1; : : : ; hng of n halfplanes and a vector c, andwe wish to minimize cx over the feasible region K = Tni=1 hi. Without loss ofgenerality, assume that c = (0; 1). Let L denote the set of lines bounding thehalfplanes of H, and let L+ (resp. L�) denote the subset of lines `i 2 L whoseassociated halfplane hi lies below (resp. above) `i. The algorithm pairs up thelines of L into disjoint pairs (`1; `2), (`3; `4); : : :, such that the lines in a paireither both belong to L+ or both belong to L�. The algorithm computes theintersection points of the lines in each pair, and chooses the median, xm, of theirx-coordinates. Let x� denote the x-coordinate of the optimal point in K (if sucha point exists). The algorithm then uses a linear-time decision procedure thatcompares xm with x�. If xm = x� we stop, since we have found the optimum.Suppose that xm < x�. If (`; `0) is a pair of lines, such that they both belongto L�, and such that their intersection point lies to the left of xm, then we candiscard the line with the smaller slope from any further consideration, becausethat line is known to pass below the optimal point of K. All other cases can betreated in a fully symmetric manner, so we have managed to discard about n=4lines. The running time of this pruning step is O(n).We have thus computed, in O(n) time, a subset H 0 � H of about 3n=4constraints such that the optimal point of K0 = Th2H0 h is the same as that ofK. We now apply the whole procedure once again toH0, and keep repeating this,for O(logn) stages, until either the number of remaining lines falls below somesmall constant, in which case we solve the problem by brute force (in constanttime), or the algorithm has hit x� `accidentally', in which case it stops rightaway. (We omit here the description of the decision procedure, and of handlingcases in which K is empty or unbounded; see [45, 89, 90] for details.) It is noweasy to see that the overall running time of the algorithm is O(n).This technique can be extended to higher dimensions, although it becomesmore complicated, and requires recursive invocations of the algorithm on sub-problems in lower dimensions. It yields a deterministic algorithm for linearprogramming that runs in O(Cdn) time. The original algorithm of Megiddogives Cd = 22d , which was improved by Clarkson [30] and Dyer [41] to 3d2 . Us-ing randomization techniques, a number of simpler randomized algorithms havebeen developed for the problem [31, 43, 103, 117], with a better dependence ond, of which the best expected running time, O(d2n + dd=2+O(1) logn), is dueto Clarkson [31]. By derandomizing the algorithms in [31, 43], one can obtaindO(d)n-time deterministic algorithms for linear programming in Rd [13, 26]. InSection 6, we will describe further improved randomized algorithms, due to Kalai[68] and to Matou�sek et al. [86] (see also [110]), with subexponential expectedrunning time.



5 ApplicationsIn this section we brie
y survey many geometric applications of parametricsearching and its variants, and of the prune-and-search technique. Numerousnongeometric optimization problems have also bene�ted from these techniques(see [14, 34, 50, 59, 98] for a sample of such applications). Although the commontheme of all the problems mentioned below is that they can be solved e�cientlyusing parametric-searching and prune-and-search techniques, each of them re-quires a speci�c, and often fairly sophisticated, approach, involving the design ofe�cient sequential and parallel algorithms for solving the appropriate decisionsteps.5.1 Facility Location ProblemsA typical facility location problem is: Given a set D of n demand points inthe plane, and a parameter p, we wish to �nd p supply objects (points, lines,segments, etc.), so that the maximum (Euclidean) distance between each pointof D and its nearest supply object is minimized. Instead of minimizing thisL1-norm, one can ask for the minimization of the L1 or the L2 norm of those`deviations'. If p is considered as part of the input, most facility location prob-lems are known to be NP-hard, even when the supply objects are points in theplane [94]. However, for �xed values of p, most of these problems can be solvedin polynomial time. In this subsection we review e�cient algorithms for somespecial cases of these problems.p-center. Here we wish to compute the smallest real value r� and a set S of ppoints, such that the union of disks of radius r� centered at the points of Scover the given planar point set D. The decision problem is to determine, fora given radius r, whether D can be covered by the union of p disks of radiusr. The decision problem for the 1-center is thus to determine whether D canbe covered by a disk of radius r, which can be done in O(logn) parallel stepsusing O(n) processors. This yields an O(n log3 n)-time algorithm for the 1-center problem. Using the prune-and-search paradigm, one can, however, solvethe 1-center problem in linear time [41].There is a trivial O(n3)-time algorithm for the 2-center problem [40], whichwas improved by Agarwal and Sharir [10] to O(n2 log3 n), and then by Hersh-berger [61] to O(n2 log2 n). Matou�sek [79] gave a simpler O(n2 log2 n) algorithmby replacing parametric searching by randomization. The best near-quadraticsolution is due to Jaromczyk and Kowaluk [66], and runs in O(n2 logn) time.A major progress on this problem was made recently by Sharir [107], who gavean O(n log9 n)-time algorithm, by combining the parametric searching techniquewith several additional tricks, including a variant of the matrix searching algo-rithm of Frederickson and Johnson [52]. See also [21, 39, 48, 74, 92, 93] for otherresults on p-center problems.p-line-center. Here we wish to compute the smallest real value w� such that Dcan be covered by the union of p strips of width w�. For p = 1, this is the classicalwidth problem, which can be solved in O(n logn) time [62]. For p = 2, Agarwaland Sharir [10] (see also [8]) gave an O(n2 log5 n)-time algorithm. The running



time was improved to O(n2 log4 n) by Katz and Sharir [72] and by Glozman etal. [55], using expander graphs and the matrix searching technique, respectively;see also [67].Segment-center. Given a segment e, we wish to �nd a translated and rotatedcopy of e such that the maximum distance from this copy to the points of D isminimized. This problem was originally considered in [64], where an O(n4 logn)algorithm was given. An improved solution, based on parametric searching,with O(n2�(n) log3 n) running time, was later obtained in [4]. The best knownsolution, due to Efrat and Sharir [47], runs in time O(n1+"), for any " > 0; it isalso based on parametric searching, but uses a deeper combinatorial analysis ofthe problem structure.5.2 Proximity ProblemsDiameter. Given a set S of n points in R3, we wish to compute the diameterof S, that is, the maximum distance between two points of S. A very simpleO(n logn) expected-time randomized algorithm (which is worst-case optimal)was given by Clarkson and Shor [33], but no optimal deterministic algorithm isknown. The best known deterministic solution is due to Br�onniman et al. [23],and runs in O(n log3 n) time. It is based on parametric searching, and usessome interesting derandomization techniques. See also [25, 85, 104] for earlierclose-to-linear time algorithms based on parametric searching.Closest line pair. Given a set L of n lines in the R3, we wish to compute a closestpair of lines in L. Independently, Chazelle et al. [25] and Pellegrini [99] gaveparametric-searching based algorithms for this problem, whose running time isO(n8=5+"), for any " > 0. If we are interested in computing a pair with theminimumvertical distance, the running time can be improved to O(n4=3+") [99].Selecting distances. Let S be a set of n points in the plane, and let 1 � k � �n2�be an integer. We wish to compute the k-th smallest distance between a pairof points of S. The decision problem is to compute, for a given real r, thesum Pp2S jDr(p) \ (S � fpg)j, where Dr(p) is the disk of radius r centeredat p. (This sum is twice the number of pairs of points of S at distance � r.)Agarwal et al. [2] gave an O(n4=3 log4=3 n) expected-time randomized algorithmfor the decision problem, which yielded an O(n4=3 log8=3 n)-time algorithm forthe distance selection problem. Goodrich [56] derandomized this algorithm.Katz and Sharir [71] gave an expander-based O(n4=3 log3+" n)-time algorithmfor this problem, for any " > 0. See also [102].Minimum Hausdor� distance between polygons. Let P and Q be two polygonswith m and n edges, respectively. The problem is to compute the minimumHausdor� distance under translation between P and Q in the Euclidean metric.The Hausdor� distance is one of the commonways of measuring the resemblancebetween two sets P and Q [63]; it is de�ned asH(P;Q) = max fmaxa2P minb2Q d(a; b); maxa2Q minb2P d(a; b)g ;



and we wish to compute minv H(P+v;Q). The problem has been solved in [12],using parametric searching, in O((mn)2 log3(mn)) time, which is signi�cantlyfaster than the previously best known algorithm of [17]. See [27, 28] for otherparametric-searching based results on this problem.5.3 Statistical Estimators and Related ProblemsPlane �tting. Given a set S of n points in R3, we wish to �t a plane h through Sso that the maximumdistance between h and the points of S is minimized. Thisis the same problem as computing the width of S, which is considerably harderthan the two-dimensional variant mentioned above. Chazelle et al. [25] gave analgorithm that is based on parametric searching and runs in time O(n8=5+"),for any " > 0 (see also [1] for an improved bound). By replacing parametricsearching with randomization, and by applying a more involved combinatorialanalysis of the problem structure, Agarwal and Sharir [11] obtained the currentlybest solution, which runs in O(n3=2+") expected time, for any " > 0. See also[75, 84, 111, 116] for other results on hyperplane �tting.Circle �tting. Given a set S of n points in the plane, we wish to �t a circle Cthrough S, so that the maximum distance between C and the points of S isminimized. This is equivalent to �nding an annulus of minimum width thatcontains S. This problem was initially solved in [44], by a quadratic-time algo-rithm, which was improved, using parametric searching, to O(n17=11+"), for any" > 0 [1]. Using randomization and an improved analysis, this can be improvedto O(n3=2+") time, for any " > 0 [11]. Finding an annulus of minimum areathat contains S is a simpler problem, since it can be formulated as an instanceof linear programming in R4, and can thus be solved in O(n) time [90].Center points. Given a set S of n points in the plane, we wish to determine apoint � 2 R2, such that any halfplane containing � also contains at least bn=3cpoints of S. (It is known that such � always exists [45].) Cole et al. [37] gavean O(n log3 n)-time algorithm for computing �, using multi-dimensional para-metric searching. Using the prune-and-search paradigm, Matou�sek [80] gave anO(n log3 n)-time algorithm for computing the set of all center points. Recently,Jadhav and Mukhopadhyay [65] gave a linear-time algorithm for computing acenter point, using a direct and elegant technique.For computing a center point in three dimensions, near-quadratic algorithmswere developed in [37, 97]. Clarkson et al. [32] gave an e�cient algorithm forcomputing an approximate center point.Ham-sandwich cuts. Let A1; : : : ; Ad be d point sets in Rd. A ham-sandwichcut is a hyperplane that simultaneously bisects all the Ai's. The ham-sandwichtheorem (see, e.g., [45]) guarantees the existence of such a cut.Several prune-and-search algorithms have been proposed for computing aham-sandwich cut in the plane. For the special case when A1 and A2 are linearlyseparable, Megiddo [91] gave a linear time algorithm. Modifying his algorithm,Edelsbrunner and Waupotitsch [46] gave an O(n logn)-time algorithm when A1and A2 are not linearly separable. The running time was then improved to linear



by Lo and Steiger [77]. E�cient algorithms for higher dimensions are given byLo et al. [76].5.4 Placement and IntersectionPolygon placement. Let P be a polygonal object with m edges, and let Q be aclosed planar polygonal environment with n edges. We wish to �nd the largestsimilar copy of P (under translation, rotation, and scaling) that can be placedinside Q. Sharir and Toledo [109] gave an O(m3n22�(mn) log3mn log logmn)-time algorithm, using parametric searching. If both P and Q are convex androtations are not allowed, then the problem can be solved in O(m + n log2 n)time [112]. See also [29] for related results.A special case of this problem is the so called biggest-stick problem, where,given a simple polygon Q, we wish to �nd the longest segment that can be placedinside Q. A randomized algorithm with expected-time O(n3=2+"), for any " > 0,is given in [11].Intersection of polyhedra. Given a set P = fP1; : : : ; Pmg of m convex polyhedrain Rd, with a total of n facets, do they have a common intersection point?Reichling [105] gave an O(logm logn)-time prune-and-search algorithm for d =2, and later extended his approach to d = 3 [106]. Using multi-dimensionalparametric searching, his approach can be generalized to higher dimensions.5.5 Query Type ProblemsAgarwal and Matou�sek [5] gave a general technique, based on parametric search-ing, to answer ray-shooting queries (where we wish to preprocess a given set ofobjects in Rd, so that the �rst object hit by a query ray can be computed e�-ciently). This technique, further elaborated in [6, 9], has yielded fast algorithmsfor several related problems, including hidden surface removal, nearest neigh-bor searching, computing convex layers, and computing higher-order Voronoidiagrams; see [5, 6, 7, 100] for some of these results. Using multi-dimensionalparametric searching, Matou�sek presented in [81] e�cient algorithms for linearoptimization queries, where we wish to preprocess a set H of halfspaces in Rdinto a linear-size data structure, so that, given a query linear objective functionc, we can e�ciently compute the vertex of TH that minimizes c. See [3, 7, 81]for additional applications of multi-dimensional parametric searching for querytype problems.6 Abstract Linear ProgrammingIn this section we present an abstract framework that captures both linear pro-gramming and many other geometric optimization problems, including comput-ing smallest enclosing balls (or ellipsoids) of �nite point sets in Rd, comput-ing largest balls (ellipsoids) in convex polytopes in Rd, computing the distancebetween polytopes in d-space, general convex programming, and many otherproblems. Sharir and Welzl [110] and Matou�sek et al. [86] (see also Kalai [68])presented a randomized algorithm for optimization problems in this framework,whose expected running time is linear in terms of the number of constraints



whenever the dimension d is �xed. More importantly, the running time is `subex-ponential' for many of the LP-type problems, including linear programming. Tobe more precise, what is measured here is the number of primitive operationsthat the algorithm performs on the constraints (see below for details). This isthe �rst subexponential `combinatorial' bound for linear programming (a boundthat counts the number of arithmetic operations and is independent of the bitcomplexity of the input), and is a �rst step toward the major open problem ofobtaining a strongly polynomial algorithm for linear programming.6.1 An Abstract FrameworkLet us consider optimization problems speci�ed by pairs (H;w), where H is a�nite set, and w : 2H ! W is a function with values in a linearly ordered set(W;�); we assume that W has a minimum value �1. The elements of H arecalled constraints, and for G � H, w(G) is called the value of G. Intuitively,w(G) denotes the smallest value attainable for certain objective function whilesatisfying all the constraints of G. The goal is to compute a minimal subset BHof H with the same value as H (from which, in general, the value of H is easyto determine), assuming the availability of three basic operations to be speci�edbelow.Such a minimization problem is called LP-type if the following two axiomsare satis�ed:Axiom 1. (Monotonicity) For any F;G with F � G � H, we havew(F ) � w(G) .Axiom 2. (Locality) For any F � G � H with �1 < w(F ) = w(G)and any h 2 H, w(G) < w(G [ fhg)) w(F ) < w(F [ fhg):Linear programming is easily shown to be an LP-type problem, if we set w(G)to be the vertex of the feasible region which minimizes the objective functionand which is lexicographically smallest (this de�nition is important to satisfyAxiom 2), and if we de�ne w(G) in an appropriate manner to handle empty orunbounded feasible regions.A basis B is a set of constraints with �1 < w(B), and w(B0) < w(B) for allproper subsets B0 of B. For G � H, if �1 < w(G), a basis of G is a minimalsubset B of G with w(B) = w(G). (For linear programming, a basis is a minimalset of halfspace constraints such that the minimal vertex of their intersection issome prescribed vertex.) A constraint h is violated by G, if w(G) < w(G[fhg),and it is extreme in G, if w(G � fhg) < w(G). The combinatorial dimensionof (H;w), denoted as dim(H;w), is the maximum cardinality of any basis. Wecall an LP-type problem basis regular if for any basis with jBj = dim(H;w)and for any constraint h, every basis of B[fhg has exactly dim(H;w) elements.(Clearly, linear programming is basis-regular, where the dimension of every basisis d.)We assume that the following primitive operations are available.



(Violation test) `h is violated by B', for a constraint h and abasis B, tests whether h is violated by B or not.(Basis computation) `basis(B; h)', for a constraint h and a basis B,computes a basis of B [ fhg.(Initial basis) An initial basis B0 with exactly dim(H;w) elements isavailable.For linear programming, the �rst operation can be done in O(d) time, by sub-stituting the coordinates of the vertex w(B) into the equation of the hyperplanede�ning h. The second operation can be regarded as a dual version of the pivotstep in the simplex algorithm, and can be implemented in O(d2) time. The thirdoperation is also easy to implement.We are now in position to describe the algorithm. Using the initial-basisprimitive, we compute a basis B0 and use the following recursive algorithm tocompute BH .function procedure SUBEX lp(H;C); /* H: n constraints in Rd;if H = C then /* C � H: a basis;return C /* returns a basis of H.elsechoose a random h 2 H �C;B := SUBEX lp(H � fhg; C);if h is violated by B then /* , vB 62 hreturn SUBEX lp(H; basis(B;h))elsereturn B;A simple inductive argument shows the expected number of primitive oper-ations performed by the algorithm is O(2�n), where n = jHj and � = dim(H;w)is the combinatorial dimension. However, using a more involved analysis, whichcan be found in [86], one can show that basis-regular LP-type problems can besolved with an expected number of at most e2p� ln((n��)=p� )+O(p�+ln n) viola-tion tests and basis computations. This is the `subexponential' bound that wealluded to.6.2 Linear ProgrammingWe are given a set H of n halfspaces in Rd. We assume that the objectivevector is c = (1; 0; 0; : : : ; 0), and the goal is to minimize cx over all points inthe common intersection Th2H h. For a subset G � H, de�ne w(G) to be thelexicographically smallest point (vertex) of the intersection of halfspaces in G.As noted above, linear programming is a basis-regular LP-type problem,with combinatorial dimension d, and violation tests and basis changes opera-tions can be implemented in time O(d) and O(d2), respectively. In summary,we obtain a randomized algorithm for linear programming, which performse2pd ln(n=pd )+O(pd+ln n) expected number of arithmetic operations. Combin-ing this algorithm with Clarkson's randomized linear programming algorithm



mentioned in Section 4, the expected number of arithmetic operations can bereduced to O(d2n) + eO(pd log d).Matou�sek [82] has given examples of abstract LP-type problems of combi-natorial dimension d and with 2d constraints, for which the above algorithmrequires 
(ep2d= 4pd) primitive operations. Hence, in order to obtain a betterbound on the performance of the algorithm for linear programming, one shouldaim to exploit additional properties of linear programming; this is still open.6.3 Smallest Enclosing Ball and Related ProblemsIn Section 5.1 we mentioned that the smallest enclosing ball (i.e., disk) of aset of n points in the plane can be computed in linear time. In higher dimen-sions, one can solve this problem by an dO(d)n-time algorithm [13, 26, 42]. Itcan be shown that the smallest enclosing ball problem is an LP-type problem,with combinatorial dimension d+1. It is, however, not basis-regular, and a naiveimplementation of the basis-changing operation may be quite costly (in d). Nev-ertheless, G�artner [54] showed that this operation can be performed in this caseusing expected eO(pd) arithmetic operations. Hence, the expected running timeof the algorithm is O(d2n) + eO(pd logd).There are several extensions of the smallest enclosing ball problem. Theyinclude: (i) computing the smallest enclosing ellipsoid of a point set [26, 42,101, 117], (ii) computing the largest ellipsoid (or ball) inscribed inside a convexpolytope in Rd [54], (iii) computing a smallest ball that intersects (or contains) agiven set of convex objects in Rd, and (iv) computing a smallest volume annuluscontaining a given planar point set. All these problems are known to be LP-type,and thus can be solved using the above algorithm. However, not all of them runin subexponential expected time because they are not basis regular.6.4 Distance Between PolytopesWe wish to compute the Euclidean distance d(P1;P2) between two given closedpolytopes P1 and P2. If the polytopes intersect, then this distance is 0. Ifthey do not intersect, then this distance equals the maximum distance betweentwo parallel hyperplanes separating the polytopes; such a pair of hyperplanes isunique, and they are orthogonal to the segment connecting two points a 2 P1and b 2 P2 with d(a; b) = d(P1;P2). It is shown by G�artner [54] that thisproblem is LP-type, with combinatorial dimension at most d+2 (or d+1, if thepolytopes do not intersect). It is also shown there that the primitive operationscan be performed with expected eO(pd) arithmetic operations. Hence, as above,the expected number of arithmetic operations is O(d2n) + eO(pd logd).6.5 ExtensionsRecently, Chazelle and Matou�sek [26] gave a deterministic algorithm for solv-ing LP-type problems in time O(�O(�)n), provided an additional axiom holds(together with an additional computational assumption). Still, these extra re-quirements are satis�ed in many natural LP-type problems. Matou�sek [83] inves-tigates the problem of �nding the best solution, for abstract LP-type problems,which satis�es all but k of the given constraints.



Amenta [18] considers the following extension of the abstract framework:Suppose we are given a family of LP-type problems (H;w�), monotonically pa-rameterized by a real parameter �; the underlying ordered value set W has amaximumelement +1 representing infeasibility. The goal is to �nd the smallest� for which (H;w�) is feasible, i.e. w�(H) < +1. See [19, 20] for related work.6.6 Abstract Linear Programming and Helly-type TheoremsIn this subsection we describe an interesting connection between Helly-type the-orems and LP-type problems, as originally noted by Amenta [18].Let K be an in�nite collection of sets in Rd, and let t be an integer. We saythatK satis�es a Helly-type theorem, with Helly number t, if the following holds:If K is a �nite subcollection of K with the property that every subcollectionof t elements of K has a nonempty intersection, then TK 6= ;. (The bestknown example of a Helly-type theorem is Helly's theorem itself [60], whichapplies for the collection K of all convex sets in Rd, with the Helly numberd + 1.) Suppose further that we are given a collection K(�), consisting of nsets K1(�); : : : ;Kn(�) that are parametrized by some real parameter �, with theproperty that Ki(�) � Ki(�0), for i = 1; : : : ; n and for � � �0, and that, for any�xed �, the family fK1(�); : : : ;Kn(�)g admits a Helly-type theorem, with Hellynumber t. Our goal is to compute the smallest � for which Tni=1Ki(�) 6= ;,assuming that such a minimum exists. Amenta proved that this problem can betransformed to an LP-type problem, whose combinatorial dimension is at mostt. As an illustration, consider the smallest enclosing ball problem. Let P =fp1; : : : ; png be the given set of n points inRd, and let Ki(�) be the ball of radius� centered at pi, for i = 1; : : : ; n. Since the Ki's are convex, the collection inquestion has Helly number d+ 1. It is easily seen that the minimal � for whichthe Ki(�)'s have nonempty intersection is the radius of the smallest enclosingball of P .There are several other examples where Helly-type theorems can be turnedinto LP-type problems. They include (i) computing a line transversal to a familyof translates of some convex objects in the plane, (ii) computing a smallesthomothet of a given convex set that intersects (or contains, or is contained in)every member in a given collection of n convex sets in Rd, and (iii) computinga line transversal to certain families of convex objects in 3-space. We refer thereader to [19, 20] for more details and for additional examples.References[1] P. Agarwal, B. Aronov, and M. Sharir, Computing lower envelopes in four di-mensions with applications, Proc. 10th ACM Symp. Comput. Geom., 1994, pp.348{358.[2] P. Agarwal, B. Aronov, M. Sharir, and S. Suri, Selecting distances in the plane,Algorithmica 9 (1993), 495{514.[3] P. Agarwal, A. Efrat, and M. Sharir, Vertical decomposition of shallow levels in3-dimensional arrangements and its applications, Proc. 11th ACM Symp. Comput.Geom., 1995, 39{50.
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