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Abstract. We review recent progress in the study of arrangements of
surfaces in higher dimensions. This progress involves new and nearly tight
bounds on the complexity of lower envelopes, single cells, zones, and other
substructures in such arrangements, and the design of efficient algorithms
(near optimal in the worst case) for constructing and manipulating these
structures. We then present applications of the new results to motion
planning, Voronoi diagrams, visibility, and geometric optimization.

The combinatorial, algebraic, and topological analysis of arrangements of
surfaces in higher dimensions has become one of the most active areas of research
in computational geometry during the past b years. This is partly due to the
fact that many geometric problems in diverse areas can be reduced to questions
involving such arrangements. A typical example is the following general motion
planning problem. Assume that we have a robot system B with d degrees of
freedom, i.e., we can represent each placement of B as a point in d-space. Suppose
that the workspace of B is cluttered with obstacles, whose shapes and locations
are known. For each combination of a geometric feature (vertex, edge, face) of
an obstacle and a similar feature of B, define their contact surface as the set of
all points in d-space that represent a placement of B in which contact is made
between these specific features. Let Z be a point corresponding to a given initial
free placement of B, in which it does not intersect any obstacle. Then the set of
all free placements of B that can be reached from Z via a collision-free continuous
motion will obviously correspond to the cell containing Z in the arrangement of
the contact surfaces. Thus, the robot motion planning problem leads more or less
directly to the problem of computing a single cell in an arrangement of surfaces
in higher dimensions. The combinatorial complezity of this cell, i.e., the total
number of lower-dimensional faces appearing on its boundary serves as a trivial
lower bound for the running time of the motion planning problem (assuming the
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entire cell has to be output). It turns out that in most instances this bound can
be almost matched by suitable algorithms.

Other applications that call for combinatorial analysis of arrangements in-
volve geometric algorithms for constructing arrangements, which are based on
randomized or e-net techniques, and whose running times are usually directly
influenced by the combinatorial complexity of the relevant geometric substruc-
tures of the arrangements that they manipulate; this will be explained in more
detail below. We will also describe below more applications of higher-dimensional
arrangements to problems in visibility, in geometric optimization, and involving
generalized Voronoi diagrams. For some basic terminology related to arrange-
ments, the reader is referred to [30, 39, 45, 65].

This survey describes many recent advances in the study of combinatorial,
topological, and algorithmic problems involving arrangements of algebraic sur-
faces in higher dimensions. In these studies there are three main relevant pa-
rameters: the number n of surfaces, their maximum algebraic degree b, and the
dimension d. In the approach taken here, we are mainly interested in a ‘combina-
torial” approach, in which we want to calibrate the dependence of the complexity
of the various structures and algorithms on the number n of surfaces, assuming
that the maximum degree, as well as any other factor that does not depend
on n, is constant. In this way, all issues related to the algebraic complexity of
the problem are ‘swept under the rug’. These issues should be (and indeed have
been) picked up in the complementary ‘algebraic’ mode of research, where the
dependence on the maximum degree b is more relevant; see [48, 62] for studies

of this kind.

We should emphasize that, although quite a few of the problems reviewed
here are combinatorial in nature, most of them are motivated by algorithmic
applications. As mentioned above, it is an interesting feature of the area that
the complexity of efficient algorithms for constructing various substructures in
arrangements depends mainly on the combinatorial complexity of these struc-
tures. This is, of course, always true in terms of lower bounds (as the algorithm
must at least output the desired structure), but there is also a strong influence
of the combinatorial complexity on the running time of the algorithms. A typ-
ical example involves algorithms that are based on wertical decompositions in
arrangements—see below for details.

During the past three years, significant progress has been made on the prob-
lem of bounding the complexity of the lower envelope (pointwise minimum) of
a collection of multivariate functions. This problem has been open since 1986,
when it was shown in [46] that the combinatorial complexity of the lower en-
velope of n univariate continuous functions, each pair of which intersect in at
most s points, is at most A;(n), the maximum length of an (n, s)-Davenport-
Schinzel sequence. This bound is slightly super-linear in n, for any fixed s (for
example, it is @(na(n)) for s = 3, where a(n) is the extremely slowly growing
inverse of Ackermann’s function [46]; see also [8, 65]). Since the complexity of
the arrangement of such a collection of functions can be @(n?) in the worst case,
this result shows that the complexity of the lower envelope is smaller than the



overall complexity of the arrangement by nearly a factor of n.

It was then conjectured that a similar phenomenon occurs in higher dimen-
sions. That is, the combinatorial complexity of the lower envelope of a collection
F of n ‘well-behaved’ d-variate functions should be close to O(n?) (as opposed
to @(nd‘H), which can be the complexity of the entire arrangement of the func-
tion graphs). More precisely, according to a stronger version of this conjecture,
this quantity should be at most O(n?~1),(n)), for some constant s depending
on the shape of the functions in F. These conjectures have been confirmed only
in some special cases, including the case in which the graphs of the functions
are d-simplices in IR“*! | where a tight worst-case bound, O(n?a(n)), was estab-
lished in [31, 59]. (The case d = 1, involving n segments in the plane, where
the bound is @(na(n)), had been analyzed earlier, in [46, 69].) There are also
some even more special cases, like the case of hyperplanes, where the maximum
complexity of their lower envelope is known to be @(nt(d‘H)/zJ ), by the so-called
Upper Bound Theorem for convex polytopes [57]. The case of balls also admits a
much better bound, using a standard lifting transformation (see [30]). However,
the general problem remained open.

Last year this problem was almost completely settled in [43] and [64]: Let
F be a collection of (possibly partially-defined) d-variate functions, such that
all functions in F are algebraic of constant maximum degree and, in case of
partial functions, the domain of definition of each function is a semi-algebraic
set defined by a constant number of polynomial equalities and inequalities of
constant maximum degree. We refer to such a region as having constant descrip-
tion complezity. It was shown that, for any ¢ > 0, the combinatorial complexity
of the lower envelope of F is O(n?*t¢), where the constant of proportionality
depends on ¢, d, and on the maximum degree of the functions and of the poly-
nomials defining their domains. Thus, apart from a small remaining gap, the
above conjecture has been settled in the affirmative.

The proof is based on the probabilistic method developed by Clarkson and
Shor [25]. Informally (and not very precisely), one charges each vertex p of the
envelope to a block of & ‘nearby’ vertices that lie along an edge leading from p
away from the envelope (here k is some sufficiently large constant parameter).
Each of the charged vertices lies at level at most k in the arrangement of the
function graphs (that is, at most k graphs lie below such a vertex). The Clarkson-
Shor technique allows us to bound the number of such nearby vertices by a term
equal to O(k%*t1) times the number of vertices of the lower envelope of a random
sample of n/k functions of F. This implies that the number of vertices of the
envelope can be bounded by roughly O(k?) times the number of vertices of the
envelope of a random sample of size n/k, which leads to a recurrence, whose
solution gives the asserted bounds. (We caution that this description glosses
over many technical details, given in the papers cited above, and is given only
as an intuitive explanation of the main idea of the proof.)

This result was then followed by several further developments. Lower en-
velopes (just like single cells) naturally arise in motion planning, scene analysis,
Voronoi diagrams, and geometric optimization. The new results can therefore be



applied to obtain improved algorithmic and combinatorial bounds for a variety
of problems. Some of these applications have already appeared in the literature
(and will be mentioned below), but we believe that many more await to be dis-
covered. The above results have also opened up the door to many significant
new research problems, and, in our opinion, it will take at least several years to
settle most of them.

Algorithms for Lower Envelopes

Once the combinatorial complexity of lower envelopes of multivariate functions
has been (more or less) resolved, the next task is to derive efficient algorithms
for computing such lower envelopes. One of the strongest forms of such a compu-
tation is as follows. We are given a collection F of d-variate algebraic functions
satisfying the above conditions. We want to compute the lower envelope Er and
store 1t in some data structure, so that, given a query point p € IR, we can
efficiently compute the value Ex(p), and the function(s) attaining Fr at p. (Of
course, we need to assume here an appropriate model of computation, where
various primitive operations on a constant number of functions can be each per-
formed in constant time. There are several different models of this kind, such as
the exact arithmetic model in real algebraic geometry; see, e.g., [48].)

This task has recently been accomplished for the case of bivariate functions
in several papers [5, 16, 17, 27, 64]. Some of these techniques use randomized
algorithms, and their expected running time is O(n?*¢), for any € > 0, which
1s comparable with the maximum complexity of such an envelope. The simplest
algorithm is probably the one given in [5]. It is deterministic and uses divide-and-
conquer. Its analysis is based on an interesting property of the overlay of (the
zy-projections of ) two lower envelopes of bivariate functions, that the complexity
of such an overlay is also O(n?*¢), where n is the total number of functions. (To
appreciate this result, observe that, in general, the overlay of two planar maps
of complexity N each can have @(N?) complexity.)

In higher dimensions, the only result known so far is that lower envelopes
of trivariate functions satisfying the above properties can be computed, in the
above strong sense, in randomized expected time O(n3*¢) [1]. For d > 3, it
is also shown in [1] that all vertices, edges and 2-faces of the lower envelope
of n d-variate functions, as above, can be computed in randomized expected
time O(n9t¢). It is still an open problem whether such a lower envelope can
be computed within similar time bounds in the above stronger sense, and this
problem should certainly be investigated further. Another, more difficult problem
1s to devise output-sensitive algorithms, whose complexity depends on the actual
combinatorial complexity of the envelope. It would also be interesting to develop
algorithms for certain special classes of functions, where better bounds are known
for the complexity of the envelope, e.g., for envelopes of piecewise-linear functions
(see below for more details).

Some of the applications of the algorithms produced so far are mentioned
below. It can be expected that the proposed extensions of these algorithms will
also find other interesting applications.



Single Cells

Lower envelopes are closely related to other substructures in arrangements, no-
tably single cells and zones. In two dimensions, it was shown in [40] that the
complexity of a single face in an arrangement of n arcs, each pair of which inter-
sect in at most s points, is O(As42(n)), and so is of the same asymptotic order
of magnitude as the complexity of the lower envelope of such a collection of arcs.
Again, the prevailing conjecture is that the same holds in higher dimensions.
That 1s, the complexity of a single cell in an arrangement of n algebraic surfaces
in d-space satisfying the above assumptions is close to O(n?=1), or, in a stronger
form, this complexity should be O(n?=2X;(n)), for some appropriate constant
s. The weaker version of this conjecture for the 3-dimensional case has recently
been confirmed in [44]: Let A be an arrangement of n 2-dimensional surface
patches in IR?, all of them algebraic of constant description complexity. It was
proved in [44] that, for any ¢ > 0, the complexity of a single cell in A is O(n?*%),
where the constant of proportionality depends on ¢ and on the maximum degree
of the surfaces and of their boundaries. The proof is based on an extension of the
argument developed for lower envelopes, but one has to add several nontrivial
ingredients, in order to handle the more complex topology of a single cell. The
analysis in [44] seems to extend to higher dimensions, except for some key steps
that seem to require the introduction of new algebraic geometry techniques.

The results of [44] mentioned above easily imply that, for fairly general robot
systems with 3 degrees of freedom, the complexity of the space of all free place-
ments of the system, reachable from a given initial placement, is O(n?*%), a
significant improvement over the previous, naive bound O(n?®). The correspond-
ing algorithmic problem, of devising an efficient (near-quadratic) algorithm for
computing such a cell, has very recently been solved in [63]. We will say more
about this result when we discuss vertical decompositions below. Prior to this
result, several other near-quadratic algorithms were proposed for some special
classes of surfaces [5, 13, 41, 42]. For example, the paper [42] gives a near-
quadratic algorithm for the single cell problem in the special case of arrange-
ments that arise in the motion planning problem for a (nonconvex) polygonal
robot moving (translating and rotating) in a planar polygonal region. However,
this algorithm exploits the special structure of the surfaces that arise in this
case, and does not extend to the general case. The algorithm given in [5] also
provides a near-quadratic solution for the case that all the surfaces are graphs
of totally-defined continuous algebraic bivariate functions (so that the cell in
question is zy-monotone).

In higher dimensions, we mention the special case of a single cell in an ar-
rangement of n (d — 1)-simplices in IR?. It was shown in [13] that the complexity
of such a cell is O(n?~!logn); a simplified proof was recently given in [67]. This
bound is much sharper than the general bound stated above; the best lower
bound known for this complexity is £2(n? " !a(n)), so a small gap between the
upper and lower bounds still remains.



Zones

Given an arrangement A of surfaces in IR?, and another surface oq, the zone
of oy is the collection of all cells of the arrangement A that oy crosses, and
the complexity of the zone is the sum of complexities of all these cells. The
‘classical” Zone Theorem [30, 34] asserts that the maximum complexity of the
zone of a hyperplane in an arrangement of n hyperplanes in RY is O(nd1),
where the constant of proportionality depends on d. This has been extended in
[10] to the zone of an algebraic or convex surface (of any dimension p < d) in
an arrangement of hyperplanes. The bound on the complexity of such a zone
is O(nl(@+2)/2] 10g® n), and 2(nl(4+P)/2]) in the worst case, where ¢ = 1 when
d—pis odd and ¢ = 0 when d — p is even. It is not clear whether the logarithmic
factor is really needed, or that it is just an artifact of the proof technique.

The result of [44] can easily be extended to obtain a bound of O(n?*%),
for any ¢ > 0, on the complexity of the zone of an algebraic surface oy (of
constant description complexity) in an arrangement of n algebraic surfaces in
IR?, as above. Intuitively, the proof proceeds by cutting each of the given surfaces
along its intersection curve with oy, and by shrinking the surface away from that
curve, thus leaving a ‘tiny’ gap there. These modifications transform the zone
of o into a single cell in the arrangement of the new surfaces, and the result
of [44] can then be applied. (The same technique has been used earlier in [32],
to obtain a near-linear bound on the complexity of the zone of an arc in a 2-
dimensional arrangement of arcs.) Once the bound on the complexity of a single
cell is extended to higher dimensions, it should lead right away to a similar bound
for a zone of a surface. A similar technique implies that the complexity of the
zone of an algebraic or convex surface in an arrangement of n (d — 1)-simplices

in R is O(n?logn) [13, 67].

Generalized Voronoi Diagrams

One of the interesting applications of the new lower bounds on the complexity
of lower envelopes is to generalized Voronoi diagrams in higher dimensions. Let
S be a set of n ‘simply-shaped’ pairwise-disjoint convex objects in d-space (or in
higher dimensions), and let p be some metric. The Voronoi diagram Vor(S) of
S under the metric p 1s defined, as usual, as the decomposition of d-space into
Voronoi cells V(s), for s € S, where

V(s) = {z € R | p(x,s) < p(x,s") for all s’ € S}.

The problem is to study the combinatorial complexity of Vor(S), and to devise
efficient algorithms for its construction. In the classical case, in which p is the
Fuclidean metric and the objects in S are singletons (points), the maximum
possible complexity of Vor(S) is @(nl%?1) (see, e.g., [30]). In three dimensions,
this bound is @(n?). It has been a long-standing open problem whether a simi-
lar quadratic or near-quadratic bound holds in 3-space for more general objects
and metrics. As is well known [33], the Voronoi diagram Vor(S) is the ‘mini-
mization diagram’ (projection onto the zyz-hyperplane) of the lower envelope



minges p(, s) (in 4-space). Under reasonable assumptions on the shape of the
objects in S and on the metric p, the resulting trivariate functions p(z, s) can be
assumed to be piecewise-algebraic of constant maximum degree, and the recent
results concerning lower envelopes, as reported above, give an upper bound of
O(n®*¢), for any ¢ > 0, for the complexity of Vor(S). Thus the problem stated
above calls for improving this bound by roughly another factor of n. It thus ap-
pears to be a considerably more difficult problem than that of lower envelopes,
and the only hope of making progress there is to exploit the special structure of
the functions p(z, s).

Fortunately, some progress on this problem was recently done. It was shown
in [23] that the complexity of the Voronoi diagram is O(n?a(n)logn), for the case
where the objects of S are lines, and the metric p is a convex distance function
induced by a convex polytope with a constant number of facets. (Note that the Ly
and L., metrics are special cases of such distance functions. Note also that such a
distance function is not necessarily a metric, because 1t will fail to be symmetric
if the defining polytope is not centrally symmetric.) The best known lower bound
for the complexity of the diagram in this special case is £2(n?a(n)). In another
recent paper [18], it is shown that the maximum complexity of the Li-Voronoi
diagram of a set of n points in IR? is ©(n?). However, no near-quadratic bound
is known for point sites and more general polyhedral convex distance functions.
We hope that these results will open up this research direction, and lead to many
subsequent results. The most intriguing unsolved problem is to obtain a similar
bound for a set S of n lines in space but under the Euclidean distance. The proof
technique of [23] breaks down in this case. Other, more tractable open problems
are to extend these results to sets of more general convex objects (e.g., convex
polytopes, or just singleton points) under the same polyhedral convex distance
functions.

An interesting special case of these problems involves dynamic Voronot dia-
grams for moving points in the plane. Let .S be a set of n points in the plane, each
moving along some line at some fixed velocity. The goal is to bound the number
of combinatorial changes of Vor(S) over time. This dynamic Voronoi diagram
can easily be transformed into a 3-dimensional Voronoi diagram, by adding the
time ¢ as a third coordinate. The points become lines in 3-space, and the metric
is a distance function induced by a horizontal disc (that is, the distance from
a point p(zg, Yo, t0) to a line £ is the Euclidean distance from p to the point of
intersection of ¢ with the horizontal plane t = t;). Here too the open problem
is to derive a near-quadratic bound on the complexity of the diagram. Cubic or
near-cubic bounds are known for this problem, even under more general settings
[36, 38, 64], but subcubic bounds are known only in some very special cases [22].

Next, consider the problem of bounding the complexity of generalized Voronoi
diagrams in higher dimensions. As mentioned above, when the objects in S are n
points in IR? and the metric is Euclidean, the complexity of Vor(S) is O(nl%/?1).
As d increases, this becomes drastically smaller than the naive O(n?*!) bound
or the improved bound, O(n?t), obtained by viewing the Voronoi diagram
as a lower envelope in IR**!. The same bound of O(nrd/z]) has recently been



obtained in [18] for the complexity of the L -diagram of n points in d-space (it
was also shown that this bound is tight in the worst case). It is thus tempting
to conjecture that the maximum complexity of generalized Voronoi diagrams in
higher dimensions is close to this bound. Unfortunately, this was recently shown
to be false in [11], where a lower bound of 2(n?~1) is given. The sites used
in this construction are convex polytopes, and the distance is either Euclidean
or a polyhedral convex distance function. For d = 3, this lower bound does
not contradict the conjecture made above, that the complexity of generalized
Voronoi diagrams should be at most near-quadratic in this case. Also, in higher
dimensions, the conjecture mentioned above is still not refuted when the sites
are singleton points. Finally, for the general case, the construction of [11] still
leaves a gap of roughly a factor of n between the known upper and lower bounds.

Union of Geometric Objects

A subproblem related to generalized Voronoi diagrams is as follows. Let S and p
be as above (say, for the 3-dimensional case). Let K denote the region consisting
of all points # € IR® whose smallest distance from a site in S is at most r, for
some fixed parameter » > 0. Then K = J, ¢ B(s,r), where B(s,r) = {x € R? |
p(z,s) < r}. We thus face the problem of bounding the combinatorial complexity
of the union of n objects in 3-space (of some special type). For example, if S is a
set of lines and p is the Euclidean distance, the objects are n congruent infinite
cylinders in 3-space. In general, if the metric p is a distance function induced by
some convex body P, the resulting objects are the Minkowski sums s @ (—rP),
for s € S, where A®@ B={a+y|a €A, ye B}. Of course, this problem can
also be stated in any higher dimension.

Since it has been conjectured that the complexity of the whole Voronoi dia-
gram should be near-quadratic (in 3-space), the same conjecture should apply to
the (simpler) structure K (whose boundary can be thought of as a ‘cross-section’
of the diagram at ‘height’ ). Recently, this conjecture has been confirmed in [14],
in the special case where both P and the objects of S are convex polyhedra [14].
Let us discuss this result in more detail. An earlier paper [12] has studied the case
involving the union of k£ arbitrary convex polyhedra in 3-space, with a total of n
faces. It was shown there that the complexity of the union is O(k® + nk log2 k),
and can be 2(k®+nka(k)) in the worst case. The upper bound was subsequently
improved to O(k® +nklogk) [15], which still leaves a small gap between the up-
per and lower bounds. In the subsequent paper [14], these bounds were improved
in the special case where the polyhedra in question are Minkowski sums of the
form s; @ P, where the s;’s are k pairwise-disjoint convex polyhedra, P is a
convex polyhedron, and the total number of faces of these Minkowski sums is
n. The improved bounds are O(nklogk) and 2(nka(k)). They are indeed near-
quadratic, as conjectured (in fact, they are much better than quadratic when

However, the case where P is a ball (namely, the case of the Fuclidean dis-
tance) is still open. The simplest unsolved instance of this problem is to establish



a near-quadratic upper bound for the complexity of the union of n congruent
infinite cylinders in 3-space.

There are various extensions that are also interesting to consider. First, it
would be interesting to study the problem in higher dimensions. This is likely
to be much more difficult, so one should look at relatively simple cases, like
the union of axis-parallel hypercubes, or of other simply-shaped objects. The
case of axis-parallel hypercubes has recently been solved in [18], where it was
shown that the maximum complexity of the union of n such hypercubes in d-
space is @(nl%?1) and this improves to @(nl¥?2) when all the hypercubes have
the same size. Second, we can consider the case of more general objects (not
necessarily Minkowski sums) which satisfy some ‘fatness’ properties, extending
results obtained in [56] for ‘fat’ triangles in the plane. For example, what is the
complexity of the union of n arbitrary (non-isothetic) unit cubes in R3?

Vertical Decomposition

In many algorithmic applications, one needs to be able to decompose a d-
dimensional arrangement, or certain portions thereof, into a small number of
subcells, each having constant description complexity. In a typical setup where
this problem arises, we need to process in a certain manner an arrangement of
n surfaces in d-space. We choose a random sample of r of the surfaces, for some
sufficiently large constant r, construct the arrangement of these r surfaces, and
decompose it into subcells as above. Since no such subcell 1s crossed by any sur-
face in the random sample, it follows by standard e-net theory [24, 47, 53] that,
with high probability, none of these subcells is crossed by more than O(*- log r) of
the n given surfaces. (For this result to hold, it is essential that each of these sub-
cells have constant description complexity.) This allows us to break the problem
into recursive subproblems, one for each of these subcells, solve each subproblem
separately, and then combine their outputs to obtain a solution for the original
problem. The efficiency of this method crucially depends on the number of sub-
cells. The smaller this number is, the faster is the resulting algorithm. (We note
that the construction of a ‘good’ sample of r surfaces can also be performed
deterministically, e.g., using the techniques of Matousek [54].)

The only general-purpose known technique for decomposing an arrangement
of surfaces into subcells of constant description complexity is the vertical decom-
position technique. In this method, we erect a vertical ‘wall’ up and down (in
the zg-direction) from each (d — 2)-dimensional face of the arrangement, and
extend these walls until they hit another surface. This results in a decomposi-
tion of the arrangement into subcells so that each subcell has a unique top facet
and a unique bottom facet, and each vertical line cuts it in a connected (possi-
bly empty) interval. We next project each resulting subcell on the hyperplane
zq =0, and apply recursively the same technique within each resulting (d — 1)-
dimensional projected cell, and then ‘lift” this decomposition back into d-space,
by extending each subcell ¢ in the projection into the vertical cylinder ¢ x IR, and
by cutting the original cell by these cylinders. We continue the recursion in this
manner until we reach d = 1, and thereby obtain the vertical decomposition of



the given arrangement. The resulting subcells have the desired properties. Fur-
thermore, if we assume that the originally given surfaces are algebraic of constant
maximum degree, then the resulting subcells are semi-algebraic and are defined
by a constant number of polynomials of constant maximum degree (although
the latter degree can grow quite fast with d). In what follows, we ignore the
algebraic complexity of the subcells of the vertical decomposition, and will be
mainly interested in bounding their number as a function of n, the number of
given surfaces.

It was shown in [20] that the number of cells in such a vertical decomposition
is O(n??738(n)), where 8(n) is a slowly growing function of n (related to the
inverse Ackermann’s function). However, the only known lower bound is the
trivial 2(n?), so there is a considerable gap here, for d > 3; for d = 3 the
two bounds nearly coincide. Improving the upper bound appears to be a very
difficult task. This problem has been open since 1989; it seems difficult enough
to preempt, at the present state of knowledge, any specific conjecture on the
true maximum complexity of the vertical decomposition in d > 3 dimensions.

The bound stated above applies to the vertical decomposition of an entire
arrangement of surfaces. In many applications, however, one is interested in the
vertical decomposition of only a portion of the arrangement, e.g., a single cell,
the region lying below the lower envelope of the given surfaces, the zone of some
surface, a specific collection of cells of the arrangement, etc. Since, in general, the
complexity of such a portion is known (or conjectured) to be smaller than the
complexity of the entire arrangement, one would like to conjecture that a similar
phenomenon applies to vertical decompositions. Very recently, it was shown in
[63] that the complexity of the vertical decomposition of a single cell in an
arrangement of n surface patches in 3-space, as above, is O(n?*¢), for any £ > 0.
As mentioned above, this leads to a near-quadratic algorithm for computing
such a single cell, which implies that motion planning for fairly general systems
with three degrees of freedom can be performed in near-quadratic time, thus
settling a major open problem in the area. A challenging open problem is to
obtain improved bounds for the complexity of the vertical decomposition of the
region lying below the lower envelope of n d-variate functions, for d > 3.

Finally, an interesting special case is that of hyperplanes. For such arrange-
ments, the vertical decomposition i1s a too cumbersome construct, because there
are other easy methods for decomposing each cell into simplices, whose total
number is O(n?). Still, it is probably a useful exercise to understand the complex-
ity of the vertical decomposition of an arrangement of n hyperplanes in d-space.
A recent result of [37] gives an almost tight bound of O(n*log n) for this problem
in 4-space, but nothing significantly better than the general bound is known for
d > 4. Another interesting special case is that of triangles in 3-space. This has
been studied by [28, 67], where almost tight bounds were obtained for the case of
asingle cell (O(n?log? n)), and for the entire arrangement (O(n’a(n)logn+ K),
where K is the complexity of the undecomposed arrangement). The first bound
is slightly better than the general bound of [63] mentioned above. The paper [67]
also derives sharp complexity bounds for the vertical decomposition of many cells



in such an arrangement, including the case of all nonconvex cells.

Other Applications

We conclude this survey by mentioning some additional applications of the new
advances in the study of arrangements. We have already discussed in some detail
the motion planning application, and have seen how the new results lead to
a near-optimal algorithm for the general motion planning problem with three
degrees of freedom. Here we discuss two other kinds of applications: to visibility
problems in three dimensions, and to geometric optimization.

Visibility in Three Dimensions: Let us consider a special case of the so-
called aspect graph problem, which has recently attracted much attention, espe-
cially in the context of three-dimensional scene analysis and object recognition
in computer vision. The aspect graph of a scene represents all topologically-
different views of the scene. For background and a survey of recent research on
aspect graphs, see [19]. Here we will show how the new complexity bounds for
lower envelopes, with some additional machinery, can be used to derive near-tight
bounds on the number of views of polyhedral terrains.

Let K be a polyhedral terrain in 3-space; that is, K is the graph of a con-
tinuous piecewise-linear bivariate function, so it intersects each vertical line in
exactly one point. Let n denote the number of edges of K. A line £ is said to
lie over K if every point on £ lies on or above K. Let Lx denote the space of
all lines that lie over K. (Since lines in 3-space can be parametrized by four real
parameters, we can regard Lx as a subset of 4-space.) The lower envelope of
L consists of those lines in Lx that touch at least one edge of K. Assuming
general position of the edges of K| a line in Lx (or any line, for that matter)
can touch at most four edges of K. We estimate the combinatorial complexity of
this lower envelope, in terms of the number of its vertices, namely those lines in
L that touch four distinct edges of K. It was shown in [43] that the number of

vertices of L, as defined above, is O(n® - 2°V 1Og"), for some absolute positive
constant c.

We give here a sketch of the proof. We fix an edge eg of K, and bound
the number of lines of Lx that touch ey and three other edges of K, with the
additional proviso that the three other contact points all lie on one fixed side
of the vertical plane passing through eyg. We then multiply this bound by the
number n of edges, to obtain a bound on the overall number of vertices of Lx. We
first rephrase this problem in terms of the lower envelope of a certain collection
of surface patches in 3-space, one patch for each edge of K (other than eg), and
then exploit the results on lower envelopes reviewed above.

The space L., of oriented lines that touch eq is 3-dimensional: each such line
£ can be specified by a triple (¢, k, (), where ¢ is the point of contact with eg
(or, more precisely, the distance of that point from one designated endpoint of
€p), and k = tand, { = — cot ¢, where (0, ¢) are the spherical coordinates of the



direction of £, that is, 8 1s the orientation of the zy-projection of £, and ¢ 1s the
angle between £ and the positive z-axis.

For each edge e # e of K, let 0. be the surface patch in £, consisting of all
points (¢, k, ¢) representing lines that touch e and are oriented from e to e. Note
that if (¢, k, () € o, then ¢’ > ( iff the line (¢, k,¢’) passes below e. It thus follows
that a line € in L., is a vertex of the lower envelope of Lk if and only if £ is a
vertex of the lower envelope of the surfaces o, in the tk(-space, where the height
of a point is its (-coordinate. It is easy to show that these surfaces are algebraic
of constant description complexity. Actually, 1t is easily seen that the number
s of intersections of any triple of these surfaces is at most 2. The paper [43]
studies the special case of lower envelopes of collections of such algebraic surface
patches in 3-space, with the extra assumption that s = 2. It is shown there

that the complexity of the lower envelope of such a collection is O(n? - 2°V 1Og"),
for some absolute positive constant ¢, a bound that is slightly better than the
general bound stated above. These arguments immediately complete the proof.
(This bound has been independently obtained by Pellegrini [60], using a different
proof technique.) Recently, de Berg [26] has given a lower bound construction, in
which the lower envelope of Lk has complexity £2(n?), implying that the upper
bound stated above is almost tight in the worst case.

We can extend the above result as follows. Let K be a polyhedral terrain,
as above. Let R denote the space of all rays in 3-space with the property that
each point on such a ray lies on or above K. We define the lower envelope of R
and its vertices in complete analogy to the case of Lg. By inspecting the proof
sketched above, one easily verifies that it applies equally well to rays instead of
lines. Hence we obtain that the number of vertices of Rg, as defined above, is

also O(n® - 2°V 1Og").

We can apply this bound to obtain a bound of O(n® - QCIVIOg”), for any
¢ > ¢, on the number of topologically-different orthographic views (i.e., views
from infinity) of a polyhedral terrain K with n edges. We omit here details of
this analysis, which can be found in [43]. The paper [29] gives a lower bound
construction that produces £2(n®a(n)) topologically-different orthographic views
of a polyhedral terrain, so the above bound is almost tight in the worst case. It is
also instructive to note that, if K is an arbitrary polyhedral set in 3-space with n
edges, then the maximum possible number of topologically-different orthographic
views of K is @(n°%) [61].

Consider next the extension of the above analysis to bound the number of
perspective views of a terrain. As shown recently in [6], the problem can be
reduced to the analysis of O(n?®) lower envelopes of appropriate collections of
5-variate functions. This leads to an overall bound of O(r®*¢), for any £ > 0, for
the number of topologically-different perspective views of a polyhedral terrain
with n edges. This bound is also known to be almost tight in the worst case, as
follows from another lower bound construction given in [29]. Again, in contrast,
If K is an arbitrary polyhedral set with n edges, the maximum possible number
of topologically-different perspective views of K is ©@(n?) [61].



Geometric Optimization: In the past few years, many problems in geomet-
ric optimization have been attacked by techniques that reduce the problem to a
problem involving arrangements of surfaces in higher dimensions. These reduced
problems sometimes call for the construction of, and searching in lower envelopes
or other substructures in such arrangements. Hence the area of geometric op-
timization is a natural extension, and a good application area, of the study of
arrangements, as described above.

One of the basic techniques for geometric optimization is the parametric
searching technique, originally proposed by Megiddo [58]. It has been used to
solve a wide variety of geometric optimization problems, including many of those
that involve arrangements. Some specific results of this kind include:

— Selecting distances in the plane: Given a set S of n points in IR* and a
parameter k < (g), find the k-th largest distance among the points of S [2].
Here the problem reduces to the construction and searching in 2-dimensional
arrangements of congruent disks.

— The segment center problem: Given a set S of n points in IR?, and a line
segment e, find a placement of e that minimizes the largest distance from the
points of S to e [35]. Using lower envelopes of bivariate functions, the problem
can be solved in O(n'*¢) time, for any ¢ > 0, improving substantially a
previous near-quadratic solution given in [4].

— Extremal polygon placement: Given a convex polygon P and a closed
polygonal environment ), find the largest similar copy of P that is fully
contained in ) [66]. This is just an extension of the corresponding motion
planning problem, where the size of P is fixed. The running time of the
algorithm is almost the same as that of the motion planning algorithm given
in [51, 52].

— Width in three dimensions: Compute the width of a set S of n points
in IR?; this is the smallest distance between two parallel planes enclosing
S between them. This problem has been studied in a series of papers [1,
7, 21], and the current best bound is O(n®/?*%), for any ¢ > 0 [7]. The
technique used in attacking this and the two following problems reduce them
to problems involving lower envelopes in 4 dimensions, where we need to
construct and to search in such an envelope.

— Biggest stick in a simple polygon: Compute the longest line segment
that can fit inside a given simple polygon with n edges. The current best
solution is O(n3/?%¢), for any € > 0 [7] (see also [1, 9]).

— Smallest-width annulus: Compute the annulus of smallest width that
encloses a given set of n points in the plane. Again, the current best solution
is O(n3/2t), for any € > 0 [7] (see also [1, 9]).

— Geometric matching: Consider the problem where we are given two sets
S1, S9 of n points in the plane, and we wish to compute a minimum-weight
matching in the complete bipartite graph 57 x Ss, where the weight of an
edge (p, q) is the Euclidean distance between p and ¢. One can also consider
the analogous nonbipartite version of the problem, which involves just one
set S of 2n points, and the complete graph on S. The goal is to explore the



underlying geometric structure of these graphs, to obtain faster algorithms
than those available for general abstract graphs.

It was shown in [68] that both the bipartite and the nonbipartite versions of
the problem can be solved in time close to n?-°. Recently, a fairly sophisti-
cated application of vertical decomposition in 3-dimensional arrangements,
given in [3], has improved the running time for the bipartite case to O(n?*¢),
for any € > 0. This technique does not yet extend to the nonbipartite case,
which remains an interesting open problem.

This list is by no means exhaustive.

A final comment is that, although the parametric searching technique yields
algorithms that are efficient theoretically, they are usually quite difficult to im-
plement, or even just to describe, because an efficient implementation of algo-
rithms based on parametric searching requires the existence of a fast parallel
algorithm for some related problem. Moreover, in most of the applications, one
needs to compute the roots of high-degree polynomials, which, if done exactly,
slows down the algorithm considerably.

Some effort was made recently to replace parametric searching by alternative,
simpler, and more geometric-oriented techniques. The alternative methods that
have been used for problems involving arrangements include randomization [7,
55], and expander graphs [49, 50]. However, these techniques work so far only in
some special cases, and no general technique is known.
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