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Abstract As a motivating example, |eP be a set of points in

R?. Har-Peled and Mazumdar [16] describe how to con-
We develop efficientl + )-approximation algo- struct acoreset fork-median This is a weighted subset

rithms for generalized facility location problems. Such ¢ ©f P, so that for any set of points inR¢ (calledfacil-
facilities are not restricted to being pointsitf, andcan  Ities), the weighted sum of distances from pointsSio

represent more complex structures such as linear facili- their nearest facilities is approximately the same as (i.e.,
ties (lines inR?, j-dimensional flats), etc. We introduce différs by a factor ofl =+ ¢ from) the sum of distances
coresets for weighted (point) facilities. These prove to ffom the points off to their nearest facilities. The sum
be useful for such generalized facility location problems, Of distances is used in “median” problems; in “mean”
and provide efficient algorithms for their construction. Problems we replace it by the sum of squared distances.
Applications include: k-mean andk-median general- Such a coreset implies an efficient approximation al-
izations, i.e., findc lines that minimize the sum (or sum gorithm for thek-median (ork-mean) problem: An op-
of squares) of the distances from each input point to its timal set ofk facilities for S is a good approximation to
nearest line. Other applications are generalizations of the optimal set forP, and, ifS is sufficiently small, the
linear regression problems to multiple regression lines, former set can be found efficiently via brute force.
new SVD/PCA generalizations, and many more. The Generalized facilities.We seek to study generalizations
results significantly improve on previous work, which ot ©_median/mean like problems where facilities are not
deals efficiently o_nly Wl_th speual cases. Oper_1 SOUICe restricted to being points iR?, but possibly more gen-
code for the algorithms in this paper is also available.  grg structures. In particular, we are interested in linear
facilities (lines orj-dimensional flatsj > 2, in R%).

Finding a small set of low-dimensional flats that ap-
1 Introduction proximately matches the input points is a problem that
appears in a great many areas. For example, “one of the

most fundamental problems in computer vision is to find
An avalanche of recent work has been generated bygirajight lines in an image” [4]. Other examples include:

the seminal work of Agarwal, Har-Peled, and Varadara- y,atrix approximation [9], image processing [24], data

ja.n'[l] tha.t formally defined the notion of.reseI Ind— compression [21], graphics [18], socioeconomics [19],
tuitively, given some property for a set of poiritsc R and many more.

(such as its width, diameter, smallest bounding box,
etc.), a coreset for this property is a small (possibly
weighted) subset aP, that approximately preserves this
property [2]. Small coresets often imply efficient ap-
proximation algorithms for related optimization prob-
lems.

In some cases such problems are amenable to alge-
braic techniques, in particular finding one flat that ap-
proximately minimizes the sum of squared distances can
be done using SVD or PCA techniques. This does not
hold for the sum of distances, and does not hold for
k > 1 generalized facilities. The class of problems we
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known. E.g., given a set of points in 3-dimensional
space, find al-dimensional flat (line) inR3 that ap-
proximately minimizes the sum of distances from to the
points. We give a linear time PTAS for this problem.

Coresets for weighted facilitiesTo tackle optimization
problems of this kind that deal with linear facilities, we
introduce a novel tool, calledoresets for weighted fa-
cilities. Specifically, letP be a set of weighted points
aline ¢, andC be a set of weighted facilities (points) in
R¢, where each € C' has some positive weight'(c).

We definev,(P) (resp. ui(P)) as the overall sum

of minimal weighted distances (resp. squared weighted
distances) from points to facilities. That is

ve(P) = X () min (W(0) I~} ) . and
peEP
pe(P) = X () min (V@ llp - )?} )

Fix k ande > 0. A (possibly differently) weighted set
S C Pis called a(k, ¢)-coreset for weighted facilities
if for anyweighted set o facilities (points)C c R?,
(i) and {i) hold:

(i)
(i) (1-2)pe(P) < pe(S) < (1+e)pa(P).

In other words, a coreset for the weighted facilities prob-
lem is a (weighted) subset of the input set, so float
any k facilities, with any associated weightshe sum

of minimum weighted (squared) distances to the facil-
ities is about the same for the original set and for the
weighted subset.

This problem is interesting in its own right, and arises
naturally in facility location (see [10]). However, we
only know how to construdtk, €)-coresets for weighted
facilities when the points oP all lie on aline (but the
facilities can be anywhere iR9), and it is open at the

(1 =ee(P) <ve(S) < (L+eve(P), (1.1)

and at most — j points inR<, (i) and i) hold:
Jvy (P) vy (S) < (L4 ¢e)vy (P)
(ii) Jy (P) < py (S) < (L+&)py (P)

wherevy (P) =3 p (w(p) - dist(p,Y)),
andjiy (P) = ¥, (w(p) - (dist(p,Y))?).

Thus, this coreset is a generalization of coresetsfor
median, and simultaneously, a generalization of coresets
for k-mean. Additionally, this coreset approximately
preserves distances to batbint facilities andline fa-
cilities. ForY restricted to point sets, [16] give coresets
for k-median andc-mean. It is intreresting that, unlike
prior constructions, we get treamecoreset for bottk-
mean ands-median. However, the significance of our
construction mainly lies in its applications to general-
ized linear facilities.

In addition, for arbitrary input point set® in R¢,
our coresetS has the property that for any singje
dimensional flatf, with 0 < 7 < d — 1, (i) and {i)
hold:

(i) (T=evn(P) <vip(S) < (1 +e)vi(P)
(i) (1= e)ugpy(P) < ugpy(S) < (L4 )pgpy (P)

wherev; 4, (-), andpu () are defined in an analogous
manner to the preceding definitions.

Further Results. As mentioned, we define the no-
tion of a weighted facilitiegk, )-coresetS for a point
set P on a line. We give an algorithm to construct
such coresets, i®(nk) time, where the coreset is of
size 20(M¢—2k—11564% =3, Given any set of points

P C R?, for fixedd > 1, we construct these weighted
facility coresets for projections aP onto certain lines,
and then combine them to form the desired coreset for
P itself. Recently, Har-Peled [15] proposed a set of size
20(k)e=k=110g*+1 ) that satisfies only (1.1i)

Using these coresets we obtain LTASB(()-time

(1-¢
(1-¢

moment whether the construction can be extended to ar-(1 + ¢)-approximation algorithms) for the following

bitrary input sets iR¢, d > 2.

Nevertheless(k, )-coresets for weighted facilities
for point sets on a line, are sufficient for solving opti-
mization problems for generalized facilities of the kinds
mentioned above, for aribtrary point sets. Specifically,

problems.

C1 Coreset for linear and point facilitiesFind a small
weighted subset that well approximates the sum of dis-
tances, or of squared distances, from the point8 ¢d
anygiven set of) < i < k lines and at most — i points

they lead to construction of new coresets for generalizedin R¢, up to a factor of 1 + ¢). The same coreset also

facilities, with no restriction on the input sétin R?.

For a collection of generalized facilitiey”, let
dist(p,Y), p € R?, denote distance from poiptto the
closest generalized facility € Y. We obtainlinear and
point facilitiescoresets for arbitrary? c R?. I.e,, given
k ande, the coresef computed fromP has the property
that for any (mixed) seY” that containg) < j < k lines

approximates sum of (squared) regression distances (i.e,
distances measured in thg-dimension). We construct
such coresets of size * % (log n)°™M) in O(n) time, for

any fixedk,d > 1.

C2 Coreset for a flat Find a small weighted subset that

well approximates the sum of distances, or of squared
distances, fromP to any (single) j-dimensional flat,



0
€

i < d — 1. We construct such coresets of size
(logn)°U") in O(n) time, for any fixedd > 1.

P1 Approximatek-line median/meanFind a set ofk
lines in R? such that the sum of the distances, or the
squared distances, from the pointsioto their closest
lines is minimized, up to a factor ¢fl + ¢).

P2 Approximate j-flat median/mean Find a j-
dimensional flatf such that the sum of the distances,
or the squared distances, from the pointgPa f is at
most (1 + ¢) times the optimum value of such a sum.
The solution uses a single coreset that is goodafor
dimension;.

<
—d—1

P3 Restricted Facility Location Approximate thek-
line median/mean gj-flat median/mean with additional
constraints on the allowed location of the lines/flat, by
forbidding them, or alternatively forcing them, to pass
through certain locations.

P4 Approximatek-regression lines and/-estimators
Solve problems P1-P3, now with vertical (regression)
distances (in the direction of the;-axis), squared or
non-squared.

P5 Data Fitting with outliers For a fixedk andk’, or
for a fixed value ofk + &/, find a set ofk lines andk’

posed (see references in [17]).

P2 Although thej-flat mean can be computed @(n)
time for any fixedd andj using SVD, no analogous ef-
ficient algorithms are known for thgflat median or its
approximations foil < j <d —1.

The(d — 1)-dimensional flat that minimizes the sum
of distances taP can be computed i®(n?) time [3].
Prior to our work, no polynomial time approximation
was known for aj-dimensional flat { < d — 1) that
minimizes the sum of distances 10 (even for; = 1
andd = 3); these are cited as “interesting open prob-
lems”[22, 10, 3]. Our PTAS runs in linear time for fixed
d ande.

P3 Polynomial-time algorithms for a good approximate
(d — 1)-flat with respect to the sum of distances or dis-
tances squared, and subject to additional restrictions, are
givenin [10, 22].

For fixede andd, we give linear time PTAS algo-
rithms for computing approximatelines or a singlgi-
dimensional flat < j < d—1), subject to various con-
straints. Note that even in the case of one flat, or even
one line in the planej(= 1, d = 2), algebraic methods,
such as the SVD/PCA, cannot handle constraints.

points that minimizes the sum of distances, or of squaredP4 A (1 + ¢)-approximation for thej-flat mean, for

distances, from each point to its nearest facility (with or
without location constraints). Note thitrepresents the
number of outlierclustersand not the number of out-
liers. This may suggest a way to deal with outliers when
their exact number is not known.

We remark that foe = ©(1) we can also generalize
all the above results for high-dimensional spades,
whered is not constant. In this case our construction
runs in time linear inf and yields a coreset of size inde-
pendent onl. See Remark 2.3.

Related Work.
C1-C2 Although coresets for linear facilities are dis-

squared regression distances with no constraints, can
also be computed i®(n) time using SVD. For the me-
dian (regression) line in the plan€ & 2), the 1-line
median can be computed i(n) time [25]. Ford > 2
andj = d — 1, a PTAS that take§)(n logn)d°®) +
O(n)(1/£)°M) time was recently suggested by [7] for
the (d — 1)-flat median with vertical (regression) dis-
tances. No results are known for the case j < d—1,

or where there are constraints on the location of the
flat/lines.

P5Outliers were investigated for thie(point) mean and
median problems [6, 5]. However, we do not know of
any generalization for linear facilities, even for a single

cussed in several places, no constructions have yet beeﬂne in the plane

suggested [9, 2].

P1Fork = 1 andd = 2, Yamamoto et al. [25] give
anO(n'? log® n) time algorithm that computesialine
median for a set of input point®. Using Dey’s im-
proved bound on the number of halving lines [8], the
algorithm can be improved 10 (n*/3 log® n).

The 1-line mean can be computed {(n) time us-
ing the SVD technique, for any fixed. In previous
work [12] we gave an exact (optimal) solution for the
line-mean in the plane that také¥n?) time fork = 2,
andn©®**) for k > 3. Recently, [9] give arfn/c)O /)
PTAS for computing thé:-line mean. Many heuristics
for this problem, such as the Hough transform and In-
dependent Component Analysis (ICA), have been pro-

Why coresets for weighted facilities?To motivate the
relationship between weighted facilities and linear facil-
ities, consider the following (restrictive) scenario: The
(unweighted) input point seP resides on some line
¢ c R4, f c R?is another line, and N f # 0. It
follows from elementary trigonometry, that the distance
between a poinp € ¢ and f is equal to||c — p|| sin 0,
wherec is the point of intersection betweehand f,
and@ is the angle formed at by these two lines. See
Fig. 1(left).

This simple observation lies at the heart of our
work. It extends to arbitrary (skew) linésand f (see
Fig. 1(right)). l.e., for any lined and f, such thatf is
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Fig. 1: (left) dist(p, f) = W(c) - dist(p, ¢), with W (c) = sinf. Hence, ¢, weighted by sin 6, replaces f for points on ¢.
(right ) dist(p, f) = W (c) - dist(p, c) with W (c) = sin 6, for any pair (¢, f) of lines in R, where ¢ is a point on the line
that spans the shortest distance between ¢ and f, at distance dist(¢, f)/ sin 6 from the point ¢’ € ¢, nearest to f, and 6
is the angle between the lines ¢ and f (a routine exercise in stereometry).

not a translation of, there exist some weighted point We present such algorithms in [14] and [12].
facility ¢ € R? such that the (weighted) distance from
any pointp € / to c is equal to the distance betwegn
and f. This claim can be further generalized to the case
where f is a j-dimensional flat, of arbitrary dimension

Jj <d—1,and also for vertical (regression) distances. 2.1 ¢-Coresets for a single facility

This seemingly suggests a very general transforma-
tion. Subject to the restriction that the input point get Let P be a weighted set of points ¢ and0 < ¢ <
be contained in some line, there is a general reduction A weighted seS, whereS C P, is called are-coreset
from any optimization problem that involves distances for a single facilityif, for every facility (point)c € R,
between points of> and arbitraryj-dimensional flats, (i) and i) hold:
to another optimization problem that involves the points
of P and weighted (point) facilities. (i) (1 =e)vey(P) vy (S) < (1 =)y (P)
Unfortunately, for general sets of poins ¢ R?, . (2.1)
there is no point € RY such that the distance between (1) (1 = &)ige}(P) < payey (8) < (1 = &)pagey (P).
a linear facility f and a pointp € P is proportional to  The algorithmSINGLE-FACILITY -CORESETgiven be-
the distance betwegnandc. We show how to overcome oW is very similar to the one in [16], but, unlike [16],

2 Coresets for Weighted Facilities

this setback by reducing the general case to several subproduces a single coreset that satisfies both (2.1)(i) and

problems involving points on a line. (i). We use this algorithm later in this section, and in
The paper is organized as follows. In Section 2 we Section 3.

present the construction of coresets for weighted facil- Algorithm SINGLE-FACILITY-CORESETP, <)

ities for point sets on a line. Then, in Section 3, we |nput: Weighted point seP c R, 0 < e < 1

use this construction to obtain coresets ksline me- Output: A single-facility 9e-coreset forP of size

dian/mean for arbitrary point sets & (problem C1), O(e=%1log W), whereW = _ w(p)
. ! peEP

and also for flat median/mean (problem C2).

For lack of space, this abstract omits most of 1 P« Zpep (w(p) ~p)/W,
the proofs. They can be found in the full ver- RS GPHP_?H/W
sion of the paper, available on-line, together a o forj<—1];o Mog W]
companion source code, in C++ and Mathlab, at 3 (g B; c R? :— the closed ball with radius

www.cs.tau.ac.il/"dannyf . The applications 2R centered aP  (* See Figure 2 *)
of these coresets for solving problems P1-P5 are also (* Note: P C Biiog w1, Since
omitted. These applications, however, are trivial: Since ||p - ?H “WR ng A

the coresetS has small size, we can use any (possibly A
inefficient) algorithm for computing, say, the (exact or
approximate)-line median forS, and then report it as
an approximaté:-line median for the whole input set.

G; < vertex set of an infinite grid of
cell size2’c R/+/d centered aP

ifj=1

6 then Vi — G1 N By



7 else ‘/] HGjﬂ(Bj\Bj_l)

8 for each nonempty cel € V;

9 do choose arbitrary point’ in P N A
(*Note: |p—p'|| <e ||p —?H if 7 >1,

ie,|p—p| <e max{R,||p—P|}. %
10 w(p') ZpePﬂA w(p
11 S—Su{p}
12 return S With careful implementationSINGLE-

FACILITY-CORESET takes O(n) time, using the log
and floor functions. The proof th&NGLE-FACILITY -
CoRrEsETIindeed returns ap-coreset forP is a conse-
guence of the following lemma; its somewhat cumber-

some notation is needed for further applications of prov-

explicitly uses space and running time that are expo-
nential ind. However, fore = ©(1), choosing an
arbitrary single poinp’ in P N (B; \ B;_1) at line 9

of the algorithmSINGLE-FACILITY-CORESET, makes
the construction time linear id. This yields constant
approximation for the coresets constructed in this paper,
also for high-dimensional spaces (non-constgnt

2.2 (k,e)-Coresets for weighted facilities

In this section we assume tha&tis a set of points on
aline/in R<.

ing the correctness of constructions of other coresets ofVoronoi region. Given a weighted set of facilitie§S' C

interest, in Section 3.

Lemma 2.1. Let P and S be two weighted sets iR¢,
and letg be a mapping fronP to S such that the weight
w(p’) of p’ € S is equal to the sum of the weights of all
pointsp € P with g(p) = p'.

Let{P,, P,,..., P,} be some partition oP, and let
C1,Cs,...,Cnm, C; C R%, be a collection ofn “ob-
jects” (sets) inR?. DefineR = Y7, v, (P;)/w(P),
wherew(P) = cpw(p). Assume that for some
¢ > 0 we have

lp — || <e-max{R,dist(p,C;)},

for everyp € P;,1 < i < m, and its image’ = g(p).
Then, for anyQ c R¢,

() > ve,(Py) < avg(P) for somex > 1, implies that
i=1

vo(P) - v(8)] < 2 - vg(P).

(i) > pe,(P) < Bug(P) for someB > 1, implies
=1
that|nq (P) — nq(S)| < 96e - po(P).

Corollary 2.2. Let P be a set ofn points in R?
for constantd, and0 < ¢ < 1. Then SINGLE-
FACILITY-CORESET P, ¢/9) returns, inO(n) time, a
single-facilityz-coreset forP, of sizeO (¢ ~*logn).

Proof. DefineP = _, p/w(P),andR = v5(P)/n.
As noted in line 2.1 ofSINGLE-FACILITY-CORESET,
we havellp — p'|| < emax{R, ||p — P||} for everyp €
P and its representative in the coreset. It is also well
known that for any; € R¢ we havers(P) < 2v,(P),
and alsous(P) < pq(P) (see [11]). Thus, substitut-
ingm=1,C; ={P},Q ={¢},a=2,6=11In
Lemma 2.1, yields the corollary. O

Remark 2.3. The algorithm SINGLE-FACILITY-
CORESET s the only algorithm in this paper which

R?, with an associated weight functio# : C — R, we
define thevoronoi regionV (¢) associated witle € C' to
be the set of points € R? such thati¥(c) ||z — ¢/ <
W(d)||lx — || forall ¢ € C. See Fig. 2.

Voronoi intervals and boundaries.Given a line/, a set
of facilities C ¢ R9, and an associated weight func-
tion W : C — RT, aVoronoi intervalfor a facility

¢ € C is a connected component &f(c) N ¢. End-
points of Voronoi intervals are calledoronoi bound-
aries. Two Voronoi intervals are calleddjacentif they
share a Voronoi boundary.

Remark: Note that if all the facilities have the same
weight, then each facility has a single connected Voronoi
interval; see Fig. 2(left). However, if their weights are
unequal, then a single facility may serve multiple inter-
vals; see Fig. 2(right).

o

C

O
c, Y,

Left Voronoi Inerval Right Voronoi Interval

Fig. 2: (left) Two facilities of equal weight induce two
Voronoi intervals. (right) Eight weighted facilities in the
plane, and the resulting partition of their eight Voronoi
regions into 12 Voronoi intervals.

Lemma 2.5. LetC' ¢ R? be a weighted set df facil-
ities. The total number of their Voronoi intervals on a
fixed linef is at mos2k — 1.

Proof. Follows from the easy observation that the se-
quence of facilities that own the Voronoi intervals is
a Davenport-Schinzel sequence of order 2komym-
bols [23]. O

In what follows we assume, without loss of general-
ity, that/ is thez-axis.



(k, €)-V-coreset for P. A weighted setS C P is called

a (k,e)-V-coreset if, for any weighted set of facilities
C C R4, such thatP is contained in at most adjacent
Voronoi intervals ofC, (i) and i) hold:

(i) (I=eve(P) <ve(S) < (1+eve(P),
(i) (1=e)puc(P) < pe(S) < (1+e)ua(P).

Note thatk here differs from the number of facilities (but
at most by a factor of 2).

2.3 The construction of (k,¢)-V-coresets

Let P be a set ofr points on ther-axis,k > 1 an
integer, and) < ¢ < 1. The algorithmV-CORESET

returns a weighted s& of size|S| = O (1og2k—1 n)
that is a(k, €)-V-coreset forP.

Without loss of generality we may assume thalt >
[0/e]. Otherwise, we take itself as the coreset; see
Line 2 of V-CORESET The algorithm is recursive and
makes use ofk — 1, €)-V-coresets for various subsets of
P, where the base case for the recursion is the kase
1. In this case (Line 3) the weight of the single facility
is irrelevant for the property that we seek. Thusca
coreset forP, as constructed above, is alsdla3e)-V-
coreset forP. Fork > 1 the algorithm is given below.

Algorithm V-CORESET(P, k,¢)

Input: P : set ofn points on a linek > 1 an integer,
and0 < e < 1.

Output: Weighted-facilities §, 3<)-V-Coreset forP.

1 if |P| < [d§/e] (* 4 is a constant that defined in the
full version of this paper *)
2 thenreturn P
3 ifk=1
4  thenreturn SINGLE-FACILITY-CORESET(P, 3¢)
5 py < leftmost point ofP,
Plns2) < [n/2]-leftmost point ofP
6 end «— an/QJ
7 fori« 1to[logn|
8 dobegin «— end — 2071 |an/2J —pl‘ /n?

9 B; — PN (begin, end]
10 end < begin
11 Z <0 (* Zisacollection of sets *)

12 for i «— 1to [logn]

13 doB;; « 0, size «—1; j«1;

14 for m « 110|B;]

15 doifi=1

16 then add toB;; themth leftmost point
of B;

18 else add toB;; themth rightmost point
of B;

19 if |B;;| = size

20 thenZ «— Z U {BZJ}

21 je—ji+1

22 Bij — @

23 if (j mod [d/e]) =0

23 then size «— 2size

24 Sy — 1]

25 for eachB € Z

26 doS;«— Sy U (V-CORESET B,k — 1,¢))
27 Repeat lines 5-26 for thie /2] rightmost

points of P, resulting in a ses&,
(* Use a mirror-image construction *)

28 return S, U S,

Lemma 2.6. The number of setsB;; € 2Z is

O(e~'log® n).

Proof. No B;; € Z can have more thafen/J] points.
Indeed, forj < |d/¢], |Bi;| = 1 by construction, and
for j > [d/e], the construction implies that each of
the [6/¢] setsB;; that precedess;; satisfies B, ;/| >
1/2|B;j;| > [en/d], and this would imply that there are
more thamn points overall inP. The size of the largest
subset of eaclB; is thus at mosf2en /47, which is eas-
ily seen to imply that the number of subsets 8f is
O(etlogn). Since there ar€®(logn) setsB;, it fol-
lows that| Z| = O(e " log® n). O

Lemma 2.7. The number of points in the sgfis at most
20(k) =k log%_1 n.

Proof. The proof is by induction ort. For the general
induction step, we only considé};; the proof is similar

for S,. DefineT(k, <) to be the maximum size af,

for a givenk ande. From the construction fok = 1,

it follows thatT'(1,e) = O(1/clogn), which satisfies
the bound. Therefore, by Lemma 2.6, for an appropriate
absolute constamtwe have

T(k,e)=|Z|-T(k—1,e) < pre—k 10g2k71 n. O

To prove thatS is a (k,¢)-V-coreset, we will fre-
guently use the following simple observation. We de-
note byZ(X) the smallest interval containing a sét

Observation 2.8. (i) The size of the interval(B;) for

i > 1is less than twice the size of all the intervals to its
right, i.e (cf. Fig. 3(left)),[Z(B;)| < 23", 1Z(Bm)|-

(it) For any B;; € Z that contains at least two points,
we have (cf. Fig. 3(right))B;;| < 2¢/0) > | Bim|-

m<j

Theorem 2.9. Let P be a set of points on a lind; >
1 an integer, and0 < ¢ < 1. The algorithmV-
CORESET P, k, ) returns, inO(kn) time, a(k, 3¢)-V-

coresetS for P of size2@ k) ¢~k 1og2"’*1 .

Proof. The bound on the size ofS is given in
Lemma 2.7. Each run o¥-CoRESET, excluding the
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Fig. 3: (left) The high-level partition of the |n/2| set P, into intervals and sets. (right) Partition of B; into subsets. The
other subsets B; of Z, for ¢ > 1, are similarly partitioned, but from right to left rather than from left to right.

recursive call, can be implemented @(n) time, for
O(kn) time overall. Lines 5-10 of-CoRESETcan be
easily implemented, it©(n) time (without sortingP)
using the log and floor functions, similarly to the imple-
mentation ofSINGLE-FACILITY-CORESET Lines 11—
23 can be implemented i®(n) time by finding the
points in the|§/e| last (largest) subsetB;; C B; in
O(|B;|) time, using a linear-time algorithm for order

statistics, and then by continuing recursively on the re-

maining points.
Interestingly enough, the following proof of correct-

coresets for alB € Z, and thus

o (Pr) —ve(Sol =

Z lve(B

BeZ
=evp(P) <eve(P) <

> (ve(B) - vo(Sk))

BeZz

) —ve(Sp)| < Zsuc
Bez

(3/2)evc(P).

We are left to handle the case where there is some set
B € Z such thatZ(B) intersects allc Voronoi inter-
vals (and thus contairis— 1 Voronoi boundaries — see

ness for non-squared distances remains true for square(fi-lg 4). In this case the sum of errors contributed by the

distances, if we use everywhere the cost functibm-
stead ofi’, and replacd-|| by ||-||*. For the casé = 1
the weight of the single facility is irrelevant for the prop-
erty that we seek. Thus, by Corollary 2.2, izecoreset
that is returned bySINGLE-FACILITY -CORESETIS also

a (1, 3e)-V-coreset forP; see Line 4. Itis left to prove
the case: > 1.

Let C c R? be any weighted set of facilities, such
that P falls into no more thark adjacent Voronoi inter-
vals of C. We denote byP, the set of|n/2] leftmost
points of P. By line 2.3,S§ = S, U S,., whereS; is the
coreset forP, andS,. is the coreset foP, = P\ P,. We
have

ve(P) —ve(S)| =
|(1/C(P4 +ve(P, )
< |ve(Pe) —ve(So)l + [ve(Pr) —

(ve(Se) +ve(Sn)| (22)
ve (S|

We will prove that |vi(P)—ve(Se) <
(3/2)ev(P). A symmetric proof will then imply
Ve (Pr) —ve(Sr)| < (3/2)ev(P). The coreset

property ofS then follows from (2.2). If it so happens
that for everyB € Z, the intervalZ(B) intersects no
more thank — 1 Voronoi intervals, we are done, because
then, by the recursive construction,

ve(B) -

for eachB € Z. The coresetS, is the union of the

Vo(Sp)| < evia(B)

rest of the(k — 1,

2.

Ve (X) —ve(Sx)| <
XezZ\{B}

<) eve(X)

We will show that in this case

e) V-coresets is then
Z v (X)
XezZ\{B}

=evp(P) <evep(P).

Wi(B) — v(Sp)| < %u’C(P), andthus  (2.3)
/ / / 35 /
ve(Pe) —ve(Se)l < 5VC(P)+2VC(P) ?VC(P)'

It is left to prove (2.3). Let be any facility inC.
For simplicity, we abuse notation, and wri&(P) in-
stead of/ ., (P). By constructionSp is a(k — 1,¢)-V-
coreset, so, by definitio§ 5 is also a(1, )-V-Coreset.
Hence, |v.(Sp) — v.(B)| < evl(B) < v.(B), so,
vl (Sp) < 2v(B). Thus, for any facilityc € C, the
left hand side of (2.3) can be bounded by

ve(B) = ve(Sp)l < ve(B) +ve(Ss)
<v.(B)+2v.(B) = 3v.(B).

(2.4)

Let the facility¢’ be the projection of on thez-axis,
with weight W(¢’) = W(c). See Fig. 4. Using the
triangle inequalityy’.( B) can be bounded by

W(e) Y llp—ell

peEB

(2.5)
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Fig. 4: (left) All the k& Voronoi intervals fall into Z(B) for some B € Z. The two ‘X’ facilities in this figure serve the leftmost
and rightmost Voronoi intervals. (right) B intersects k Voronoi intervals, and is also contained in B;. The facility c € C
serves the leftmost Voronoi interval, and ¢’ denotes its projection on the line. Since ¢’ can be anywhere on the line, its

nearest point in By can be any point of B;.

<W(©) Y (=]l + - <)

pEB
=W()|B|-llc— || +vu(B).

We now bound each of the two terms in the right hand
side of (2.5) by(e/12)v(P), which, using (2.4), will
prove (2.3) and conclude the proof of this theorem.
Let B; be the set that containB = B;;. We dis-
tinguish between the two following casegi) B; =
By: Let ¢ € C be the facility that serves the left-
most Voronoi interval, and denote by, the points of

P that are served by. Also, let By, denotes the set
of points of B; that lie to the left of B, and note that
By, C P, (see Fig. 4(right)). By Observation 2ig(we
have,|B| < (¢/12)|By|, and thugB| < (¢/12) |P.|.
Clearly, ¢’ is the nearest point on the-axis to c,
and therefore|lc— /|| < ||p—¢| for anyp € P.
Hence,|P.| - [[c - || < v.(P.). Altogether we have

9
W(e)|B-lle =l < W(e) - 5 [Pl - [le = ¢
3
< !

e
— v/ (P.) < —vi(P).
12”6( )— 12”0( )

To bound the second term of 2.5, |Bt, denote the
points of P to the left of B, and note that’;, C P,
see Fig. 4(right). Clearlyllp — || < ||p — ¢]| for ev-
ery p on thez-axis, and we get. (Pr) < v.(Pr) <
v.(P.). Using Lemma 2.10) below, we have .. (B) <
(e/12)v(Pr) (note that/B| > 1, since a single point
cannot interseck > 1 Voronoi intervals). After multi-
plying by W (c), this yieldsv’, (B) < (¢/12)v.(P,).

(i) B € B; # By : The proof is symmetric, taking
to be the facility that serves thigghtmostVoronoi inter-
val. The setd3g, Pr and Lemma 2.1Gi(), should then
replaceBy, Pp and Lemma 2.1@), respectively. [

To conclude the proof of Theorem 2.9, we still need
to show that/.(B) < (¢/12)v.(Pr) (for B C By) or
v.(B) < (¢/12)v.(Pg) (for B C B; # By), for a facil-

ity ¢’ on thez-axis, and the same for squared distances.

This is proven in the full version as stated in the follow-
ing Lemma.

Lemma 2.10. Let P C R be a set of points. Lef =
{B;;} be the partition ofP given in Lines 11-23 of the
algorithmV-CoRESET, for the specified < ¢ < 1 and
k. Consider a seB = B;; € Z, where|B| > 1 (i.e.,
Jj > |0/¢], see Fig. 3(right)), and lef,, Pz denotes
the set of points of that lie to the left and right of3,
respectively(see Fig. 4(right). Then, for any facility
¢ € R, we have (i) fori = 1, v (B) < (e/12)v.(PL),
and o (B) < (g/12)ul(Pr); (i) for ¢ > 1, v (B) <
(e/12)v(Pr), andpue: (B) < (¢/12)(Pr)-

Lemma 2.5 implies the following trivial modification
of Theorem 2.9.

Theorem 2.11. Let P be a set ofn points on a line,
k > 1 an integer, ands > 0. The algorithmV-

CORESET P, 2k — 1,¢/3) returns, in O(nk) time, a
weighted-facilities &, )-coreset forP, of size|S| =

90(k) o—2k—1 10g4k—3 n

3 Coresets forP C R¢

So far we have constructdd, <)-coresets for a set
of points on a fixed line. In this section we use these
coresets to construct the following coreset for a set of
points inR?.

(k, 3, €)-Coreset.Let P be a set of points inR?, k >
landl < j <d - 1lintegers. A weighted s&t, where
S C Piscalled ak, j, )-coreseffor P, if for any setL
of 0 < k¥’ < k lines and at most — £’ points we have

(i)
and if, for any flatf of dimension at most, we have

(i) (A —=e)yp(P) Svp(S) < L+ )y (P).

(1=g)vr(P) < vi(S) < (I+e)vn(P),



These properties also holds for squared distances, or re-

gression distances (squared or non-squared).

Our construction of this coreset crucially relies
on a randomized bicriteria constant-factor approxima-

tion algorithmBICRITERIA-APPROXIMATION(P, k, 5),
which is described in a companion paper [13].
receives as input a point sg¢ C R?, and inte-
gersk, j, such thatt > 1 and1 < j < d —
1. It outputs a sett' = {f1, f2,...,fm} Of m =
200) (k)71 log? T n j-dimensional flats and a parti-
tionIl = {Py, Ps,..., P, } of P, such that, with prob-
ability 1/2, for any setY” of at mostk flats, all of di-

mension no greater thain > _ vy, (P;) < 27+ - vy (P)
i=1

and puy, (P;) < 272 uy (P). The algorithm takes
i=1

dn(kj_log n)i+1200) time; see [13] for details.

In the following algorithm LINEAR-FACILITIES-
CORESET, we denote byproject(q, X') the projection
of a pointg on a set of pointsY (i.e., project(q, X) is
the nearest point tg among all points ofX). For a set
Q, we defineproject(Q, X) = quQ project(q, X).

Algorithm LINEAR-FACILITIES-CORESETP, k, j,€)

Input: A set of pointsP ¢ R?, &, j, and0 < ¢ < 1,
wherek > 1 andl < j < d — 1 are integers.

Output: A setS C P such that, with probability at least
1/2, S'is (k, j, be)-coreset forP.

1 (F,1I) <BI-CRITERIA-APPROXIMATION(P, k, j)
2 S0
3 fori«— 1to|F]
4 do f; < theith j-dimensional flat inF".
5 P; < theith set of points ifI.
6 fi+ < a(d — j)-dimensional flat that is
orthogonal tof;.  (* See Fig. 5(up) *)
7 Py « project(P;, f-).
8 for eachp* € P* dow(p*) « |P|/|P;]
9 S; «SINGLE-FACILITY-CORESET P}, ¢)
1 for eachp’ € S;
1 do f < thej-dimensional flat that passes
throughp’, and parallel tof;.
(* See Fig. 5(down) *)
12 P; — the set of thosp € P;, such thap' is
the representative of
p* = project(p, f) in S;. (* See
Line 9 of SINGLE-FACILITY -

= O

CORESET¥)
13 Py — project(Py, f)
14 if =1
15 then Sy « V-CORESETP;,2k — 1, ¢)

| : :
| I
r)epf$‘(TpEPf :
| |
l |
: |

¢

Fig. 5: (up) For j =1 and P C R?, each f; € Fisaline,
as its orthogonal f;*. (down) For j = 1 and P C R?,
each f; € Fis aline, and its orthogonal f;" is a plane.

16 eIseSf «—LINEAR-FACILITIES
-CORESET(P;, k,j — 1,¢)
17 S — SU{p € Py | project(p, f) € S¢}

(* each point inS is also assigned the weight
of its correspondence point & *)
18 return S

Omitting all further details, the main result of the pa-
per is:

Theorem 3.1. Let P be a set ofx points inR¢, where
d>1lisconstant]l < j < d-—1,and0 < ¢ < 1.
Also, letk > 1 be a constant. Then, for sufficiently
large constanth, the algorithmLINEAR-FACILITIES-
CoORESETk, ¢/b, j) computes, itD(n) time, with prob-
ability at least 1/2, a(k,j,¢)-coreset for P of size
e~ 4=k (logn)CU*)+2k=1 The running time i$)(n).
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