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Abstract

We develop efficient(1 + ε)-approximation algo-
rithms for generalized facility location problems. Such
facilities are not restricted to being points inRd, and can
represent more complex structures such as linear facili-
ties (lines inRd, j-dimensional flats), etc. We introduce
coresets for weighted (point) facilities. These prove to
be useful for such generalized facility location problems,
and provide efficient algorithms for their construction.
Applications include:k-mean andk-median general-
izations, i.e., findk lines that minimize the sum (or sum
of squares) of the distances from each input point to its
nearest line. Other applications are generalizations of
linear regression problems to multiple regression lines,
new SVD/PCA generalizations, and many more. The
results significantly improve on previous work, which
deals efficiently only with special cases. Open source
code for the algorithms in this paper is also available.

1 Introduction

An avalanche of recent work has been generated by
the seminal work of Agarwal, Har-Peled, and Varadara-
jan [1] that formally defined the notion of acoreset. In-
tuitively, given some property for a set of pointsP ⊂ Rd

(such as its width, diameter, smallest bounding box,
etc.), a coreset for this property is a small (possibly
weighted) subset ofP , that approximately preserves this
property [2]. Small coresets often imply efficient ap-
proximation algorithms for related optimization prob-
lems.
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As a motivating example, letP be a set of points in
Rd. Har-Peled and Mazumdar [16] describe how to con-
struct acoreset fork-median: This is a weighted subset
S of P , so that for any set ofk points inRd (calledfacil-
ities), the weighted sum of distances from points inS to
their nearest facilities is approximately the same as (i.e.,
differs by a factor of1 ± ε from) the sum of distances
from the points ofP to their nearest facilities. The sum
of distances is used in “median” problems; in “mean”
problems we replace it by the sum of squared distances.

Such a coreset implies an efficient approximation al-
gorithm for thek-median (ork-mean) problem: An op-
timal set ofk facilities forS is a good approximation to
the optimal set forP , and, ifS is sufficiently small, the
former set can be found efficiently via brute force.

Generalized facilities.We seek to study generalizations
of k-median/mean like problems where facilities are not
restricted to being points inRd, but possibly more gen-
eral structures. In particular, we are interested in linear
facilities (lines orj-dimensional flats,j ≥ 2, in Rd).

Finding a small set of low-dimensional flats that ap-
proximately matches the input points is a problem that
appears in a great many areas. For example, “one of the
most fundamental problems in computer vision is to find
straight lines in an image” [4]. Other examples include:
matrix approximation [9], image processing [24], data
compression [21], graphics [18], socioeconomics [19],
and many more.

In some cases such problems are amenable to alge-
braic techniques, in particular finding one flat that ap-
proximately minimizes the sum of squared distances can
be done using SVD or PCA techniques. This does not
hold for the sum of distances, and does not hold for
k > 1 generalized facilities. The class of problems we
consider include many such variants that are unlikely to
admit a polynomial-time solution whenk is part of the
input [20] (unlessP = NP ). For such problems no
non-trivial approximation algorithms were previously
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known. E.g., given a set of points in 3-dimensional
space, find a1-dimensional flat (line) inR3 that ap-
proximately minimizes the sum of distances from to the
points. We give a linear time PTAS for this problem.

Coresets for weighted facilities.To tackle optimization
problems of this kind that deal with linear facilities, we
introduce a novel tool, calledcoresets for weighted fa-
cilities. Specifically, letP be a set of weighted pointson
a line `, andC be a set of weighted facilities (points) in
Rd, where eachc ∈ C has some positive weightW (c).
We defineν ′C(P )

(
resp. µ′C(P )

)
as the overall sum

of minimal weighted distances (resp. squared weighted
distances) from points to facilities. That is

ν ′C(P ) =
∑

p∈P

(
w(p) ·min

c∈C
{W (c) ‖p− c‖}

)
, and

µ′C(P ) =
∑

p∈P

(
w(p) ·min

c∈C

{
(W (c) ‖p− c‖)2}

)
.

Fix k andε > 0. A (possibly differently) weighted set
S ⊆ P is called a(k, ε)-coreset for weighted facilities,
if for anyweighted set ofk facilities (points)C ⊂ Rd,
(i) and (ii ) hold:

(i) (1− ε)ν ′C(P ) ≤ ν ′C(S) ≤ (1 + ε)ν ′C(P ), (1.1)

(ii) (1− ε)µ′C(P ) ≤ µ′C(S) ≤ (1 + ε)µ′C(P ).

In other words, a coreset for the weighted facilities prob-
lem is a (weighted) subset of the input set, so thatfor
any k facilities, with any associated weights, the sum
of minimum weighted (squared) distances to the facil-
ities is about the same for the original set and for the
weighted subset.

This problem is interesting in its own right, and arises
naturally in facility location (see [10]). However, we
only know how to construct(k, ε)-coresets for weighted
facilities when the points ofP all lie on a line (but the
facilities can be anywhere inRd), and it is open at the
moment whether the construction can be extended to ar-
bitrary input sets inRd, d ≥ 2.

Nevertheless,(k, ε)-coresets for weighted facilities
for point sets on a line, are sufficient for solving opti-
mization problems for generalized facilities of the kinds
mentioned above, for aribtrary point sets. Specifically,
they lead to construction of new coresets for generalized
facilities, with no restriction on the input setP in Rd.

For a collection of generalized facilitiesY , let
dist(p, Y ), p ∈ Rd, denote distance from pointp to the
closest generalized facilityy ∈ Y . We obtainlinear and
point facilitiescoresets for arbitraryP ⊂ Rd. I.e., given
k andε, the coresetS computed fromP has the property
that for any (mixed) setY that contains0 ≤ j ≤ k lines

and at mostk − j points inRd, (i) and (ii ) hold:

(i) (1− ε)νY (P ) ≤ νY (S) ≤ (1 + ε)νY (P )

(ii) (1− ε)µY (P ) ≤ µY (S) ≤ (1 + ε)µY (P )

whereνY (P ) =
∑

p∈P

(
w(p) · dist(p, Y )

)
,

andµY (P ) =
∑

p∈P

(
w(p) · (dist(p, Y ))2

)
.

Thus, this coreset is a generalization of coresets fork-
median, and simultaneously, a generalization of coresets
for k-mean. Additionally, this coreset approximately
preserves distances to bothpoint facilities andline fa-
cilities. ForY restricted to point sets, [16] give coresets
for k-median andk-mean. It is intreresting that, unlike
prior constructions, we get thesamecoreset for bothk-
mean andk-median. However, the significance of our
construction mainly lies in its applications to general-
ized linear facilities.

In addition, for arbitrary input point setsP in Rd,
our coresetS has the property that for any singlej-
dimensional flatf , with 0 ≤ j ≤ d − 1, (i) and (ii )
hold:

(i) (1− ε)ν{f}(P ) ≤ ν{f}(S) ≤ (1 + ε)ν{f}(P )

(ii) (1− ε)µ{f}(P ) ≤ µ{f}(S) ≤ (1 + ε)µ{f}(P )

whereν{f}(·), andµ{f}(·) are defined in an analogous
manner to the preceding definitions.

Further Results. As mentioned, we define the no-
tion of a weighted facilities(k, ε)-coresetS for a point
set P on a line. We give an algorithm to construct
such coresets, inO(nk) time, where the coreset is of
size 2O(k)ε−2k−1 log4k−3 n. Given any set of points
P ⊂ Rd, for fixed d ≥ 1, we construct these weighted
facility coresets for projections ofP onto certain lines,
and then combine them to form the desired coreset for
P itself. Recently, Har-Peled [15] proposed a set of size
2O(k)ε−k−1 logk+1 n) that satisfies only (1.1)(i).

Using these coresets we obtain LTAS’s (O(n)-time
(1 + ε)-approximation algorithms) for the following
problems.

C1 Coreset for linear and point facilities: Find a small
weighted subset that well approximates the sum of dis-
tances, or of squared distances, from the points ofP to
anygiven set of0 ≤ i ≤ k lines and at mostk− i points
in Rd, up to a factor of(1 + ε). The same coreset also
approximates sum of (squared) regression distances (i.e,
distances measured in thexd-dimension). We construct
such coresets of sizeε−d−k(log n)O(1) in O(n) time, for
any fixedk, d ≥ 1.

C2 Coreset for a flat: Find a small weighted subset that
well approximates the sum of distances, or of squared
distances, fromP to any (single) j-dimensional flat,



0 ≤ j ≤ d − 1. We construct such coresets of size
ε−d−1(log n)O(j2) in O(n) time, for any fixedd ≥ 1.

P1 Approximatek-line median/mean: Find a set ofk
lines in Rd such that the sum of the distances, or the
squared distances, from the points ofP to their closest
lines is minimized, up to a factor of(1 + ε).

P2 Approximate j-flat median/mean: Find a j-
dimensional flatf such that the sum of the distances,
or the squared distances, from the points ofP to f is at
most (1 + ε) times the optimum value of such a sum.
The solution uses a single coreset that is good forany
dimensionj.

P3 Restricted Facility Location: Approximate thek-
line median/mean orj-flat median/mean with additional
constraints on the allowed location of the lines/flat, by
forbidding them, or alternatively forcing them, to pass
through certain locations.

P4 Approximatek-regression lines andM -estimators:
Solve problems P1–P3, now with vertical (regression)
distances (in the direction of thexd-axis), squared or
non-squared.

P5 Data Fitting with outliers: For a fixedk andk′, or
for a fixed value ofk + k′, find a set ofk lines andk′

points that minimizes the sum of distances, or of squared
distances, from each point to its nearest facility (with or
without location constraints). Note thatk′ represents the
number of outlierclustersand not the number of out-
liers. This may suggest a way to deal with outliers when
their exact number is not known.

We remark that forε = Θ(1) we can also generalize
all the above results for high-dimensional spaces,i.e.,
whered is not constant. In this case our construction
runs in time linear ind and yields a coreset of size inde-
pendent ond. See Remark 2.3.

Related Work.

C1-C2 Although coresets for linear facilities are dis-
cussed in several places, no constructions have yet been
suggested [9, 2].

P1 For k = 1 andd = 2, Yamamoto et al. [25] give
anO(n1.5 log2 n) time algorithm that computes a1-line
median for a set of input pointsP . Using Dey’s im-
proved bound on the number of halving lines [8], the
algorithm can be improved toO(n4/3 log2 n).

The 1-line mean can be computed inO(n) time us-
ing the SVD technique, for any fixedd. In previous
work [12] we gave an exact (optimal) solution for thek-
line-mean in the plane that takesO(n3) time for k = 2,
andnO(k2) for k ≥ 3. Recently, [9] give an(n/ε)O(k/ε)

PTAS for computing thek-line mean. Many heuristics
for this problem, such as the Hough transform and In-
dependent Component Analysis (ICA), have been pro-

posed (see references in [17]).

P2 Although thej-flat mean can be computed inO(n)
time for any fixedd andj using SVD, no analogous ef-
ficient algorithms are known for thej-flat median or its
approximations for1 ≤ j < d− 1.

The(d− 1)-dimensional flat that minimizes the sum
of distances toP can be computed inO(nd) time [3].
Prior to our work, no polynomial time approximation
was known for aj-dimensional flat (j < d − 1) that
minimizes the sum of distances toP (even forj = 1
andd = 3); these are cited as “interesting open prob-
lems” [22, 10, 3]. Our PTAS runs in linear time for fixed
d andε.

P3 Polynomial-time algorithms for a good approximate
(d − 1)-flat with respect to the sum of distances or dis-
tances squared, and subject to additional restrictions, are
given in [10, 22].

For fixed ε and d, we give linear time PTAS algo-
rithms for computing approximatek lines or a singlej-
dimensional flat (2 ≤ j ≤ d−1), subject to various con-
straints. Note that even in the case of one flat, or even
one line in the plane (j = 1, d = 2), algebraic methods,
such as the SVD/PCA, cannot handle constraints.

P4 A (1 + ε)-approximation for thej-flat mean, for
squared regression distances with no constraints, can
also be computed inO(n) time using SVD. For the me-
dian (regression) line in the plane (d = 2), the 1-line
median can be computed inO(n) time [25]. Ford > 2
andj = d − 1, a PTAS that takesO(n log n)dO(1) +
O(n)(1/ε)O(1) time was recently suggested by [7] for
the (d − 1)-flat median with vertical (regression) dis-
tances. No results are known for the case1 < j < d−1,
or where there are constraints on the location of the
flat/lines.

P5Outliers were investigated for thek-(point) mean and
median problems [6, 5]. However, we do not know of
any generalization for linear facilities, even for a single
line in the plane.

Why coresets for weighted facilities?To motivate the
relationship between weighted facilities and linear facil-
ities, consider the following (restrictive) scenario: The
(unweighted) input point setP resides on some line
` ⊂ Rd, f ⊂ Rd is another line, and̀ ∩ f 6= ∅. It
follows from elementary trigonometry, that the distance
between a pointp ∈ ` andf is equal to‖c− p‖ sin θ,
wherec is the point of intersection betweeǹand f ,
andθ is the angle formed atc by these two lines. See
Fig. 1(left).

This simple observation lies at the heart of our
work. It extends to arbitrary (skew) lines̀andf

(
see

Fig. 1(right)
)
. I.e., for any lines̀ andf , such thatf is
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Fig. 1: (left ) dist(p, f) = W (c) · dist(p, c), with W (c) = sin θ. Hence, c, weighted by sin θ, replaces f for points on `.
(right ) dist(p, f) = W (c) · dist(p, c) with W (c) = sin θ, for any pair (`, f ) of lines in Rd, where c is a point on the line
that spans the shortest distance between ` and f , at distance dist(`, f)/ sin θ from the point c′ ∈ `, nearest to f , and θ
is the angle between the lines ` and f (a routine exercise in stereometry).

not a translation of̀ , there exist some weighted point
facility c ∈ Rd such that the (weighted) distance from
any pointp ∈ ` to c is equal to the distance betweenp
andf . This claim can be further generalized to the case
wheref is a j-dimensional flat, of arbitrary dimension
j ≤ d− 1, and also for vertical (regression) distances.

This seemingly suggests a very general transforma-
tion. Subject to the restriction that the input point setP
be contained in some line, there is a general reduction
from any optimization problem that involves distances
between points ofP and arbitraryj-dimensional flats,
to another optimization problem that involves the points
of P and weighted (point) facilities.

Unfortunately, for general sets of pointsP ⊂ Rd,
there is no pointc ∈ Rd such that the distance between
a linear facilityf and a pointp ∈ P is proportional to
the distance betweenp andc. We show how to overcome
this setback by reducing the general case to several sub-
problems involving points on a line.

The paper is organized as follows. In Section 2 we
present the construction of coresets for weighted facil-
ities for point sets on a line. Then, in Section 3, we
use this construction to obtain coresets fork-line me-
dian/mean for arbitrary point sets inRd (problem C1),
and also for flat median/mean (problem C2).

For lack of space, this abstract omits most of
the proofs. They can be found in the full ver-
sion of the paper, available on-line, together a
companion source code, in C++ and Mathlab, at
www.cs.tau.ac.il/˜dannyf . The applications
of these coresets for solving problems P1–P5 are also
omitted. These applications, however, are trivial: Since
the coresetS has small size, we can use any (possibly
inefficient) algorithm for computing, say, the (exact or
approximate)k-line median forS, and then report it as
an approximatek-line median for the whole input set.

We present such algorithms in [14] and [12].

2 Coresets for Weighted Facilities

2.1 ε-Coresets for a single facility

Let P be a weighted set of points inRd and0 < ε ≤
1. A weighted setS, whereS ⊆ P , is called anε-coreset
for a single facilityif, for every facility (point)c ∈ Rd,
(i) and (ii ) hold:

(i) (1− ε)ν{c}(P ) ≤ ν{c}(S) ≤ (1− ε)ν{c}(P )
(2.1)

(ii) (1− ε)µ{c}(P ) ≤ µ{c}(S) ≤ (1− ε)µ{c}(P ).

The algorithmSINGLE-FACILITY -CORESETgiven be-
low is very similar to the one in [16], but, unlike [16],
produces a single coreset that satisfies both (2.1)(i) and
(ii). We use this algorithm later in this section, and in
Section 3.

Algorithm SINGLE-FACILITY -CORESET(P , ε)
Input: Weighted point setP ⊂ Rd, 0 < ε ≤ 1
Output: A single-facility9ε-coreset forP of size

O(ε−d log W ), whereW =
∑

p∈P w(p)

1 P ← ∑
p∈P

(
w(p) · p)

/W ,

R ← ∑
p∈P

∥∥p− P
∥∥ /W

2 for j ← 1 to dlog W e
3 do Bj ⊂ Rd := the closed ball with radius

2jR centered atP (* See Figure 2 *)
(* Note: P ⊂ Bdlog We, since∥∥p− P

∥∥ ≤ WR ∀p ∈ P *)
4 Gj ← vertex set of an infinite grid of

cell size2jεR/
√

d centered atP
5 if j = 1
6 then V1 ← G1 ∩B1



7 else Vj ← Gj ∩ (Bj \Bj−1)
8 for each nonempty cell∆ ∈ Vj

9 do choose arbitrary pointp′ in P ∩∆
(* Note: ‖p− p′‖ ≤ ε

∥∥p− P
∥∥ if j > 1,

i.e.,‖p− p′‖ ≤ ε ·max{R,
∥∥p− P

∥∥}. *)
10 w(p′) ← ∑

p∈P∩∆ w(p)
11 S ← S ∪ {p′}
12 return S With careful implementation,SINGLE-
FACILITY -CORESET takes O(n) time, using the log
and floor functions. The proof thatSINGLE-FACILITY -
CORESETindeed returns anε-coreset forP is a conse-
quence of the following lemma; its somewhat cumber-
some notation is needed for further applications of prov-
ing the correctness of constructions of other coresets of
interest, in Section 3.

Lemma 2.1. Let P andS be two weighted sets inRd,
and letg be a mapping fromP toS such that the weight
w(p′) of p′ ∈ S is equal to the sum of the weights of all
pointsp ∈ P with g(p) = p′.

Let{P1, P2, . . . , Pm} be some partition ofP , and let
C1, C2, . . . , Cm, Ci ⊂ Rd, be a collection ofm “ob-
jects” (sets) inRd. DefineR =

∑m
i=1 νCi(Pi)/w(P ),

where w(P ) =
∑

p∈P w(p). Assume that for some
ε > 0 we have

‖p− p′‖ ≤ ε ·max{R, dist(p, Ci)},

for everyp ∈ Pi, 1 ≤ i ≤ m, and its imagep′ = g(p).
Then, for anyQ ⊂ Rd,

(i)
m∑

i=1

νCi(Pi) ≤ ανQ(P ) for someα ≥ 1, implies that

|νQ(P )− νQ(S)| ≤ 2αε · νQ(P ).

(ii)
m∑

i=1

µCi(Pi) ≤ βµQ(P ) for someβ ≥ 1, implies

that |µQ(P )− µQ(S)| ≤ 9βε · µQ(P ).

Corollary 2.2. Let P be a set ofn points in Rd

for constantd, and 0 < ε ≤ 1. Then SINGLE-
FACILITY -CORESET(P, ε/9) returns, in O(n) time, a
single-facilityε-coreset forP , of sizeO

(
ε−d log n

)
.

Proof. DefineP =
∑

p∈P p/w(P ), andR = νP (P )/n.
As noted in line 2.1 ofSINGLE-FACILITY -CORESET,
we have‖p− p′‖ ≤ εmax{R,

∥∥p− P
∥∥} for everyp ∈

P and its representativep′ in the coreset. It is also well
known that for anyq ∈ Rd we haveνP (P ) ≤ 2νq(P ),
and alsoµP (P ) ≤ µq(P ) (see [11]). Thus, substitut-
ing m = 1, C1 = {P}, Q = {q}, α = 2, β = 1 in
Lemma 2.1, yields the corollary.

Remark 2.3. The algorithm SINGLE-FACILITY -
CORESET is the only algorithm in this paper which

explicitly uses space and running time that are expo-
nential in d. However, forε = Θ(1), choosing an
arbitrary single pointp′ in P ∩ (Bj \ Bj−1) at line 9
of the algorithmSINGLE-FACILITY -CORESET, makes
the construction time linear ind. This yields constant
approximation for the coresets constructed in this paper,
also for high-dimensional spaces (non-constantd).

2.2 (k, ε)-Coresets for weighted facilities

In this section we assume thatP is a set of points on
a line` in Rd.

Voronoi region. Given a weighted set of facilitiesC ⊂
Rd, with an associated weight functionW : C 7→ R, we
define theVoronoi regionV (c) associated withc ∈ C to
be the set of pointsx ∈ Rd such thatW (c) ‖x− c‖ ≤
W (c′) ‖x− c′‖ for all c′ ∈ C. See Fig. 2.

Voronoi intervals and boundaries.Given a linè , a set
of facilities C ⊂ Rd, and an associated weight func-
tion W : C 7→ R+, a Voronoi interval for a facility
c ∈ C is a connected component ofV (c) ∩ `. End-
points of Voronoi intervals are calledVoronoi bound-
aries. Two Voronoi intervals are calledadjacentif they
share a Voronoi boundary.

Remark: Note that if all the facilities have the same
weight, then each facility has a single connected Voronoi
interval; see Fig. 2(left). However, if their weights are
unequal, then a single facility may serve multiple inter-
vals; see Fig. 2(right).

Right Voronoi IntervalLeft Voronoi Inerval

c2c1
ℓ

1c
2c 3c

4c 5c

6c
7c

8c

Fig. 2: (left) Two facilities of equal weight induce two
Voronoi intervals. (right) Eight weighted facilities in the
plane, and the resulting partition of their eight Voronoi
regions into 12 Voronoi intervals.

Lemma 2.5. Let C ⊂ Rd be a weighted set ofk facil-
ities. The total number of their Voronoi intervals on a
fixed line` is at most2k − 1.

Proof. Follows from the easy observation that the se-
quence of facilities that own the Voronoi intervals is
a Davenport-Schinzel sequence of order 2 onk sym-
bols [23].

In what follows we assume, without loss of general-
ity, that` is thex-axis.



(k, ε)-V-coreset forP . A weighted setS ⊆ P is called
a (k, ε)-V-coreset, if, for any weighted set of facilities
C ⊂ Rd, such thatP is contained in at mostk adjacent
Voronoi intervals ofC, (i) and (ii ) hold:

(i) (1− ε)ν ′C(P ) ≤ ν ′C(S) ≤ (1 + ε)ν ′C(P ),

(ii) (1− ε)µ′C(P ) ≤ µ′C(S) ≤ (1 + ε)µ′C(P ).

Note thatk here differs from the number of facilities (but
at most by a factor of 2).

2.3 The construction of (k, ε)-V -coresets

Let P be a set ofn points on thex-axis, k ≥ 1 an
integer, and0 < ε ≤ 1. The algorithmV-CORESET

returns a weighted setS of size|S| = O
(
log2k−1 n

)
,

that is a(k, ε)-V-coreset forP .

Without loss of generality we may assume that|P | >
dδ/εe. Otherwise, we takeP itself as the coreset; see
Line 2 of V-CORESET. The algorithm is recursive and
makes use of(k−1, ε)-V-coresets for various subsets of
P , where the base case for the recursion is the casek =
1. In this case (Line 3) the weight of the single facility
is irrelevant for the property that we seek. Thus, a3ε-
coreset forP , as constructed above, is also a(1, 3ε)-V-
coreset forP . Fork > 1 the algorithm is given below.

Algorithm V-CORESET(P, k, ε)
Input: P : set ofn points on a line,k ≥ 1 an integer,
and0 < ε ≤ 1.
Output: Weighted-facilities (k, 3ε)-V-Coreset forP .

1 if |P | ≤ dδ/εe (* δ is a constant that defined in the
full version of this paper *)
2 then return P
3 if k = 1
4 then return SINGLE-FACILITY -CORESET(P , 3ε)
5 p1 ← leftmost point ofP ,

pbn/2c ← bn/2c-leftmost point ofP
6 end ← pbn/2c
7 for i ← 1 to dlog ne
8 do begin ← end − 2i−1

∣∣pbn/2c − p1

∣∣ /n2

9 Bi ← P ∩ (begin, end]
10 end ← begin
11 Z ← ∅ (* Z is a collection of sets *)
12 for i ← 1 to dlog ne
13 do Bi1 ← ∅; size ← 1; j ← 1;
14 for m ← 1 to |Bi|
15 do if i=1
16 then add toBij themth leftmost point

of Bi

18 else add toBij themth rightmost point
of Bi

19 if |Bij | = size

20 thenZ ← Z ∪ {Bij}
21 j ← j + 1
22 Bij ← ∅
23 if (j mod dδ/εe) = 0
23 then size ← 2size
24 S` ← ∅
25 for eachB ∈ Z
26 do S` ← S` ∪

(
V-CORESET(B, k − 1, ε)

)
27 Repeat lines 5–26 for thedn/2e rightmost

points ofP , resulting in a setSr

(* Use a mirror-image construction *)
28 return S` ∪ Sr

Lemma 2.6. The number of setsBij ∈ Z is
O(ε−1 log2 n).

Proof. No Bij ∈ Z can have more thand2εn/δe points.
Indeed, forj ≤ bδ/εc, |Bij | = 1 by construction, and
for j > bδ/εc, the construction implies that each of
thebδ/εc setsBij′ that precedesBij satisfies|Bi,j′ | ≥
1/2 |Bij | ≥ dεn/δe, and this would imply that there are
more thann points overall inP . The size of the largest
subset of eachBi is thus at mostd2εn/δe, which is eas-
ily seen to imply that the number of subsets ofBi is
O(ε−1 log n). Since there areO(log n) setsBi, it fol-
lows that|Z| = O(ε−1 log2 n).

Lemma 2.7. The number of points in the setS is at most
2O(k)ε−k log2k−1 n.

Proof. The proof is by induction onk. For the general
induction step, we only considerS`; the proof is similar
for Sr. DefineT (k, ε) to be the maximum size ofS`

for a givenk andε. From the construction fork = 1,
it follows that T (1, ε) = O(1/ε log n), which satisfies
the bound. Therefore, by Lemma 2.6, for an appropriate
absolute constantb we have

T (k, ε) = |Z| · T (k − 1, ε) ≤ bkε−k log2k−1 n.

To prove thatS is a (k, ε)-V-coreset, we will fre-
quently use the following simple observation. We de-
note byI(X) the smallest interval containing a setX.

Observation 2.8. (i) The size of the intervalI(Bi) for
i > 1 is less than twice the size of all the intervals to its
right, i.e (cf. Fig. 3(left)),|I(Bi)| ≤ 2

∑
m<i |I(Bm)|.

(ii ) For anyBij ∈ Z that contains at least two points,
we have (cf. Fig. 3(right))|Bij | ≤ 2ε/δ)

∑
m<j |Bim|.

Theorem 2.9. Let P be a set of points on a line,k ≥
1 an integer, and0 < ε ≤ 1. The algorithmV-
CORESET(P, k, ε) returns, inO(kn) time, a(k, 3ε)-V-
coresetS for P of size2O(k)ε−k log2k−1 n.

Proof. The bound on the size ofS is given in
Lemma 2.7. Each run ofV-CORESET, excluding the
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Fig. 3: (left) The high-level partition of the bn/2c set P` into intervals and sets. (right) Partition of B1 into subsets. The
other subsets Bi of Z, for i > 1, are similarly partitioned, but from right to left rather than from left to right.

recursive call, can be implemented inO(n) time, for
O(kn) time overall. Lines 5–10 ofV-CORESETcan be
easily implemented, inO(n) time (without sortingP )
using the log and floor functions, similarly to the imple-
mentation ofSINGLE-FACILITY -CORESET. Lines 11–
23 can be implemented inO(n) time by finding the
points in thebδ/εc last (largest) subsetsBij ⊆ Bi in
O(|Bi|) time, using a linear-time algorithm for order
statistics, and then by continuing recursively on the re-
maining points.

Interestingly enough, the following proof of correct-
ness for non-squared distances remains true for squared
distances, if we use everywhere the cost functionµ′ in-
stead ofν ′, and replace‖·‖ by ‖·‖2. For the casek = 1
the weight of the single facility is irrelevant for the prop-
erty that we seek. Thus, by Corollary 2.2, the3ε-coreset
that is returned bySINGLE-FACILITY -CORESETis also
a (1, 3ε)-V -coreset forP ; see Line 4. It is left to prove
the casek > 1.

Let C ⊂ Rd be any weighted set of facilities, such
thatP falls into no more thank adjacent Voronoi inter-
vals of C. We denote byP` the set ofbn/2c leftmost
points ofP . By line 2.3,S = S` ∪ Sr, whereS` is the
coreset forP` andSr is the coreset forPr = P \P`. We
have

|ν ′C(P )− ν ′C(S)| =∣∣(ν ′C(P`) + ν ′C(Pr)
)− (

ν ′C(S`) + ν ′C(Sr)
)∣∣

≤ |ν ′C(P`)− ν ′C(S`)|+ |ν ′C(Pr)− ν ′C(Sr)| .
(2.2)

We will prove that |ν ′C(P`)− ν ′C(S`)| ≤
(3/2)εν ′C(P ). A symmetric proof will then imply
|ν ′C(Pr)− ν ′C(Sr)| ≤ (3/2)εν ′C(P ). The coreset
property ofS then follows from (2.2). If it so happens
that for everyB ∈ Z, the intervalI(B) intersects no
more thank−1 Voronoi intervals, we are done, because
then, by the recursive construction,

|ν ′C(B)− ν ′C(SB)| ≤ εν ′C(B)

for eachB ∈ Z. The coresetS` is the union of the

coresets for allB ∈ Z, and thus

|ν ′C(P`)− ν ′C(S`)| =
∣∣∣∣∣
∑

B∈Z

(
ν ′C(B)− ν ′C(SB)

)
∣∣∣∣∣

≤
∑

B∈Z
|ν ′C(B)− ν ′C(SB)| ≤

∑

B∈Z
εν ′C(B)

= εν ′C(P`) ≤ εν ′C(P ) < (3/2)εν ′C(P ).

We are left to handle the case where there is some set
B ∈ Z such thatI(B) intersects allk Voronoi inter-
vals (and thus containsk− 1 Voronoi boundaries — see
Fig. 4). In this case the sum of errors contributed by the
rest of the(k − 1, ε) V-coresets is then

∑

X∈Z\{B}
|ν ′C(X)− ν ′C(SX)| ≤

∑

X∈Z\{B}
εν ′C(X)

≤
∑

X∈Z
εν ′C(X) = εν ′C(P`) ≤ εν ′C(P ).

We will show that in this case

|ν ′C(B)− ν ′C(SB)| ≤ ε

2
ν ′C(P ), and thus (2.3)

|ν ′C(P`)− ν ′C(S`)| ≤ εν ′C(P )+
ε

2
ν ′C(P ) =

3ε

2
ν ′C(P ).

It is left to prove (2.3). Letc be any facility inC.
For simplicity, we abuse notation, and writeν ′c(P ) in-
stead ofν ′{c}(P ). By construction,SB is a(k− 1, ε)-V-
coreset, so, by definition,SB is also a(1, ε)-V-Coreset.
Hence, |ν ′c(SB)− ν ′c(B)| ≤ εν ′c(B) ≤ ν ′c(B), so,
ν ′c(SB) ≤ 2ν ′c(B). Thus, for any facilityc ∈ C, the
left hand side of (2.3) can be bounded by

|ν ′C(B)− ν ′C(SB)| ≤ ν ′C(B) + ν ′C(SB) (2.4)

≤ ν ′c(B) + 2ν ′c(B) = 3ν ′c(B).

Let the facilityc′ be the projection ofc on thex-axis,
with weight W (c′) = W (c). See Fig. 4. Using the
triangle inequality,ν ′c(B) can be bounded by

ν ′c(B) = W (c)
∑

p∈B

‖p− c‖ (2.5)
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≤ W (c)
∑

p∈B

(‖c− c′‖+ ‖p− c′‖)

= W (c) |B| · ‖c− c′‖+ ν ′c′(B).

We now bound each of the two terms in the right hand
side of (2.5) by(ε/12)ν ′C(P ), which, using (2.4), will
prove (2.3) and conclude the proof of this theorem.
Let Bi be the set that containsB = Bij . We dis-
tinguish between the two following cases.(i) Bi =
B1: Let c ∈ C be the facility that serves the left-
most Voronoi interval, and denote byPc the points of
P that are served byc. Also, let BL denotes the set
of points ofB1 that lie to the left ofB, and note that
BL ⊆ Pc (see Fig. 4(right)). By Observation 2.8(ii ) we
have,|B| ≤ (ε/12) |BL|, and thus|B| ≤ (ε/12) |Pc|.
Clearly, c′ is the nearest point on thex-axis to c,
and therefore‖c− c′‖ ≤ ‖p− c‖ for any p ∈ P .
Hence,|Pc| · ‖c− c′‖ ≤ νc(Pc). Altogether we have

W (c) |B| · ‖c− c′‖ ≤ W (c) · ε

12
|Pc| · ‖c− c′‖

≤ ε

12
ν ′c(Pc) ≤ ε

12
ν ′C(P ).

To bound the second term of 2.5, letPL denote the
points ofP to the left ofB, and note thatPL ⊆ Pc;
see Fig. 4(right). Clearly,‖p− c′‖ ≤ ‖p− c‖ for ev-
ery p on thex-axis, and we getνc′(PL) ≤ νc(PL) ≤
νc(Pc). Using Lemma 2.10(i) below, we haveνc′(B) ≤
(ε/12)νc′(PL) (note that|B| > 1, since a single point
cannot intersectk > 1 Voronoi intervals). After multi-
plying byW (c), this yieldsν ′c′(B) ≤ (ε/12)ν ′c(Pc).

(ii ) B ⊆ Bi 6= B1 : The proof is symmetric, takingc
to be the facility that serves therightmostVoronoi inter-
val. The setsBR, PR and Lemma 2.10(ii ), should then
replaceBL, PL and Lemma 2.10(i), respectively.

To conclude the proof of Theorem 2.9, we still need
to show thatν′c(B) ≤ (ε/12)ν′c(PL) (for B ⊆ B1) or
ν′c(B) ≤ (ε/12)ν′c(PR) (for B ⊆ Bi 6= B1), for a facil-
ity c′ on thex-axis, and the same for squared distances.

This is proven in the full version as stated in the follow-
ing Lemma.

Lemma 2.10. Let P ⊂ R be a set of points. LetZ =
{Bij} be the partition ofP given in Lines 11–23 of the
algorithmV-CORESET, for the specified0 < ε ≤ 1 and
k. Consider a setB = Bij ∈ Z, where|B| > 1 (i.e.,
j > bδ/εc, see Fig. 3(right)), and letPL, PR denotes
the set of points ofP that lie to the left and right ofB,
respectively

(
see Fig. 4(right)

)
. Then, for any facility

c′ ∈ R, we have (i) fori = 1, νc′(B) ≤ (ε/12)ν′c(PL),
andµc′(B) ≤ (ε/12)µ′c(PL); (ii) for i > 1, νc′(B) ≤
(ε/12)ν′c(PR), andµc′(B) ≤ (ε/12)µ′c(PR).

Lemma 2.5 implies the following trivial modification
of Theorem 2.9.

Theorem 2.11. Let P be a set ofn points on a line,
k ≥ 1 an integer, andε > 0. The algorithmV-
CORESET(P, 2k − 1, ε/3) returns, in O(nk) time, a
weighted-facilities (k, ε)-coreset forP , of size|S| =
2O(k)ε−2k−1 log4k−3 n.

3 Coresets forP ⊆ Rd

So far we have constructed(k, ε)-coresets for a set
of points on a fixed line. In this section we use these
coresets to construct the following coreset for a set of
points inRd.

(k, j, ε)-Coreset.Let P be a set ofn points inRd, k ≥
1 and1 ≤ j ≤ d− 1 integers. A weighted setS, where
S ⊂ P is called a(k, j, ε)-coresetfor P , if for any setL
of 0 ≤ k′ ≤ k lines and at mostk − k′ points we have

(i) (1−ε)νL(P ) ≤ νL(S) ≤ (1+ε)νL(P ),

and if, for any flatf of dimension at mostj, we have

(ii) (1− ε)ν{f}(P ) ≤ ν{f}(S) ≤ (1 + ε)ν{f}(P ).



These properties also holds for squared distances, or re-
gression distances (squared or non-squared).

Our construction of this coreset crucially relies
on a randomized bicriteria constant-factor approxima-
tion algorithmBICRITERIA-APPROXIMATION(P, k, j),
which is described in a companion paper [13]. It
receives as input a point setP ⊂ Rd, and inte-
gers k, j, such thatk ≥ 1 and 1 ≤ j ≤ d −
1. It outputs a setF = {f1, f2, . . . , fm} of m =
2O(j)(kj)j+1 logj+2 n j-dimensional flats and a parti-
tion Π = {P1, P2, . . . , Pm} of P , such that, with prob-
ability 1/2, for any setY of at mostk flats, all of di-

mension no greater thanj,
m∑

i=1

νfi(Pi) ≤ 2j+2 · νY (P )

and
m∑

i=1

µfi
(Pi) ≤ 2j+2 · µY (P ). The algorithm takes

dn(kj log n)j+12O(j) time; see [13] for details.

In the following algorithm L INEAR-FACILITIES-
CORESET, we denote byproject(q, X) the projection
of a pointq on a set of pointsX (i.e., project(q,X) is
the nearest point toq among all points ofX). For a set
Q, we defineproject(Q,X) =

⋃
q∈Q project(q, X).

Algorithm L INEAR-FACILITIES-CORESET(P, k, j, ε)

Input: A set of pointsP ⊂ Rd, k, j, and0 < ε ≤ 1,
wherek ≥ 1 and1 ≤ j ≤ d− 1 are integers.
Output: A setS ⊆ P such that, with probability at least
1/2, S is (k, j, 5ε)-coreset forP .

1 (F, Π) ←BI-CRITERIA-APPROXIMATION(P, k, j)
2 S ← ∅
3 for i ← 1 to |F |
4 do fi ← theith j-dimensional flat inF .
5 Pi ← theith set of points inΠ.
6 f⊥i ← a (d− j)-dimensional flat that is

orthogonal tofi. (* See Fig. 5(up) *)
7 P ∗i ← project(Pi, f

⊥
i ).

8 for eachp∗ ∈ P ∗i do w(p∗) ← |P | / |Pi|
9 Si ←SINGLE-FACILITY -CORESET(P ∗i , ε)
10 for eachp′ ∈ Si

11 do f ← thej-dimensional flat that passes
throughp′, and parallel tofi.
(* See Fig. 5(down) *)

12 Pf ← the set of thosep ∈ Pi, such thatp′ is
the representative of
p∗ = project(p, f⊥i ) in Si. (* See
Line 9 of SINGLE-FACILITY -
CORESET*)

13 P̃f ← project(Pf , f)
14 if j = 1
15 then S̃f ← V-CORESET(P̃f ,2k − 1, ε)

2f
⊥

2f

1f

1f
⊥

if

fp P∈

*p

�
fp P∈ɶ

f

if
⊥ 'p

Fig. 5: (up) For j = 1 and P ⊂ R2, each fi ∈ F is a line,
as its orthogonal f⊥i . (down) For j = 1 and P ⊂ R3,
each fi ∈ F is a line, and its orthogonal f⊥i is a plane.

16 else S̃f ←L INEAR-FACILITIES

-CORESET(P̃f , k, j − 1, ε)
17 S ← S ∪ {p ∈ Pf | project(p, f) ∈ S̃f}

(* each point inS is also assigned the weight
of its correspondence point iñSf *)

18 return S
Omitting all further details, the main result of the pa-

per is:

Theorem 3.1. Let P be a set ofn points inRd, where
d ≥ 1 is constant,1 ≤ j ≤ d − 1, and0 < ε ≤ 1.
Also, letk ≥ 1 be a constant. Then, for sufficiently
large constantb, the algorithmL INEAR-FACILITIES-
CORESET(k, ε/b, j) computes, inO(n) time, with prob-
ability at least 1/2, a(k, j, ε)-coreset forP of size
ε−d−k(log n)O(j2)+2k−1. The running time isO(n).
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