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Abstract

The paper bounds the combinatorial complexity of the Voronoi diagram of
a set of points under certain polyhedral distance functions. Specifically, if &
is a set of n points in general position in R?, the maximum complexity of its
Voronoi diagram under the L., metric, and also under a simplicial distance
function, are both shown to be @(n[d/z]). The upper bound for the case of the
L., metric follows from a new upper bound, also proved in this paper, on the
maximum complexity of the union of n axis-parallel hypercubes in R?. This
complexity is ©(nl¥/21), for d > 1, and it improves to @(nl¥/2), for d > 2,
if all the hypercubes have the same size. Under the L metric, the maximum
complexity of the Voronoi diagram of a set of n points in general position in
IR? is shown to be ©(n?). We also show that the general position assumption
is essential, and give examples where the complexity of the diagram increases
significantly when the points are in degenerate configurations. Finally, on-line
algorithms are proposed for computing the Voronoi diagram of n points in IR?
under a simplicial or L., distance function. Their randomized complexities
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are O(nlogn + nl%/?1) for simplicial diagrams and O(n[%?11og?=1 n) for L..-
diagrams.

Keywords: Computational geometry, Voronoi diagram, polyhedral distance func-
tion.

1 Introduction

Voronoi diagrams are among the most fundamental constructs in computational ge-
ometry, and, as such, have been studied a lot during the past two decades. Most of
these studies, however, concentrated on Voronoi diagrams in the plane, with only few
studies of diagrams in higher dimensions.

We assume in this paper familiarity of the reader with the standard definition
and properties of Voronoi diagrams. They can be found in basic textbooks on com-
putational geometry [7, 14, 15, 16], and in several survey papers [3, 12]. There are
many variants of Voronoi diagrams. The three main parameters that can vary are
(i) the type of sites defining the diagram (points, lines, etc.), (ii) the metric defining
the distance to a site, and (iii) the dimension d. The ‘classical’ case is when the
sites are points and the metric is euclidean. In this case, a standard lifting trans-
form into 4! implies that the maximum combinatorial complexity of the diagram
is O(n[¥/?1). However, for other metrics, or for other kinds of sites, this analysis does
not apply. In this paper we will only consider Voronoi diagrams for point sites, so
the only relevant parameters for us are the metric and the dimension.

As observed in [8], the Voronoi diagram of a set S of n sites in R? can be in-
terpreted as the lower envelope of a set of n d-variate functions, each measuring the
distance from an arbitrary point of R? to a site of S. Under reasonable assumptions
concerning the shape of the sites and the metric, these functions are (piecewise) al-
gebraic of some fixed degree. Hence, applying the recent results of [18] concerning
the complexity of the lower envelope of such a collection of functions, we immedi-
ately conclude that the complexity of the Voronoi diagram is O(n?*¢), for any ¢ > 0,
where the constant of proportionality depends on ¢, d, and the maximum degree of
the relevant functions. Since this is a much weaker bound than the one known for
the euclidean case, one might be tempted to conjecture that the actual complexity
of the diagram is smaller, perhaps close to O(n[d/z]) for fairly general point sites and
metrics. This conjecture has been confirmed at least for d = 2, where linear bounds
on the complexity of the diagram are known in fairly general settings. Unfortunately,
a recent construction due to Aronov [1] shows that, for convex polyhedral sites in
d > 3 dimensions, the Voronoi diagram can have Q(n?"!) complexity, even under the
euclidean metric. However, no such construction is known for point sites. Note also
that, for d = 3, Aronov’s construction does not violate the above conjecture.

Surprisingly, very little is known about generalized Voronoi diagrams in higher
dimensions. Recently, Chew et al. [5] have shown that the complexity of the Voronoi



diagram of a set of n lines in IR® under a convex polyhedral distance function (see
below for a precise definition), induced by a convex polytope with a constant number
of faces, is O(n?a(n)logn). Thus the conjecture holds in this case. The simpler case,
of point sites under similar distance functions, has not yet been investigated, and this
paper initiates the study of such diagrams.

For certain technical reasons, the case of point sites is harder to analyze than the
case of lines in 3-space. We have not been able to come up with a sharp bound for
point sites and arbitrary polyhedral distance functions, even in IR®. Nevertheless, we
managed to substantiate the conjecture in the following special cases:

o We show that the maximum complexity of the Voronoi diagram of n points in
IR? under the L; metric is ©(n?).

o We show that the maximum complexity of the Voronoi diagram of n points in
IR? under the L., metric is @(n[d/ﬂ).

o We show that the maximum complexity of the Voronoi diagram of n points in
IR? under a simplicial distance function is also ©(n[%/?1).

In these bounds we assume that the given sites are in general position with respect to
the relevant distance function (see below for a precise definition). It is interesting to
note that this requirement is essential for the bounds to hold. We give examples of
point sets in degenerate configurations for which the complexity of their L;-Voronoi
diagrams is much larger.

To obtain the bound concerning L..-Voronoi diagrams, we first derive a related
new bound on the complexity of the union of n axis-parallel hypercubes in RY. We
show that if the hypercubes have arbitrary sizes then the maximum complexity of
their union is ©(n/¥?1), for d > 1. If all the hypercubes have the same size then
the maximum complexity of their union is @(nl¥/2l), for d > 2. These results were
known, and are easy to derive, for d = 1,2. An alternative proof of a linear bound
for equal-size cubes in IR has been around for the past several years, but was not

published.

The proofs of these bounds borrow ideas from the preceding paper [5]. The main
ingredient of most of the proofs is a new technique for obtaining recurrence relation-
ships for the number of vertices of the union, which is a special case of a more general
analysis technique recently developed by Tagansky [19]. This technique is obtained
by modifying and simplifying the proof technique developed in [10, 18] for the analy-
sis of lower envelopes of multivariate functions. This improved technique has already
been used in [2, 5, 19] to obtain improved combinatorial bounds for the complexity
of various substructures in arrangements and related problems.

Finally, we propose on-line algorithms to compute the Voronoi diagram of n
points in IR? under a simplicial or Lo distance function. Their randomized ex-
pected running times are, respectively, O(nlogn + nl¥/?1) for simplicial diagrams,
and O(n!¥?Vog® ' n) for L., -diagrams.



2 Preliminaries

Let P be a convex polytope in R? with a reference point o in its interior. A homothetic
copy of P, having the form a4 pP for a € R* and p € R, is called a placement of P.
The placement a + pP is said to be centered at a and scaled by factor p. We define
the distance induced by P from a point a to a point b as the smallest scaling factor
p such that b belongs to the placement a + pP. That is,

dp(a,b) =min{p: b€ a+ pP}.

We refer to dp as a (convex) polyhedral distance function (induced by P). Note that
dp(a,b) is not symmetric, and thus is not a metric, unless P admits a center of
symmetry and this center is chosen as the reference point.

Let S be a set of n points in R? and P be a convex polytope with m facets. The
Voronoi diagram Vorp(S) of S for the distance dp is defined as the decomposition of
IR? into Voronoi cells, one for each point of S, where the Voronoi cell V(s;) of a point
s; € S is the set of points of R? which are closer to s;, under the distance function
dp, than to any other point in &; that is,

V(s)) ={p e R | dp(p,s;) < dp(p,s;) Vs; € 8.}

Each cell V(s;) is a star-shaped, generally nonconvex, d-polyhedron. More generally,
for 1 <k < d+1, consider the locus of points p such that p is equidistant (under dp) to
the points of a subset Sj of cardinality k of S, and such that p is strictly closer to the
points of S than to any other point in &\ Sx. This locus is a (d — k+ 1)-dimensional
piecewise linear surface, and each of its faces (of any dimension) is a face of the Voronoi
diagram Vorp(S). (For this locus to have this dimension, the points of & must lie in
general position with respect to P—see below for a precise definition and section 7
for further discussion.) The complexity of the Voronoi diagram Vorp(S) is defined as
the total number of its faces of all dimensions. If we assume general position, then
each face of Vorp(S) must have at least one vertex, and each vertex is incident to
only a constant number of faces of any dimension. It follows that the complexity of
the diagram is proportional to the number of its vertices, so we will concentrate in
the foregoing analysis on bounding the number of vertices of the diagram.

We denote placements a + pP of P by P = P(a p). A placement ]5 is said to be
free if it contains no points of S in its interior. If f is a face of P, f refers to the
corresponding face of P.Ifa point p € S belongs to a facet f of P the pair (p, f) is
said to be a contact pair of the placement P.A point p is said to be a simple contact
point of Pifit belongs to the relative interior of some facet f of P. A point p of &
which belongs to the relative interior of a face of P of codimension k, is said to be a
contact point with multiplicity k. Thus, a contact point with multiplicity & is involved
in at least k contact pairs (and exactly k contact pairs if the polytope P is simple).

The set IP of all placements of a polytope P is a (d + 1)-dimensional manifold.
The set of placements such that a given point p belongs to the hyperplane which is



the affine hull of a facet f is a hyperplane in IP and the set of placements P such
that p belongs to a specific facet f is a d-polytope.

In the following, we shall assume that the set S is in general position with respect
to the distance dp. Formally , this means that the following property holds:

Let P be any placement of P, which involves contacts with points in some
subset & € §. For each ¢ € &', let fq be the face of P of smallest
dimension, say j,, that ¢ touches. The locus of placements of P at which
¢ touches fq is a portion of a (j, + 1)-dimensional flat, H,, in IP. Then
the flats {h,},ess must be linearly independent, in the sense that their
intersection has codimension ) cs/(d — j, ).

This implies that no placement P of P has any redundant contact point, namely
a point whose removal from S’ does not gain new degrees of freedom for placements
of P in the vicinity of ]5, at which all other contacts are maintained. For example, if
two points touch the relative interior of the same facet of P then any of these points
is redundant. Similarly, if P has two pairs of parallel facets and there is a placement
P at which each of these four facets touches a point of S, then each of those four
points is redundant. Indeed, let the four contact points be sq, s9, 83, 84, so that s; and
s9 touch parallel facets and so do s3 and s4. If we remove s4, say, then the contacts of
s1 and sy fix the scaling factor of P. Hence the contact of 53 with P fixes the plane
containing the facet that s, touches, so we get the same degrees of freedom regardless
of whether s4 is present or not. Thus none of these configurations can arise when S
is in general position.

A consequence of the general position assumption is that the multiplicities of the
contact points of any placement sum up to at most to d 4+ 1.

A placement whose contact points multiplicities sum up to d + 1 is called a rigid
placement. The free rigid placements of P are centered at the vertices of the Voronoi
diagram Vorp(S), and each vertex is the center of such a placement, as follows easily
from the definitions. The free rigid placements of P with d+1 distinct contact points
are centered at what we call the regular vertices of the diagram. The center of such a
placement is a point of IRY which is equidistant (under Dp) to d 4 1 points of S and
closer to these points than to any other point of §. Any other vertex of the diagram is
called singular; it corresponds to a free rigid placement of P at which some points of S
lie on lower-dimensional faces of P. More generally, points in a k-face of the Voronoi
diagram are centers of maximal free placements whose contact points multiplicities
sum up to d + 1 — k. The k-face is regular if all points in these contacts are distinct,
and singular otherwise. The general position assumption implies that each (regular
or singular) Voronoi vertex is incident to d + 1 Voronoi edges, and, more generally,
that each k-face, for 0 < k < d, of Vorp(S) is incident to d + 1 — k (k + 1)-Voronoi
faces. Thus the number of faces of the Voronoi diagram incident to each vertex is
bounded by a constant depending on d. Hence, as already mentioned above, bounding
the complexity of the Voronoi diagram reduces to bounding the number of Voronoi
vertices and thus the number of free rigid placements.



3 The Complexity of the Union of Axis-Parallel
Hypercubes in R’

In this section we obtain a result that will be needed in our analysis of L..-Voronoi
diagrams, but which is interesting in its own right.

Let C be a set of n axis-parallel hypercubes in R?. Let A(C) denote the arrange-
ment of these hypercubes, and let Z(C) denote their union. We may assume, with no
loss of generality, that the given hypercubes are in general position, meaning that no
two distinct facets of the hypercubes lie in a common hyperplane. Otherwise, we can
always perturb them slightly, so as to put them in general position, in such a way
that the number of faces of the union does not decrease. (This holds for hypercubes
of arbitrary sizes. If all the hypercubes have the same size, and we want to maintain
this property under the perturbation, then a more refined argument, which we omit
here, shows that there is no loss of generality in assuming general position in this case
too.) We want to bound the combinatorial complexity of ¢(C), which we measure
by the number of vertices of the union (the number of all other faces of the union is
clearly proportional to the number of vertices, where the constant of proportionality
depends only on d, when the hypercubes are in general position). The main result of
this section is:

Theorem 3.1 The maximum number of vertices of the union of n axis-parallel hy-
percubes in RY is O(nl2), for d > 1. If all the given hypercubes have the same
size, then the maximum number of vertices of their union is ©(nl¥/2), for d > 2 (it
remains O(n) for d =1). The constants of proportionality depend on d.

3.1 The upper bounds

We first prove the upper bounds by induction on d. The bounds hold for d = 1, 2.
This is trivial for d = 1 and follows for d = 2 from the results of [11], or by a simpler
and more direct proof, which we omit here. Fix d > 3, assume that the theorem holds
for all @ < d — 1, and let C be a collection of n axis-parallel hypercubes in R?, as
above.

For each hypercube ¢ € C, define 2 (c), 7 (c) to be, respectively, the largest and
smallest z;-coordinate of the points in ¢, for 7 = 1,...,d. Any hypercube ¢ € C has
two facets normal to the z;-axis, for each j = 1,...,d, lying on the two respective
hyperplanes x; = 27 (c), ; = 27 (¢). The facet at 2} (c) is said to be positive (facing
the positive z; direction as we leave ¢) and the facet at 27 (c) is said to be negative.

We use the following notational system for representing vertices of the arrangement
of the given hypercubes. For a given ordered d-tuple, (¢1,¢a,...,cq), of hypercubes
in C, let ¢ be one of the symbols ¢;, ¢, for j = 1,...,d. The tuple (¢f,¢c5,...,¢))
represents the intersection point p of the facets fi,..., fz, where f; is a facet of ¢;
normal to the x;-axis; it is the positive facet if ¢ = ¢; and the negative facet if



¢; = ¢;. Whenever we use this notation, we assume implicitly that the intersection
point p exists (and is then unique). The intersection point p is said to be positive if
all the intersecting facets are positive.

Such an intersection point (or, rather, a vertex of A(C)) is said to be outer if it is
contained in a (d — 2)-face of some hypercube, and inner otherwise. If (¢j,...,¢5) is
an inner vertex then the hypercubes ¢, ..., ¢s are distinct.

A vertex of A(C) is said to be a k-level vertex if it is contained in the interiors
of exactly k of the hypercubes in C. The vertices of the (boundary of the) union are
0-level vertices. Let Vj(C) denote the number of inner k-level vertices of A(C), and
let Di(C) denote the number of outer k-level vertices. We also denote by Vi(n,d)
the maximum of Vj(C) over all possible collections of n axis-parallel hypercubes in
R?, and, similarly, denote by Dy(n,d) the maximum of Dy (C) over all possible such
collections of hypercubes.

We first estimate the number of outer vertices of the union ¢(C). Such an outer
vertex p belongs to at least one (d — 2)-face of some hypercube ¢ € C. Since every
hypercube contains only 2d(d — 1) such (d — 2)-faces, we can reduce the problem to
2nd(d — 1) ‘smaller’ problems, as follows. Fix a (d — 2)-face f of some hypercube
¢ € C, and let K be the affine hull of f. Form the intersections K N¢', for ¢ € C—{c}.
These are n — 1 axis-parallel hypercubes in the (d — 2)-dimensional space K (and if
the hypercubes of C are of equal size, so are these intersection hypercubes). Any
outer vertex of U(C) that lies on f is clearly an (inner or outer) vertex of the union
of these intersection hypercubes. It follows that

Do(n, d) < 2nd(d — 1)(Dg(n L d=2) 4V —1,d— 2))

where the functions D* and V* count, respectively, only outer and inner vertices of
the union which lie inside some fixed (d —2)-dimensional hypercube. By the induction
hypothesis, we have

Din—1,d—2)+ Vi(n—1,d—2) = O(n/&2/21y,
If the hypercubes are of equal size, then we have
Din—1,d—2)+ Vi(n—1,d —2) = O(nld=2/2)

Indeed, this holds for d = 3, because the complexity of the union of equal intervals
on a line, intersected with another interval of the same length, is O(1). For d > 3,
the bound follows by the induction hypothesis. Hence we obtain

Do(n,d) = O(nl**1), (1)
for hypercubes of arbitrary sizes, and
Do(n,d) = O(nl¥/), (2)

for equal-size hypercubes.



In what follows we will also need a bound on Dy (n,d). This is easy to obtain by a
standard application of the Clarkson-Shor probabilistic technique [6] (using a random
sample of, say, n/2 of the hypercubes). This yields, as is easily verified,

Di(n,d) = O(nl**1), (3)
for hypercubes of arbitrary sizes, and
Di(n,d) = O(nl¥), (4)

for equal-size hypercubes.

We next estimate the number of inner vertices of the union. Let p be a 0-level
inner vertex, and assume, without loss of generality, that p is positive and has the
representation (cp,...,¢q). For each coordinate x;, we will slide from p along an
edge e; in the negative x; direction. This edge is contained in the intersection of the
corresponding d — 1 positive facets of the hypercubes ¢, for k =1,...,d and k # j.
As we start tracing e; from p in the negative z;-direction, we enter the hypercube ¢;.
We stop the sliding process as soon as we first encounter one of the following three
types of events:

(i) We meet the negative facet of ¢; at the 0-level vertex (¢1,...,¢j—1,Cy, Cjg41y- -+, Cd)-
This can happen only if ¢; is smaller than the other d—1 hypercubes. For equal-
size hypercubes, this cannot happen.

(i1) We meet another facet (necessarily the negative facet orthogonal to the x;-axis)
of one of the hypercubes ¢, for some 1 <k < d and k # j, at the 1-level outer
vertex (¢1,...,¢j—1, Cky Cit1, - - -, Cq), Which is contained in the interior of ¢;.

(iii) We meet a new hypercube ¢ at a (necessarily positive) 1-level inner vertex p/,
contained in the interior of ¢; and represented by (¢1,...,¢j_1,¢, ¢jg1, ..., Ca).
We say that p’ and p are neighbors (in the arrangement A(C)).

If we encounter an event of type (i), we simply ignore this edge, and do not use it in
our charging scheme that we are about to describe. As just noted, at most one such
edge will be ignored.

If we encounter an event of type (ii), we charge the 1-level outer vertex by one
unit. Since we can reach the outer vertex (¢1,...,¢j-1, ¢, ¢j41,-..,¢q) from an inner
vertex only along one of the two corresponding facets of ¢; (in a direction normal to
the other facet), this outer vertex can be charged, by type (ii) events, at most twice,
for a total of 2 units (recall that ¢; is the unique hypercube appearing more than
once in the tuple representing the outer vertex).

If we encounter an event of type (iii), we charge the 1-level inner vertex p’ by one
unit. The problem is that the vertex p’ may be charged in up to d events of type (iii),
and we need to account for such multiple charges. Suppose that p’ is charged by w of
its 0-level inner neighbors. If w =1 (or w = 0) then p’ pays one unit of charge for its



unique charging neighbor (or does not pay at all). If w > 1, we will distribute w — 1
of the w units that p’ is charged with to other outer vertices, so that p’ still has to
pay only one unit of charge.

Suppose that p’ is positive, has the representation (ci,...,¢q), and is contained
in the interior of ¢o. Suppose that p; = (co, 2, ¢3,...,¢q) and py = (¢1,¢o, ¢34 ..., Cq)
are two 0-level inner neighbors of p’. Let h be the 2-dimensional plane z; = xf(¢;),
for 2 = 3,...,d, which contains the three vertices p’, p1, ps. Let r be the axis-parallel
rectangle in h having these points as three of its vertices (see Figure 1). For each
hypercube ¢ € C, let s(¢) = ¢N h. The collection S of the nonempty intersections
of this form is a set of at most n axis-parallel squares in h. By construction, the
two edges pip/, pap’ of r do not cross the boundary of any square in S. Let ¢ be
the fourth corner of r. Clearly, ¢ is an outer vertex of A(C) with the representation

q = (co,Co,C3y...,Cq).

-
BN S —.
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; 1" 1D

Nonempty rectangle r
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Figure 1: Charging outer vertices within the rectangle p;p,

If r does not intersect the interior of any hypercube other than cg, then ¢ is a
0-level outer vertex of A(C), to which we pass 1 unit of charge from p’. The vertex
g can be charged in this manner at most once. Indeed, given ¢, there is only one 2-
dimensional plane in which ¢ can be charged: this is the plane passing through ¢ and
spanned by the normal directions of the unique pair of facets in the representation
of ¢ that belong to the same hypercube (recall that cg,cs,...,cq are all distinct, by
construction). Moreover, r is the unique maximal rectangle in ¢y N A with corner ¢
which is disjoint from (the interior of ) any other square in §. This implies that ¢ can
be charged at most once, namely, only by the opposite corner of r.

If the rectangle r meets some other square of S, let ¢’ be the point in r NU(C’)
closest to p’, where C' = C — {cg,¢1,...,¢q}. Note that ¢’ cannot lie on the edges
p1p’ or pap’, since these edges do not cross any hypercube in C’, and that ¢’ must be
a 1-level outer vertex of A(C) having the representation (¢,c/,cs,...,cq), for some
¢ € ('; see Figure 1. Let r' be the axis-parallel rectangle in A having p’ and ¢’ as



opposite corners. Again, (the interior of) r’ is contained only in the interior of ¢,
and meets no other hypercube of C. We pass 1 unit of charge from p’ to ¢’. We claim
that, in this case too, ¢’ can be charged in this manner at most once. Indeed, given
¢’, there is only one 2-dimensional plane h in which ¢’ can be charged, which is shown
by the same argument given above (since ¢, s, ..., ¢q are all distinct). Moreover, r/
is the unique maximal rectangle in ¢o N h with corner ¢’ which is disjoint from (the
interior of) any other square in S and lies in the quadrant of ¢’ opposite to that
containing ¢. This implies, as above, that ¢ can be charged at most once, namely,
only by the opposite corner of r'. Together with the previous charges in the case of
type (ii) events, any 1-level outer vertex of A(C) can be charged a total of 3 units.

If the vertex p’ has w > 1 0-level inner neighbors, the number of pairs of these
neighbors is always at least w — 1, so there is no problem in distributing w — 1 units
of charge from p’ to nearby outer vertices, in the manner described above.

Summing up the charges, each 0-level inner vertex p receives at least d — 1 units,
by sliding in all directions parallel to the coordinate axes, with the possible exception
of one direction in which we encounter a type (i) event (for equal-size hypercubes, p
always receives d units). Each 0-level outer vertex pays at most 1 unit, each 1-level
outer vertex pays at most 3 units, and each 1-level inner vertex pays at most 1 unit.
We can thus conclude that

(d = 1)Vo(C) < VA(C) +3D1(C) + Do(C), (5)
for hypercubes of arbitrary sizes, and
dVo(C) < Vi(C) +3D1(C) + Do(C), (6)

for equal-size hypercubes. We can now apply the following probabilistic argument,
similar to that used in [5, 19]. In the case of hypercubes of arbitrary sizes, we have

-1 —d d—1
V() = V() +

" Wo(C) <

n—d 3

W€)+ TA(C) + S Di(C) + - Dofc)

— E(V(R) + O/

where R is a random sample of n—1 hypercubes of C, and where E denotes expectation
with respect to the choice of R (see (1), (3)). For the case of equal-size hypercubes,
we obtain, in much the same way, the improved recurrence (see (2), (4))

Vo(C) < B(Vo(R)) + O(nl2171).

We can thus write, for the case of hypercubes of arbitrary sizes, the recurrence

n—1

Vo(n,d) < Vo(n —1,d) + O(n[d/z]_l),

n

10



whose solution, for d > 3, is easily seen to be
Vo(n,d) = O(n!¥?).
For the case of equal-size hypercubes, we obtain the recurrence
Vo(n,d) < Vo(n — 1,d) + O(nl¥/271),
whose solution, for d > 2, is easily seen to be
Vo(n,d) = O(nl¥/3).

This completes the proof of the upper bounds.

3.2 The lower bounds

We next prove the lower bound for equal-size hypercubes, by constructing the fol-
lowing set C of mA hypercubes ¢;; , for k =1,...,Aand ¢ =1,...,m, in R?*2, for
integer parameters m, A. Set M > m and, for y = 1,...,2A, let the z;-coordinate
of the center of the hypercube ¢ ; be

= j=2k—1lorj=2k
2 Jisodd and j # 2k — 1
0 J is even and j # 2k.
The common size of all these hypercubes is 2.
Let V be the set of the following m® points in IR**:
le le iA iA
7 in — V77 17__17"'7_ 17__1 >
“MA<M+ M MM )
where i € {1,...,m}, for k = 1,...,A. For each r € {1,2,..., A} we have, as is
easily verified,

27 (i) S aj(viy in) < x}"(cmr) for j =1,...,2A,

with two of the inequalities being equalities (for z3._;(c,;,) and 23,.(c.; )). Thus
each point v € V lies on a (d — 2)-face of each of the A hypercubes ¢,; and
is thus an outer vertex of A(C), which is represented, in the above notation, as

ClisClirs-sCAir.CAir). Next we note that, for £ = 1,...,A and for g > 75, we
219 €l y CALiny CAia ) ) ) q )
have
k q _
ka(vil,...,iA) = M —-1< M - 1= x?k(ckvq)7

and for ¢ < ¢ we have

Eprs L

M M —I_ 1 = x;—k—l(ckvq) .

Tok—1 (Uil,...,iA) =
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Thus no point v € V lies in the interior of any hypercube, so they are all outer
vertices of [JC. This is easily seen to prove the lower bound for equal-size axis-parallel
hypercubes, in any dimension d > 2.

To prove the lower bound for axis-parallel hypercubes of arbitrary sizes, it suffices
to consider the case where d is odd, say d = 2A + 1. Take the number M above to

be (m + 1)% All the points in V C IR** now lie in the interior of the hypercube b,

whose center is at (1,—1,...,1,—1) and whose size is mL-H Let s be the segment

in IR***™! connecting the origin with the point (0,...,0,2), and let s C s/, for i =

R?*2*! connecting (0, ..., 0, 221 —mL_H) and (0,...,0, Qin—_l—l—
mL_H) Define the mA hypercubes ¢;; in R*2, as above, and embed them in the
hyperplane z2a41 = 0. Now define, for each ¢ and k, a new (2A 4 1)-hypercube ¢ ;
as the Minkowski sum ¢;; & s’. Define another collection {b},...,0 } of m smaller

hypercubes in R***!, where b. = b st. We thus obtain a collection C of m(A + 1)
]R,2A+1

1,...,m be the segment in

hypercubes in . Associate with each vertex v € V the vertical edge v@® s’ which
intersects the boundary of each of the m pairwise-disjoint hypercubes b, at points that
are clearly vertices of the union of C. This shows that |JC has at least 2m2+! vertices,
thus establishing the lower bound for axis-parallel hypercubes of arbitrary sizes (in
odd dimensions). Note that we only used two different sizes in this construction. This
completes the proof of Theorem 3.1. O

4 The L.-Voronoi Diagram of Points in R?

In this section, we study the complexity of the L.-Voronoi diagram of a set of n
points in IR? . The L. -distance function is the distance function associated with an
axis parallel hypercube in IR? whose side length is 2, where the reference point is the
center of the hypercube. We show the following result:

Theorem 4.1 The mazimum complexity of the L., -Voronot diagram of a set of n
points in R is O(nl21) provided that the set is in general posilion with respect to
the L., -distance function.

4.1 The upper bound

Let S be a set of n points in general position in R?, with respect to an axis-parallel
hypercube C'. We denote by Vor.(S) the Voronoi diagram of S under the L. -
distance. Since (' is a simple polytope, the discussion in Section 2 implies that a
vertex of Vor.(S) corresponds to a free rigid placement of C' with exactly d + 1
contact pairs. The vertex is regular if all the contact points are distinct, and singular
otherwise. By the general position assumption, no facet of any placement C of ' can
contain more than one point of §, and the d + 1 contact pairs involve d 4+ 1 facets
of C. Since (' has d pairs of parallel facets, a free rigid placement has at least two
parallel contact pairs, namely, contact pairs involving parallel facets. Moreover, by
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the general position assumption, there can be only one pair of parallel contacts pairs,
as already noted. It follows that at this placement there is a vertex v of ' incident to
d (mutually orthogonal) facets of C’, each containing a point of §. We can represent
C as

C={x|2;(C) < a;<af(C), forj=1,....d},
where x}"(é) —x;(é) = Zp(é) for all j, where p(é’) is the scaling factor of ¢'. With no
loss of generality, assume that v is incident to the facets z; = x;(é’), fory=1,...,d,

N

and that the facet x; = 27 (C) touches a point p; € S, for j = 1,...,d (so v is the

vertex of (' all of whose coordinates are the smallest possible). As remarked above,
these points do not have to be distinct: if k of the p,’s are equal (to some p € §),
then p lies on a (d — k)-face of C' incident to v.

We now shrink €' towards v, keeping v fixed. We lose one contact of C with a
point, but retain the d remaining contact pairs (between the points py, ..., ps and the
corresponding facets of ' incident to v). We stop the shrinking when one of these
points comes to lie on another facet of C'. With no loss of generality, assume that
this is the point p;, and that the new facet it lies on is x5 = x;(é) (because each
negative facet already has a contact, the new facet has to be a positive facet). The
new placement that we have reached is free and rigid but singular. Let v’ be the
vertex of (7 incident to the facets z; = xf(é’), Xy = x%’(é), and x; = x;(é’), for all
J = 3,...,d. These facets are incident to the points py, ps,...,ps. We now shrink
C' towards v', losing the contact between py and the facet x5 = xz_(é), but retaining
the other d contact pairs, and stop when one of the contacting points comes to lie on
another facet of C.

We keep iterating this process. In the general step, just before starting a shrinking
process, we have some number, k, of remaining points, call them ¢, ..., g, such
that each ¢; lies in the relative interior of some face f; of codimension t;, where
S t: = d+1. By the general position assumption, there is exactly one parallel pair
of facets among the d + 1 facets of C' that are incident to the faces fi.

Suppose first that in the present placement of C there is a face fi of codimension
1 (that is, f; is a facet), and that f; is one of the pair of parallel facets. Then the
remaining k—1 faces f;, for j # ¢, have a common vertex w, and we can keep shrinking
C towards w, losing only the one contact pair involving ¢; and maintaining the other
d contact pairs. We stop the shrinking, as above, when one of the other k£ — 1 points
comes to lie on another facet of C'.

Suppose next that the preceding subcase does not occur. Let ¢; and g5 be the two
(distinct) points incident to the (unique) pair of parallel facets. By assumption, the
corresponding faces fi, f, have each codimension at least 2. Hence, by the general
position assumption, there are at least 3 coordinates, say xy, x3, x3, such that ¢; is
incident to a pair of facets orthogonal to the x; and x3 axes, and ¢ is incident to a
pair of facets orthogonal to the x5 and x5 axes. Let us fix the points ¢; and ¢z (there
are O(n?) choices for such a pair), and also fix the 3 > 3 coordinates such that the
facets incident to ¢; and ¢y are orthogonal to these coordinates (there is a constant
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number of such choices). Note that 3 is equal to the sum of the multiplicities of
the two points involved in the parallel contact pairs minus 1. Then the scaling factor
Po = p(é) of (' is fixed (under the above assumptions, it is equal to L|as(q1) —2s(g2)]),
and [ coordinates of its center are also fixed. Hence the center of ¢ must lie on an
appropriate (d — )-th dimensional flat K. For each point p € S\ {¢1,¢2}, let C'p
be the intersection of K with the cube p 4+ poC. It is easily checked that the center
of C'in placements under consideration must be a vertex of the union of the equal-
size axis-parallel hypercubes C'p. By Theorem 3.1, the number of such vertices is
O(nW=9721) 5o the number of placements under consideration is

O(n?) - O(nW=P/2ly = O(nl4/21y |

since 3 > 3.

To recap, the number of terminal placements of C that we can reach by our
iterated shrinking process is O(n[%?1). This also includes the case where the iterated
shrinking process can continue all the way through, until the hypercube shrinks to a
point; the number of such terminal placements is clearly only O(n).

We claim that any such terminal placement (' can be reached from only a constant
number of initial placements of C'. To see this, suppose first that the shrinking process
has not terminated at a singleton hypercube. Pick a terminal placement C’, and
reverse the shrinking process: choose a vertex v of ' incident to all but one of the
d+1 facets touched by points of S. By construction, there is always at least one such
vertex at the end of a shrinking step, and the discarded facet is necessarily one of the
pair of parallel contact facets. When we expand C from v, none of the points touching
(' can enter into the interior of (' (the point touching the discarded facet also touches
another facet incident to v, so it remains on the boundary of C while we expand). We
stop the expanding process when C hits another point, and then continue to expand
from some (possibly different) vertex of C. There are at most d expanding steps,
and in each of them we have a constant number of choices for the vertex from which
we expand, implying that only a constant number of initial placements (where the
constant depends on d) can reach the same terminal placement C. A similar (and
actually simpler) argument also applies to the case where the terminal placement is
a singleton hypercube.

So far we have only counted vertices of the diagram, but the arguments in Section 2
imply that the overall complexity of the diagram is proportional to the number of its
vertices, which thus completes the proof of the upper bound in Theorem 4.1.

4.2 The lower bound

We next prove the lower bound in Theorem 4.1. We first give a sufficient condition
for d + 1 points py,pa, ..., pis1 in R? to lie on the boundary of some axis-parallel
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hypercube. The condition is:

zi(p;)) = min{a(p;)| j=1,....d+1}, fori=1,...,d
xl(pd-l-l) = max {xl(p]) | ] = 17 .- 7d+ 1}
21(Pa+1) — 21(p1) |pa+1 = pill,, = max {[|p; — psll. | ©.7=1,...d+1}. -
7
Indeed, under this condition, py, ps, ..., p4r1 are on the boundary of the hypercube ¢
of size a(c) = ||pay1 — p1l|,, and whose smallest z;-coordinate is z; (¢) = x;(p;), for
i =1,...,d. (Notice that any ordered (d+ 1)-tuple of points that lie on the boundary
of a hypercube fulfills the above condition, up to a permutation of the axes or of the

points and up to inversion of the orientations of some of the axes.)

Let us assume that the dimension d is odd. The idea of the construction is to
take [ = (d +1)/2 lines in IR? and n points on each line, such that any appropriately
ordered (d + 1)-tuple of points, formed by choosing a pair of consecutive points on
each of those lines, satisfies the above condition. Then, since any line intersects
the boundary of a hypercube in at most two points, the hypercube passing through
these d + 1 points is a free rigid placement for the whole set, which implies that the
complexity of the L.-Voronoi diagram of this set is Q(n/%?1). To implement this
idea, choose a real a such that 0 < a < i, and define the following lines:

- Forr=1,...,1—1, line ¢, is directed along v, = —ey, + 3,5, €; (Where e; de-
notes the unit vector directed along the positive x;-axis) and passes through the
point p, whose coordinates are all equal to 2 except that x2,_1(p,) = x2,(p,) = 0.

- the last line ¢; is directed along v; = Zle e; and passes through the point p;
whose coordinates are all equal to 2 except that x1(p;) = 4 and x4(p;) = 0.

- for r = 1,...,1, the n points on the line ¢, are the points p.(k.) = p, + k.av,
for k, =0,....,n—1

It is now easy to verify that, for any choice of ki, ka,..., k in {0,...,n — 1}, the
(d+1)-tuple {p1(k1), pr(k1+1), ..., pi(ki), pi(ki+ 1)} fulfills the condition (7). Table 1

shows the coordinates of the points in such a tuple for d = 5.

Thus, if d is odd, the L.-Voronoi diagram of a set of n points in IR? can have
Q(nl%21y complexity in the worst case. The result obviously also holds for any even
dimension d, by using the above construction in dimension d — 1.

5 Voronoi Diagrams for Simplicial Distance Func-
tions

In this section, we consider the Voronoi diagram Vor,(S) of a point set S in R? for
a distance function d, induced by a d-simplex o, and prove the following:

Theorem 5.1 The mazimum complexity of the Voronoi diagram of a set of n points

in R, under the distance function induced by a d-simplez, is O(nl21), provided that
the points are in general position with respect to the simplex.
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p1(k1) pilki +1)  pa(ks) palka +1)  pa(ks) ps(ks +1) |

ko (ki +1Da 24 ka 24 (kh+1)a 44+ka 44 (ks+1)a
—ko —(ki+Da 24+ ka 24 (k+1a 24 ka 2—|—(k3—|—1)a
24 ka 24 (k4 1) kocv (k2 + Do 24 ksa + (ks + 1o
24 ka 24 (k4 1) —kyor —(ky+ Do 24 ksa 2—|—(k3—|—1)a
24 ka 24 (k4 1a 24+ ka 24 (k+1)a ksar (ks + Do

Table 1: A 6-tuple of points in IR’ used in the lower bound construction for L.
Voronoi diagrams

5.1 The upper bound

Our goal is to bound the number of free rigid (homothetic) placements of a d-simplex
o among a set S of n points in general position with respect to o. Each free rigid
placement & has d + 1 contact pairs involving 2 < k£ < d 4 1 distinct contact points
81,82, ..., 8k Let p(s;) be the multiplicity of the contact point s; at this placement.
Then, by the general position assumption, 7;_; ; p(s;) = d+ 1.

The number of free rigid placementsinvolving at most |(d + 1)/2] = [d/2] distinct
contact points is obviously O(n??1). In particular, this also bounds the number of
free rigid placements with all contact points having multiplicity > 2. The number of
free rigid placements with two contact points of respective multiplicities 1 and d is
O(n) (a contact point with multiplicity d arises when a vertex of & touches a point

of S).

Let us consider a free rigid placement & with at least one simple contact point
(i.e., with multiplicity 1) and with no contact point with multiplicity d. Let ¢ be
a vertex of & opposite to a facet f touching a simple contact point. We shrink the
simplex towards v, dropping at once the contact pair involving f but keeping the
other d contact pairs. The shrinking process stops as soon as one of the contact
points p reaches a new facet of &, thus augmenting the multiplicity of p by one.

This shrinking scheme can be repeated as long as the free rigid placement has a
simple contact point and no contact point with multiplicity d (in the latter case, the
shrinking will collapse o to a single point). At the end, we reach either a free rigid
placement of o such that each contact point has multiplicity at least two, or a free
rigid placement with two contact points of respective multiplicities 1 and d.

Each such terminal placement can be reached from only a constant number, de-
pending on d, of initial free rigid placements. To show this, we consider, as above,
the reverse of the shrinking process. Each step of the reverse process expands & from
a vertex 0, such that the facet f opposite to v does not touch any point with contact
multiplicity 1, and stop as soon as f hits a new point of §. There are at most d
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expanding steps (actually, only about half as many steps), and at each step we have
a constant number of choices, showing that the reverse process can reach at most a
constant number (depending on d) of free rigid placements. Thus, the number of free
rigid placements is proportional to the number of terminal placements in the shrink-
ing process, which, as argued above, is O(n[¥?1), thus proving the asserted upper

bound.

5.2 The lower bound

We prove the lower bound in a manner similar to that used for the L. -distance.
Without loss of generality, we may assume that the simplex o defining the distance
is the simplex whose vertices are the origin and one point at positive unit abscissa on
each coordinate axis. Indeed, any simplex can be transformed into this simplex by
an affine transformation, which does not change the combinatorial structure and the
complexity of the Voronoi diagram.

A sufficient condition for d+1 points in R? to be contact points of a rigid placement
of o is the following:

zi(pi) = min{z(p;)| j=1,....,d+1} fore=1,....d (8)
S wi(pay) = max {X xi(p) | j=1,...,d+1}.

As in the case of the L.,-distance, we assume first that the dimension d is odd,
and we choose (d + 1)/2 lines in IR? and n points on each line, such that any set of
d + 1 points, formed by choosing a pair of consecutive points on each of those lines,
satisfies the above condition, for an appropriate permutation of the points. In fact,
it 1s easily seen that the lines constructed in subsection 4.2 fulfill this requirement,
provided that the parameter « is chosen so that 0 < a < mlz_d' This proves that, if
d is odd, the complexity of a simplicial Voronoi diagram of n points in R? can be

Q(nl%21), a result which holds a fortiori for even dimensions too.

6 The L;-Voronoi Diagram of Points in R’

This section analyzes the complexity of Voronoi diagrams of point sets under the
Li-norm. The L;-distance between two points p and ¢ of R? is

d
dp,(p,q) =D Ipi — il -
=1

This distance function is polyhedral, and is induced by the d-polytope which is the
dual of the d-cube. This polytope is the convex hull of the 2d unit vectors +e;, where
e; is the unit vector in the positive x;-direction, for ¢ = 1,...,d. We will call this
polytope a d-co-cube. In the case of the L;-distance function, we have only been able
to prove tight bounds for d = 3:

17



NS
N

Figure 2: The regular octahedron

Theorem 6.1 If S is a set of n points in R® in general position with respect to the
Ly-distance, then the mazimum complexity of the Voronot diagram of S under the
Ly-distance is ©(n?).

6.1 The upper bound

In the three-dimensional case, the co-cube is just the regular octahedron O which is
the convex hull of the six vertices uq(+1,0,0), u1(—1,0,0), u2(0,1,0), wz(0,—1,0),
u3(0,0,1) and w3(0,0,—1). The octahedron has twelve edges and eight faces and is
shown in Figure 2.

Let S be a set of n points in IR in general position with respect to the octahedron
0. Our goal is to bound the number of free rigid placements of O among the points
of §. For this, we bound, in succession, the number of

(P1) free rigid placements with at least one contact point of multiplicity at least two
(which we call hereafter a double contact point);

(P2) free rigid placements with three contact pairs involving three faces of O sharing
a common vertex; and

(P3) all other free rigid placements.

Let O be a placement of type (P1), with a double contact point. That is, there
is a point p € § that lies on an edge é of O; we will denote this double contact by
the pair (p,e). For each pair (p, e) of a point p of S and an edge e of O, the subset of
placements attaining the double contact pair (p,e) is contained in a two-dimensional
linear subspace IP(p,e) of the set IP of placements. The subspace IP(p,e) can be
parametrized by the position ¢ of one of the endpoints of ¢ on the line parallel to
e through p, and by the scaling factor p. In this subspace, any other contact pair
(p', ) of a placement O appears as a (possibly empty) segment s(p/, f). Then a
rigid placement with the double contact pair (p,e) corresponds to a vertex of the
planar arrangement of those segments, and a free placement with the double contact
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pair (p,e) corresponds to a point which lies on or below the lower envelope of those
segments, relative to the p-direction. This follows from the observation that if we fix ¢
and increase p then O expands, so that, once a point enters the expanding octahedron,
it will never leave it again (see also [5] for a similar argument). Hence, the number
of free rigid placements with the double contact pair (p,e) is at most the number
of vertices of the lower envelope of the at most 6(n — 1) segments representing the
contact pairs (p/, f) in IP(p,e). (Note that (a) not every vertex of the lower envelope
necessarily represents a free rigid placement of type (P1), because the corresponding
scaling factor may be too small for the point p to actually lie on e, (b) the vertices
formed by the intersection of two segments represent placements with three contact
points (one of which is p), whereas segment endpoints represent placements with two
contact points (one of which is p), each being a double-contact point, and (c¢) by the
general position assumption, the two facets of O incident to e are not involved in
those contact pairs.) Moreover, it is easy to verify that the segments that represent
contacts with a fixed face f of O are all parallel, thus we have six families of at most
n— 1 parallel segments each, so the complexity of their overall lower envelope is linear.
Summing over the 12n possible pairs (p, €), we conclude:

Lemma 6.2 Given a set S of n points in R® in general position with respect to the
regular octahedron O, the number of type (P1) free rigid placements of O amidst the
points of S is O(n?).

Let us next bound the number of free rigid placements O of type (P2), that is,
with contact pairs involving three facets sharing a vertex. If such a placement has
no double contact point, we apply a shrinking process to O, in which the vertex of O
incident to three contact faces is fixed. This process maintains at least three contact
pairs and does not encounter any new contact point, since at any time during the
shrinking the octahedron is contained in the initial placement. The shrinking process
stops as soon as one of the contact points reaches an edge of the octahedron. Then the
reached placement is a free rigid placement with a double contact point. Moreover,
each free rigid placement with a double contact point can be reached in this way
from at most two rigid free placements without double contact points. Indeed, from
a terminal placement with a double contact point on edge e we can recover an initial
free rigid placement without a double contact point by expanding the octahedron
from one of the two vertices opposite to edge e in the two facets incident to e. Thus
the number of type (P2) placements without double contact point is no more than
twice the number of free rigid placements with a double contact point, which proves
the following lemma.

Lemma 6.3 Given a point set S as above, the number of free rigid placements of O
with contact pairs involving three facets sharing a common vertex is O(n?).

Finally, we bound the number of all other rigid free placements, that is, placements
of type (P3). Let us consider a rigid placement O with no double contact point and
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with no vertex common to three facets involved in contact pairs. Only two cases are
then possible:

(a) The 4 contact facets fi, fo, f1, f3 of O form two pairs (f1, f2), (f1, f3) of adjacent
facets (i.e., with a common edge) and two complementary pairs ( f1, f1), (f2, f3)
of parallel facets.

(b) The 4 contact facets have no pair of adjacent facets. This case can be real-
ized only by one of the two following complementary subsets of four facets
of O: the first set is {wjugus, Urtzus, Uyusliz, u1tizts}, and the second set is
{Tuqus, i Tus, ugualiz, Uy tsus b ; see Figure 2.

The first case does not occur for sets of points in general position with respect to O, as
already noted. Thus it remains to bound the number of free rigid placements in case
(b). For this we apply the following scheme. Let O be a rigid free placement as in case
(b) with the four contact pairs (p1, f1), (p2, f2), (ps, f3) and (pa, f1). We choose three
of these four contact pairs, say (p1, f1), (p2, f2), (ps, f3), and slide O while maintaining
these three contact pairs, and having the fourth point py penetrate the octahedron.
The three contact pairs (p1, f1), (p2, f2) and (ps, f3) determine a line in the space IP
of placements, and we just have to follow this line in the (unique) direction where
py penetrates into the octahedron. Let us add to O the three internal square facets
U Ul U, Uiuslyts, and usustzus (see Figure 2); these are the intersections of the

octahedron with its three symmetry planes, each containing four vertices of O. In
the following, we refer to the octahedron augmented with these three internal facets
as the augmented octahedron. The sliding process is stopped as soon as one of the
following events occurs:

1. Point p,; reaches one of the three internal facets.

2. One of the points py, py, ps reaches an edge of O and thus becomes a double

contact point.
3. A contact with a new point is encountered on a face other than f;.
4. A contact with a new point on face f; is encountered.

In the first case, we reach a rigid placement of the augmented octahedron. This
rigid placement will be called quasi-free because it has no point of & inside the octa-
hedron, except for one point on an internal facet. Consider the number of pairs (v, f),
where f is one of the contact facets and v is a vertex of O incident to f. Since we
have three triangular contact facets and one quadrangular contact facet, the number
of these pairs is 13, which implies that one of the six vertices of O has to be shared by
three of those contact facets. Since fi, f; and f; do not share a common vertex, one
of the contact facets sharing the common vertex has to be the internal facet reached
by ps. We can thus apply to this placement the shrinking scheme used in the proof of
Lemma 6.3, retaining the three contact pairs whose facets share the common vertex,
and stopping when we reach a quasi-free rigid placement of O with a double contact
point. As argued above, such a terminal placement can be reached by at most two
initial quasi-free rigid placements of O.
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To bound the number of these terminal placements, we proceed as above. The
placements that achieve the double contact (p, €) belong to a 2-dimensional subspace
P(p,e) of IP. In this subspace, the locus of all placements with an additional con-
tact pair (with an external or an internal facet) is a line segment. The quasi-free
placements that we are interested in appear as vertices of the arrangement of these
segments lying at level at most 4 (i.e., with at most 4 segments lying below the vertex
in the p direction). Indeed, if we fix the position of one endpoint of é on the line
parallel to e and passing through p, and increase the scale factor p from zero until
we reach a terminal placement, the point on the internal facet could have crossed at
most two external facets of O (when it gets into the octahedron through an edge;
this point cannot get into the octahedron through a vertex because the set of points
would not be then in general position) and two internal facets (because it cannot
cross the internal facet incident to edge e). Using standard arguments (based on
the Clarkson-Shor analysis technique [6]), it is easily seen that the number of such
vertices is O(n). Hence the number of stopping events of the first type is O(n?).

In the second stopping case, the reached placement is a rigid placement of the
(non-augmented) octahedron with a double contact pair and at most one point inside
the octahedron. Arguing as in the preceding paragraph, it is easily seen that such
a placement corresponds to a vertex of level at most 2 in the planar arrangement
of segments representing the contact pairs (of the non-augmented octahedron) in the
two-dimensional subspace of IP associated with the reached double contact pair. Thus
the number of placements reached in this case is also bounded by O(n?).

In the third case, the reached placement is a rigid placement of the octahedron
with three contact facets sharing a vertex and at most one point inside the octahedron.
Again, arguing as above and applying the Clarkson-Shor technique, it follows that
the number of terminal placements that we reach in this case is proportional to the
number of free rigid placements of type (P2). Thus the number of placements reached
in the third case is also O(n?).

In the last case, the reached placement is a rigid placement of the octahedron
with four contact pairs involving four nonadjacent facets and one point inside the
octahedron. In the following, we denote by ¢;(S) the number of rigid placements O
with four contact pairs involving four nonadjacent facets and with j points of S inside
the octahedron.

Before continuing, it is important to observe that each terminal placement reached
in case 4 of the above sliding process is reached from a unique initial rigid free place-
ment. Indeed, since the single point p, inside the octahedron did not cross during
the sliding process any internal facet of the augmented octahedron, it lies in one of
the eight octants into which the three internal facets partition O, and the external
facet bounding that octant must be the contact facet f;, so the initial placement O
is uniquely determined.

On the other hand, we have four choices of the triple of the contact pairs that
are preserved in the sliding process. If in one of these choices we reach a terminal
placement of one of the first three types, we charge the initial free rigid placement to
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this terminal placement, observe that any such terminal placement can be charged in
this manner only a constant number of times, and thus conclude that the number of
initial free rigid placements of this kind is O(n?). If each of the four sliding processes
terminate in a placement of type 4, then the initial free rigid placement can be charged
to four terminal placements. Moreover, every initial and terminal placement in this
case involves four contact pairs with four nonadjacent contact facets, except that the
initial placements are free and the terminal placements contain a point inside the
octahedron.

Thus, the preceding case analysis leads to the following recurrence relationship:
400(8) S 01(8) + O(TLQ) 5

from which we obtain

n—4

n

CO(S) <

co(S) + %01(8) +O(n).

Now, 2=2¢o(S) + L¢1(S) is just the expected number of free rigid placements with
four contact pairs involving four nonadjacent facets, for a random sample R of n — 1
points of S; see [5, 19], and the analysis in Section 4 for similar arguments. Thus,
if we denote by ¢g(n) the maximum of ¢o(S) over all sets S of n points in general
position with respect to O, we obtain the recurrence

co(n) < eg(n —1)+ 0O(n),

whose solution is

co(n) = O(n?).

Thus, the number of free rigid placements with four contact pairs involving four
nonadjacent facets is also bounded by O(n?), which thus completes the proof of the
upper bound in Theorem 6.1.

Remark: An obvious open problem is to extend this result to higher dimensions.
Informally, the reason we have failed in doing so is that, for d > 4, the d-co-cube
has a large number of facets (that is, 2 facets). Consequently, there are too many
combinatorially-different types of free rigid placements of the d-co-cube, which so far
impeded a successful analysis of their number. A first goal in this direction would
be to obtain a sharp bound on the complexity of the [;-Voronoi diagram in four
dimensions. Note also that our analysis relies on the special structure of the regular
octahedron, e.g., in excluding free rigid placements of type (a), so, at present, we do
not have a quadratic bound for the case of a non-regular octahedron in 3-space.

6.2 The lower bound

As in subsections 4.2 and 5.2, a configuration that attains the lower bound in The-
orem 6.1 can be built by choosing points on two lines in 3-space such that, for any
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subset of four points, consisting of a pair of consecutive points on each line, there is
a free placement of O in contact with these points.

The first line 61 is the line y = 0,z = 1, parallel to the = axis; the set of points
on ¢ is taken to be & = {p, = (%,0,1) : h=0,....,n—1}. The second line
09 1s the line x = 0,z = —1, parallel to the y axis; the set of points on 65 is taken
to be S; = {q = (0,%,—1) : k=0,....,n —1}. See the left part of Figure 3.
Let § = §; US,. First consider the two-dimensional L;-Voronoi diagram of each
subset Sy, &2, within the respective planes z = 1 and z = —1. Let Oy (resp. O_q)
denote the 2-co-cube within the plane z = 1 (resp. z = —1). In the plane z = 1,
the line ¢ = h+T1/2,Z = 1, for each 0 < h < n — 2, is the bisecting line of the pair
(pr, pht1) and the locus of the centers of free placements of Oy with py, and ppyq as
contact points. Similarly, in the plane z = —1, the line y = k+i/2,
0 < k < n—2,is the bisector of the pair (¢g,gr+1) and the locus of the centers of
free placements of O_y with ¢; and ¢x41 as contact points. Thus, for each pair (k, h),
with 0 < k, h < n — 2, there is a free placement Ol(h, k) of O1, which is centered

at the point (h+—1/2, k+;/27 1) and touches the points p, and ppy1, and there is a free

placement O_l(h,k) of O_1, which is centered at the point (h%m,#,—l) and
touches the points ¢ and ggi1. Such placements Ol(h, k) and O_l(h, k) are drawn
in dotted lines in the left part of Figure 3. The scale factors of these placements are,

z = —1, for each

respectively, p; = k%l and p_y; = hnll Since |p1 — p_1| < 2, it is easily verified that
the two placements Ol(h, k) and O_l(h, k) are cross-sections of a placement O of the
three-dimensional octahedron, centered at the point (h+T1/2, k+T1/2, %), and scaled by
the factor 1 + pl—"% =1+ % The right part of Figure 3 shows the cross-section
k+1/2

n

of the placement 0 by the plane y =

Thus, for each of the (n — 1)* pair (k, k) with 0 < &k, A < n — 2, there is a free
rigid placement of the octahedron O among the set S of 2n points, which touches the
points pu, prt1, gk, and ggiq1; this proves the lower bound of Theorem 6.1.

7 Degenerate Configurations

Next, we show that the general position assumption is essential for the upper bounds
of Theorems 4.1, 5.1, and 6.1 to hold. Specifically, we show:

Theorem 7.1 For any polyhedral convex distance function dp and any dimension
d > 2, there exist sets S of n points in R?, not in general position with respect to the
distance dp, whose Voronoi diagrams Vorp(S) have complexity Q(n?).

Figure 4 shows the Li-Voronoi diagram of a degenerate set of points in IR*.

Proof: Let dp be a convex distance function, and let & be a set of n points contained
in a hyperplane H C IR? parallel to a facet f of P, such that S is in general position
with respect to the distance function induced by f in H. For each z € S, the locus
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Figure 3: The Q(n?) lower bound construction for L;-Voronoi diagrams in R”

of the centers of the placements P of P for which z lies on f is a polyhedral cone C,
with apex at x. All the cones (), are translates of each other, and, because of the
general position of S with repsect to f, the complexity of the arrangement A of these
cones is (n?). Each cell ¢ of A has the property that all maximal free placements of
P centered at points of ¢ touch the same subset of points of §. Moreover, it is easily
verified that there are Q(n?) distinct subsets of this kind. This clearly implies the
assertion of the theorem. O

8 Algorithms

In this section we present an efficient algorithm for constructing the L..-Voronoi
diagram of a set S of point sites in R?. The algorithm is incremental and on-line,
that is, it adds the sites one by one, and maintains the Voronoi diagram of the set of
all the already inserted sites; it does not require previous knowledge of the whole set
S. The algorithm uses the method of the history graph described in [4] (see also [9]).
We show that if the sites are inserted in random order then the expected running time
of the algorithm is O(n!/?] log?~! n). A simple modification of the technique yields
a randomized algorithm for constructing Voronoi diagrams under simplicial distance
functions, whose expected running time is O(n!%?1 + nlogn).

8.1 Algorithm for L.-Voronoi diagrams

We subdivide the Voronoi cell of each site x into 2d subcells, one for each of the 2d
facets of the hypercube, where the subcell corresponding to the facet f consists of the
centers of all maximal free placements having the contact pair (z, f). For example,
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Figure 4: A degenerate configuration for the [; metric

the Voronoi diagram of a single site « subdivides the whole space into 2d polyhedral
cones with apex at x. This subdivision increases the overall complexity of the diagram
by only a constant factor (depending on d).

For technical reasons, and for simplicity of the presentation, we prefer not to treat
explicitly the unbounded faces of the diagram. This will be done by surrounding
S with additional sentinel sites, so that all Voronoi cells of the sites in § become
bounded, and no original Voronoi vertex is lost. This technical issue will be discussed
in detail in the description of the initial phase of the algorithm, given below.

Before describing the algorithm itself, it is worth observing some facts about the
faces of the diagram. Fach k-face ® of the diagram can be described as a connected
component of the locus of the centers of those maximal free placements that realize
a given set of d + 1 — k contact pairs. We refer to these contact pairs as the contact
pairs of . We distinguish between two types of Voronoi faces (of dimension > 1):
(i) sliding faces, whose sets of contact pairs include two parallel contact pairs, and
(ii) shrinking faces, whose sets of contact pairs involve facets of the cube which are
all incident to some common vertex of the cube.

Lemma 8.1 FEach subface of a sliding face is a sliding face, and all the maximal free
placements centered on a sliding face have the same scaling factor. A sliding edge
is parallel to some coordinate axis, and, more generally, higher-dimensional sliding
faces are axis-parallel polyhedra.

Proof: The set of contact pairs of a subface ®' of a Voronoi face ® is a superset of
the set of contact pairs of ®. Moreover, the scaling factor of a maximal placement
centered on a sliding face is determined by the two parallel contact pairs. This proves
the first claim. The second claim follows from the fact that, as in the analysis of
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the complexity of the diagram, a sliding edge e can be identified with an edge of
the union of axis-parallel hypercubes (whose size is equal to the fixed scaling factor
associated with e), and thus must be parallel to some coordinate axis. A similar
argument applies to higher-dimensional sliding faces. O

It is possible that several faces of the diagram have the same set of contact
pairs. However, Lemma 8.3 below will show that this is not true for edges (1-faces).
For higher-dimensional faces, one can show that there is only a constant number of
Voronoi faces with a given set of contact pairs. We omit the proof of this property
since it is not used in the analysis of the algorithm.

The fact that there is a unique Voronoi edge for each given set of d contact pairs is
a consequence of the following lemma, which considers sliding faces of any dimension.

Let @ be a set of k contact pairs, including two parallel contact pairs, and let
Lo denote the locus of the centers of the free maximal placements that realize the
contact pairs of Q. Note that Q determines the scaling factor po of these placements
and k—1 coordinates of their centers. Let Hg denote the (d—k+1)-flat that contains
the centers of these placements. Let So denote the subset of points of & appearing
in the contact pairs of Q, let Iy denote the intersection of the placements with size
po centered at the points of Sg, and let Uy denote the union of the placements with
size pgo centered at the points of S\ Sg.

Lemma 8.2 The locus Lo of the centers of the mazimal free placements that realize
a set Q of contact pairs (which include two parallel contact pairs) is, in the above
notation, Ho N (Ig\ Ug).

Proof: Let (' = C’(c,pg) be a maximal free placement whose center ¢ is in Lg.
Then clearly ¢ € Hg, and C' contains all points of So on its boundary, and does not
meet any point in S \ Sg. This implies that ¢ must lie on the boundary of all cubes
C’(S,pg), for s € Sg, and outside all cubes C’(S,pg), for s € §\ Sg. Hence we have
Lo C HoN(Ig\Ug). The converse containment is proved in much the same manner,
observing that if ¢ € Hg N Ig then ¢ must lie on the boundary of all cubes C’(S, po),
for s € Sg, which, together with the fact that ¢ ¢ Ug, implies that ('(c, po) is a
maximal free placement that realizes the set Q of contact pairs. a

Lemma 8.3 The locus of centers of all maximal free placements that realize a given
set of d contact pairs is a line segment.

Proof: If the set Q of d contact pairs contains two parallel contact pairs, then the
result follows from the previous lemma. Indeed, in that case, Hg is an axis-parallel
line, Ho N Ig is the intersection of some line segments of length pgo, and Ho N Uy is
the union of some other line segments with the same length po. This is easily seen
to imply that Lo cannot have more than one connected component.
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If @ does not contain two parallel contact pairs, the faces of the cube involved in
the contact pairs of @ share a common vertex v. Moreover, the location ¢ of that
vertex must be the same for all maximal free placements whose centers lie in Lo, and
all these placements can be obtained from one another by a homothety whose center
is 0. Hence, for any pair of such placements, the larger placement contains the smaller
one, and the locus Lg of their centers is contained in a line (passing through ¢ and
parallel to some vector of the form (+1,41,...,£1)). Moreover, the above nesting
property is easily seen to imply that Lo cannot contain more than one connected
component, and is thus a line segment. a

It also follows from Lemma 8.2 and from the proof of Lemma 8.3 that a line
parallel to a coordinate axis and contained in the affine hull of a sliding face f, either
misses f or intersects f along a single line segment. The maximal free placements
centered on such a segment (or on a sliding edge) are obtained from any one of them
by an axis-parallel translation and have a nonempty intersection. Moreover, these
observations also imply:

Lemma 8.4 FEach of the maximal free placements centered on a sliding edge e or,
more generally, on any axis-parallel line segment ¢ contained in a sliding face, is
contained in the union of the maximal free placements centered at the endpoints of ¢.

The following lemma is a consequence of the proof of Lemma 8.3:

Lemma 8.5 Each of the maximal free placements centered on a shrinking edge e
is contained in the placement centered at one of the endpoints v of e. The set Q,
of contact pairs defining v involves one more site than the set Q. of the contact
pairs defining e. All such placements contain the mazximal free placement centered at
the other endpoint v' of e. The set Q. of the contact pairs defining v’ involves the
same sites as Q. but the multiplicity of one of the sites in Q. is one more than its
multiplicity in Q..

The algorithm builds incrementally the 1-skeleton of the Voronoi diagram, i.e., the
set of vertices and edges of the diagram, together with their incidence relations. In
addition, each vertex and edge is represented with its set of contact pairs. Lemma 8.2
is easily seen to imply that each sliding face is homeomorphic to a ball of the appro-
priate dimension. A similar result can be proved for shrinking faces. Thus it is easy
to construct, in time linear in the output size, the full set of Voronoi faces, together
with their incidence structure, from the final 1-skeleton. We omit details of this final
construction step.

The algorithm maintains the following data stuctures:

e a history graph;

e a dictionary D, containing one entry for each set of contact pairs associated
with a sliding face constructed by the algorithm:
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e a multi-level dynamic segment tree data structure associated with each entry in
D, which supports efficient ray-shooting queries along some fixed axis-parallel
direction within each sliding face.

The history graph is a directed acyclic graph, each node of which represents a rigid
placement of an axis-parallel hypercube, so that, during some stage of the incremental
algorithm, this placement has been maximally free and thus centered at a Voronoi
vertex. The graph has the property that the placement associated with a node is
contained in the union of the placements associated with its parents, a property
that we refer to hereafter as the inclusion property. Furthermore, each vertex of the
current Voronoi diagram is linked via a double pointer to the node of the history
graph corresponding to the same placement. See [4, 9] for earlier uses of similar
history graphs.

When a new site s is inserted, it may be contained in some of the maximal free
placements centered at the current Voronoi vertices. These placements are no longer
free, and the corresponding Voronoi vertices and history graph nodes are said to be
killed by s. The insertion of s generates new Voronoi vertices. A new node is created
in the history graph for each new Voronoi vertex; this node is made a child of some of
the older nodes in the graph, which represent free placements in the current diagram,
whose associated placements overlap the placement associated with the new node, in
a manner that ensures the inclusion property. The precise manner in which this is
accomplished is described in detail below. A parent node may or may not have been
killed by the insertion of s.

A node of the history graph, the corresponding Voronoi vertex, and the corre-
sponding placement, are said to be in conflict with a site s if this placement of the
hypercube contains s in its interior.

Each entry in the dictionary D corresponds to a set Q of contact pairs, including
two parallel contact pairs, that appeared, at some stage of the algorithm, as the set
of contact pairs of some sliding faces of the current diagram.

Let Fg be the union of the sliding faces whose set of contact pairs is Q. Each entry
in D points to a dynamic ray-shooting structure Ro that supports fast ray-shooting
queries in some fixed axis-parallel direction within the current version of Fg. The
ray-shooting structures are based on standard (dynamic) multi-level segment trees
[13], and are described in more detail later.

For technical reasons, and for simplicity of the presentation, we prefer not to
treat explicitly the faces at infinity of the diagram. Therefore, we introduce a set
Sop of additional sites, called sentinel sites, and first compute the Voronoi diagram
of § U Sy, from which the diagram of & is easy to derive. The sentinel sites are
chosen in such a way that each site of S has a bounded cell in Vor., (S U Sy), and
each vertex of Vor.(S) is a vertex of Vore(S U Sy). We initialize the algorithm
with the Voronoi diagram of Sy, and then insert the sites of &. In this way, no
unbounded faces will be created during the incremental insertion stages. In what
follows, we assume that the sites of S lie within a large axis-parallel hypercube Co
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centered at the origin of the coordinate system. The sentinel sites are chosen to be
the 27 vertices of C’O; see Figure 5 for an illustration. Any placement of the hypercube
C' that intersects Cy and has a sufficiently large scaling factor must contain one of
the sentinel sites. It follows that each site of & has a bounded cell in the diagram
Vor, (S U 8p). Moreover, it is easily checked that any free rigid placement whose
contact pairs involve only sites of § does not contain any sentinel site. Hence, each
vertex of Vor.,(8) is also a vertex of Vor,, (S U Sp), so the chosen set of sentinel sites
has the required properties. Furthermore, it is easy to check that the union of the
maximal free placements centered at the vertices of Vor,,(Sp) contains all the free
rigid placements of the hypercube among any subset of SUS, that contains Sg. Thus
it will always be possible to ensure the inclusion property.

Initial Step

The data structures are initialized with the Voronoi diagram (shown in Figure 5) of
the 27 sentinel points. FEach vertex of this diagram is associated with a node of the
history graph which is a child of the root node.

@ sentinel sites

[J Voronoi vertices

Figure 5: Initialization of the L.-Voronoi diagram; if the sites of & all lie in the
shaded region, their Voronoi cells are all bounded.

Incremental Updating of the Diagram

Each subsequent step inserts a new site x € § into the diagram. Hereafter, the
Voronoi diagram before the insertion of x will be called the current diagram, while
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the diagram after the insertion of x will be called the updated diagram. Each vertex
or edge of the current Voronoi diagram that is not a feature of the updated diagram
is said to be killed (as above), while each vertex or edge of the updated diagram that
is not a feature of the current diagram is called new. The following substeps are
performed:

The first substep identifies the killed vertices and edges. The killed vertices are
identified by a traversal of the history graph. This traversal starts at the root node
of the graph, and then visits all the nodes conflicting with = and their children,
backtracking at each node that is not in conflict with z.

Next, we scan the 1-skeleton of the current diagram to identify all the killed
edges. Observe that each killed edge e must be incident to at least one killed vertex,
because, by Lemmas 8.4 and 8.5, each maximal free placement centered on an edge e
is contained in the union of the maximal free placements centered at the vertices of
e. Hence, if some maximal free placement, centered at some point on ¢, is in conflict
with z, then at least one endpoint of e must be a killed vertex. The killed edges and
vertices are discarded from the 1-skeleton.

The next two substeps create the new vertices and edges of the Voronoi diagram.
For each new vertex, a new node is added to the history graph in such a way that its
incoming arcs satisfy the inclusion property. The last substep updates the dictionary
D by creating new entries for the sets of contact pairs of the new sliding faces that do
not correspond to already existing entries of D. In addition, this substep creates the
ray-shooting structures associated with these new entries, and updates the structures
for the old entries.

In accordance with the definition in Section 2, we say that a placement or some
Voronoi face has x-multiplicity k if it has £ contact pairs involving x.

The second substep creates the new vertices with a simple contact at z, and the new
edges with no contact at . To do this, we consider in turn each killed edge e of the
current diagram that is incident to only one killed vertex. Then x is contained in only
some of the maximal free placements centered on e (whose centers form a connected
portion of e, by Lemma 8.3). The edge e is replaced by a new and shorter edge €’ that
joins the non-discarded vertex of e with a new vertex v whose placement has a simple
contact at x. A new node, corresponding to v, is appended to the history graph. This
node becomes a child of the discarded vertex of e if € is a shrinking edge, or a child
of both vertices of e if e is a sliding edge. This guarantees the inclusion property
for v by Lemmas 8.4 and 8.5. The above process provides all the new vertices of the
updated Voronoi diagram with a simple contact at x, as well as all the new edges with
no contact at x. Indeed, any new vertex with a simple contact at + and any point
on a new edge with no contact at = is the center of a maximal free placement with d
contact pairs involving previously inserted sites, and thus belongs to a Voronoi edge
of the current diagram, so it will be found by the above procedure.

The third substep proceeds by induction on the z-multiplicity of vertices and edges,
to create new Voronoi vertices and edges with higher z-multiplicity. Assume that all
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new vertices and edges with x-multiplicity up to k£ and k—1, respectively, are known.
Then the algorithm creates the new Voronoi vertices and edges with x-multiplicities
k+ 1 and k, respectively, as follows. Each Voronoi vertex v with z-multiplicity & is
incident to d + 1 — k& Voronoi edges with x-multiplicity k, whose sets of contact pairs
can be obtained, in constant time, from the contact pairs of v, by relaxing each of
the d + 1 — k contact pairs not involving x. Moreover, we have:

Lemma 8.6 If e is a Voronoi edge with x-multiplicity k, then at least one endpoint
of ¢ is a vertex with x-multiplicity k.

Proof: Assume to the contrary that there exists an edge e that does not satisty this
property; that is, both endpoints of e have x-multiplicity k£ + 1. Suppose first that e
is a sliding edge, parallel to some coordinate axis x;. Then the two new contact pairs
at the endpoints vy, vy of € must be (x, fi) and (z, f2), where f; and f; are the two
facets of the hypercube orthogonal to the x;-axis. If p. is the common scaling factor
of the maximal free placements of the hypercube centered on e, then the length of
e must be 2p.. Since e is a sliding edge, it must involve some contact pair (y, f),
for y # . But then, by the general position assumption, the x;-coordinates of =
and y are different, which implies that the length of e must be smaller than 2p., a
contradiction that establishes the asserted property.

It e is a shrinking edge, then all contact pairs of e involving x are of the form
(x, f), where all those facets f have a common vertex w of the hypercube, and all
maximal free placements centered on e are obtained by shrinking or expanding the
hypercube with respect to w. This is easily seen to imply that we can gain a new
contact pair involving x only when the hypercube is shrinking, but not when it is
expanding. Again, this implies the asserted property. a

Lemma 8.6 implies that all Voronoi edges with z-multiplicity & can be obtained
from the Voronoi vertices with z-multiplicity k, by relaxing one contact pair not
involving . More precisely, this procedure generates each such edge e either once (if
it has one endpoint with a-multiplicity & and one endpoint with z-multiplicity & + 1)
or twice (if both endpoints of e have z-multiplicity k). We detect edges that are
generated twice using a dictionary data structure. For each edge e that is generated
only once, from a vertex v with x-multiplicity &, we compute the other endpoint of
e (the one with z-multiplicity k£ + 1) in constant time. For this, we iterate over all
possible contact pairs that involve x and are not present in the set Q. of the contact
pairs of e. We add in turn each such contact pair to Q., compute the position of the
center of the corresponding free rigid placement, if such a placement exists, and choose
the placement whose center is closest to v. Since each vertex with z-multiplicity &+ 1
is incident to k& + 1 edges with x-multiplicity k, the above procedure will produce all
Voronoi vertices with z-multiplicity & + 1.

It remains to create a new node in the history graph for each new vertex, and
to link it to earlier nodes so that the inclusion property still holds. This is done as
follows. If the new vertex v’ with z-multiplicity &£ + 1 is linked to a vertex v with

31



z-multiplicity & via a shrinking edge, the node for v’ becomes a child of v (cf. Lemma
8.5). Otherwise, by Lemma 8.6, all the edges with z-multiplicity & incident to v’ are
sliding edges. This means that if we relax any of the contacts involving x in the set
of contact pairs defining v” then we preserve the unique pair of parallel contact pairs.
This clearly implies that the d — k& contact pairs of v’ that do not involve x contain
the two parallel contact pairs.

It follows that v is located in a sliding (k + 1)-face f of the current diagram. We
use the ray-shooting data structures to find parents for the node associated with v, as
follows. Let Q be the set of contact pairs of f. The ray-shooting structure associated
with the entry for @ in the dictionary D supports fast ray-shooting queries in some
fixed axis-parallel direction within f. We first shoot from v’ in the fixed given direction
within f, both forward and backwards. Let A and A’ be the two subfaces of f hit
by these rays, and let w and w’ denote the corresponding impact points. We know,
by Lemma 8.4, that the maximal free placement centered at v’ is contained in the
union of the maximal free placements centered at w and at w’. Then we perform
similar ray-shootings from w in A and from w’ in A’, forward and backwards, along
the corresponding shooting directions within those subfaces (note that these new
directions are orthogonal to the first shooting direction), using the data structures
available for h and A’ (recall that a subface of a sliding face is a sliding face). This
yields four new impact points on lower-dimensional subfaces, and we keep iterating
these shootings until we reach edges of f. By taking the set of endpoints of these edges,
we obtain 2¥*! Voronoi vertices (of the current diagram), and the node of the history
graph associated with v’ becomes a child of each of the 2! nodes corresponding
to these vertices, provided that the corresponding placements overlap. Clearly, this
implies that the inclusion property holds for v’.

Finally, the fourth substep updates the dictionary D and the ray-shooting struc-
tures. First, we have to create an entry in D and a ray-shooting structure for each set
of contact pairs of any new sliding face that involves . These sets of contact pairs are
found inductively, by decreasing the cardinality of these sets (i.e., by increasing the
dimension of the corresponding faces). That is, we obtain the sets of contact pairs of
the new sliding k-faces from the sets of contact pairs of the new sliding (k — 1)-faces,
by relaxing one contact pair, as long as the resulting subset of the contact pairs still
involves x and still contains two parallel contact pairs. For each such new set Q of
contact pairs, we associate an entry in D and form a list Lo of all the contact pairs
that have been relaxed to obtain the set Q from sets of contact pairs of new sliding
(k—1)-faces (that is, this list represents all (k— 1)-subfaces of the new sliding k-face).
We then use this list to build the ray-shooting structure Ro, which facilitates fast
ray-shooting queries in some fixed axis-parallel direction within the union of the faces
of the updated diagram sharing the contact set Q. This is done as follows.

Let Q be the set of contact pairs of some new sliding face, let po be the corre-
sponding scaling factor, and let Sg be the subset of the sites that are involved in the
pairs of Q. The union Lg of the faces of the updated diagram, whose common set of
contact pairs is @, is contained in a k-dimensional flat Ho. We know from Lemma 8.2
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that Lg is the set difference (Ig N Hg) \ (Ug N Hg), where Ig is the intersection of
the axis-parallel hypercubes of size pg that are centered at the sites of Sg, and Ug
is the union of the axis-parallel hypercubes of size po that are centered at the sites
of §\ Sg. (In fact, it is not necessary to consider all the sites of Sg and S\ So:
Let I, be the intersection of the hypercubes of size po centered at the sites of Sg
that are involved in the contact pairs in the list Lo, and let Uj, be the union of the

hypercubes of size pg centered at the sites of S\ Sg that are involved in the contact
pairs of Lg. Clearly, Lo = (I N Hg) \ (U5 N Ho).)

The k-flat Ho is parallel to k coordinate axes, say z1,...,x;. To build Ro, we
choose a fixed shooting direction parallel to one of those axes, say xj. The ray-
shooting structure is a multi-level data structure that stores the intersections of Hgo
with the facets orthogonal to the zj-axis of the hypercubes of size po centered at the
sites involved in L.

In the following description, a cube will denote a (k — 1)-dimensional hypercube
which is the intersection with Ho of a facet orthogonal to the zj-axis of one the
hypercubes of size pg centered at the sites involved in Lg. The ray-shooting structure
has k levels. The first £ — 1 levels of the structure constitute a multi-dimensional
segment tree representing the projections of the cubes onto the (k — 1)-subspace
spanned by x1,...,25_1. The last level is a balanced binary tree storing, in the order
of the z; coordinates of their centers, the ‘canonical’ collection of cubes assigned to
each node of the (k — 1)-st level of the segment tree. Clearly, this structure allows
us to compute efficiently the first cube hit by any query ray parallel to the x,-axis,
from which we immediately obtain the contact set of the sliding subface hit by the
ray. The cost of a ray-shooting query in this structure is O(logk n): Querying the
multi-level segment tree takes O(log"™* n) time [13], and the output of this query is
a collection of O(log" ™! n) nodes of the segment tree at the (k — 1)-st level. We then
have to locate the z; coordinate of the origin of the query ray in each corresponding
binary tree, which takes logarithmic time per node. A cube can be inserted into such
a structure also in O(log® n) time, as described in [13], and the cost of building R
is thus at most O(log" n) times the number of (k — 1)-subfaces of the Voronoi faces
of the current diagram with the same set Q of contact pairs.

Next, the older ray-shooting structures need also be updated with the appropriate
new subfaces induced by wx, so the above data structures need to be maintained
dynamically. The modification of the structure corresponding to an (old) entry Q
amounts to inserting a new cube with scaling factor po centered at x. As just argued,
this can be done in time O(logk n) per update, where k is the dimension of the relevant
sliding face.

This completes the description of the algorithm. Putting everything together, we
obtain:

Theorem 8.7 The L..-Voronoi diagram of a set of n points in R? in general position
can be constructed on-line in randomized expected time O(nl¥/?1log®™ n).

Proof: The randomized analysis of this algorithm uses the formalism of objects,
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regions, and conflicts, introduced by Clarkson and Shor [6]. The objects are the
sites; the regions, each defined by a set of objects of S, are the rigid placements of a
hypercube among the points of S; a site conflicts with a region when it belongs to its
interior. Fach region is fully described by its d + 1 contact pairs and is thus triggered
by a set of at most d + 1 sites. Thus, for any subset S’ C S, a region defined by a
subset of S’ of size < d+ 1 and without any conflict with the sites of &’ is a free rigid
placement for S’. Then, by standard analysis (see, e.g., [4]), the expected number
of new Voronoi vertices created at step r (i.e., when inserting the r-th object) is
O(Lfo(r)), where fo(r) is the expected number of free rigid placements for a random
subset of size r of S. By Theorem 4.1, fo(r) is O(r[¥/?1), and thus the expected total
number of Voronoi vertices (and thus also of Voronoi faces of all dimensions) created

by the algorithm is -7 O(rfd/ﬂ—l) = O(nfd/ﬂ)‘

Let us first ignore the cost of traversing the history graph in the first substep, the
cost of ray-shooting queries, the cost of building and maintaining the ray-shooting
structures, and the cost of searching and updating the dictionary D. The remaining
cost at each step is clearly proportional to the number of Voronoi faces killed or
created at that step. (This also applies to the cost of updating the history graph,
which follows from the fact that each node in the history graph has a bounded number
of parents, so the expected number of arcs in the history graph is proportional to the
expected number of nodes.) Hence, except for the items just excluded, the overall
expected running time of the rest of the algorithm is proportional to the total number
of faces ever created, which is O(n[¥/?1),

Let us now analyze the cost entailed in ray shooting. In dimension 2, there is no
need for ray shooting data structures, because we only need to shoot along sliding
edges, which is trivial. If d > 3, the number of ray shooting queries is at most propor-
tional to the number of vertices that the algorithm creates, and the total number of
subfaces inserted into the ray-shooting structures is at most proportional to the total
number of subfaces of the new sliding faces. Each structure has at most d — 1 levels,
which implies that the cost for each ray-shooting query is O(logd_1 n), and the cost
for the construction and updating of the structures is O(logd_1 n) times the number
of faces. Hence, the total expected cost entailed in ray shooting is O(n!%/?] log?~! n).

Consider next the cost of handling the dictionary. In dimension 2, there is no need
for a dictionary. If d > 3, the number of operations (insertions and queries) performed
in the dictionary D storing the sets of contact pairs of sliding faces is proportional
to the number of sliding faces (of all dimensions) that have been created. It follows
that the total expected cost entailed in handling the dictionary is O(n!%?logn).

Finally, we estimate the expected cost of traversing the history graph. This can be
done using the notion of biregions, as in [4]. A biregion is defined as a pair of regions
that can appear as a parent-child pair in the history graph. More precisely, a biregion
is a pair (C’l, C’z), where C’l, C, are two placements of the hypercube, such that there
exists a subset $* of S and a site © € S\ §* such that (i) (', is a free rigid placement
in the set S*U {x} and contains x on its boundary, (ii) (1 is a free rigid placement in
the set §*, which overlaps Cy and may or may not contain x in its interior, and either
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(111 a) (', and (' share a common vertex and C, is contained in Cl, or (iii. b) Cl and
(', have the same size p, and there exists a seuqgence Cy = C'(l), C'(Z), cees CU) = ¢
of hypercube placements of size p, such that all of them are free in the set &, each
placement C+1) is obtained from the preceding placement ) by translation along
some axis-parallel direction (during which the hypercube remains free), and CU+Y
has one more contact pair than cO (relative to the set ™).

A site is said to be in conflict with a biregion if it conflicts with one of the two
regions forming the biregion (except for the site & that may have killed the parent
region and lies on the boundary of the child region). Then the total cost of the
graph traversals is at most proportional to the sum of the weights of the biregions
appearing in the history graph, where the weight of a biregion is the number of sites
in conflict with it (recall that an edge of the history graph is traversed only when
the new site is in conflict with the parent region of the biregion corresponding to the
edge). Using standard analysis, as in [4], one can show that the expected value of this
sum of weights is O(327_; "5~ f5 (7)), where f5(r) is the expected number of biregions
with no conflicting site in a random sample of r sites. (This bound holds because
a biregion is defined in a purely local manner from a bounded number of ‘trigger

sites’, which are the at most 2(d + 1) sites involved in the contact pairs of the two
regions. Moreover, any such set of trigger sites determines only a constant number
(depending on d) of biregions, as follows from the above definition. This locality
condition implies the above bound, as follows easily from the analysis in [4] (see also
[6]).) We have fi(r) = O(rl%/?1), since the expected number of regions appearing
in the history graph of the sample is O(r[%/?1), and since each such region has O(1)
parents. It therefore follows that the above cost is O(nlogn + n[d/z]). O

8.2 Algorithm for simplicial Voronoi diagrams

The above algorithm can be adapted to yield a similar algorithm for simplicial Voronoi
diagrams in any fixed dimension d. This algorithm is in fact much simpler, since
simplicial Voronoi diagrams have only shrinking edges, and no sliding faces. Thus
there is no need for the dictionary and ray-shooting structures.

As in the case of L.,-Voronoi diagrams, we wish to avoid having to deal with
unbounded Voronoi edges and faces. To do so, we initialize the construction with the
diagram of some set Sy of a constant number of sentinel sites, construct the diagram
of 8" = SUSy, and then remove the sentinels of Sg. The sentinels are the d+ 1 vertices
of a simplex o'y obtained as follows: Consider a placement & of the simplex defining
the distance function, which contains the origin of the coordinate system, and let
o'y be a homothetic copy of & with a negative scaling factor, whose absolute value is
chosen to be sufficiently large, so that the simplex o'y contains all the sites of S. (The
o-Voronoi diagram of the vertices of o'y is illustrated in Figure 6 in the 2-dimensional
case.) Fach placement &, which intersects oo and has a sufficiently large scaling
factor, contains one of the sentinels, which implies that each site of § has a bounded
cell in Vor,(8’). Each maximal free placement whose set of contact pairs includes only
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sites of § contains no sentinel, because it is contained in the placement &y, obtained
from o’y through a homothety with scale factor —2, which has one contact pair with
each sentinel. Thus it is easy to recover the Voronoi diagram Vor,(S) from Vor,(S).

[J  Voronoi vertices

@ sentinel sites

Figure 6: Initialization of a simplicial Voronoi diagram

The randomized analysis of this algorithm is the same as given above, except for
the cost of handling the dictionary and the ray-shooting structures, which is simply
ignored. Hence we obtain:

Theorem 8.8 Any simplicial Voronoi diagram of a set of n points in R® in general
position can be constructed on line in randomized expected time O(nlogn + nl¥/?1),

9 Conclusion

In this paper we have studied the complexity of Voronoi diagrams of point sets in
higher dimensions under certain special polyhedral convex distance functions, includ-
ing simplicial distance functions and the Ly and L., norms. We have obtained tight
worst-case bounds for all the cases that we studied. Some of these bounds match
the known maximum complexity of euclidean Voronoi diagrams, namely ©(n[4/?1),
lending support to the conjecture that this bound holds for fairly general cases of
Voronoi diagrams of point sites in higher dimensions, even though it is known not to
hold for more general sites [1].

For the simplicial and the L., distance functions, we have presented efficient on-
line randomized algorithms, whose expected running times are, respectively, O(n log n+
n[421) and O(n!%/?11og®" n). The first algorithm is thus worst-case optimal, and the

second is very close to being worst-case optimal.
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There are quite a few open problems that this paper raises. The first problem is to
extend the bound obtained for L;-Voronoi diagrams to four and higher dimensions.
Another, more challenging problem is to extend our analysis to Voronoi diagrams
under arbitrary polyhedral convex distance functions. An even more challenging
problem is to extend our analysis further to cases where the sites are general convex
polytopes, rather than points. (Here, based on [1], the goal is to obtain bounds close
to O(n?=1).) This is open even in three dimensions (where the goal is to obtain near-
quadratic bounds). For this, one would probably need an appropriate combination of
the techniques used here and in the previous paper [5].
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