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In the plane, the omplexity of the union of Minkowski sums was shown to be linear by Kedemet al. [11℄. In R3, we know the following. (i) If the Ai's and B are onvex polyhedra, then theomplexity of the union is O(Nn logn), where N denotes the overall omplexity of the Minkowskisums Ki [3℄; see also [4℄. (ii) If the Ai's are onvex polyhedra onsisting of a total of n faes, andB is a ball, then the omplexity of the union is O(n2+"), for any " > 0 [1℄. In other words, allknown results onerning unions of Minkowski sums yield linear upper bounds in the plane andnear-quadrati upper bounds in 3-spae.The above results annot be extended to the union of general onvex objets without imposingany further restrition on their shapes or relative position. Indeed, it is easy to see that the unionof n triangles in the plane (tetrahedra in 3-spae) an have quadrati (resp., ubi) omplexity.Sine all onstrutions realizing these bounds use very `thin' objets, it is a natural question to askwhat happens if we restrit our attention to unions of `fat' onvex polytopes. For bounded objets,fatness means that the ratio between the irumradius and the inradius of any input objet isbounded by a �xed onstant. For unbounded objets, another de�nition is needed|see De�nition1.1 below.The ase of planar fat objets has been studied extensively in [2, 7, 8, 9, 10, 13, 14℄. It wasshown that the omplexity of the union of n fat triangles is O(n log log n) [13, 14℄ and that of nfat wedges is O(n) [2, 9℄. For general onvex fat objets of `onstant desription omplexity', theombinatorial omplexity of the union is O(n1+"), for any " > 0 [10℄ (see also [7, 8℄ for slightimprovements and extensions).In ontrast, in three and higher dimensions, very few non-trivial bounds are known. It is an easyonsequene of the Upper Bound Theorem for onvex polytopes that the ombinatorial omplexityof the union of n balls in Rd is O(ndd=2e). Asymptotially the same upper bound is known for theomplexity of the union of n axis-parallel hyperubes [5℄, whih an be improved to O(nbd=2) whenall ubes have the same size.In spite of many e�orts, even in three dimensions no non-trivial (i.e., sububi) upper boundwas known for the omplexity of the union of n ongruent ubes, not neessarily in parallel position.The aim of this paper is to establish a nearly quadrati upper bound on this quantity. Atually,we will prove a more general result. For this we need some preparation.De�nition 1.1 The intersetion of two (three) half-spaes is alled a dihedral (resp. trihedral)wedge. The boundary of a dihedral wedge onsists of a straight line edge and two half-planes.The boundary of a trihedral wedge onsists of a vertex (apex), three edges and three faes that arehalf-lines and 2-dimensional wedges, respetively.For any � > 0, a dihedral (trihedral) wedge is alled �-fat if its dihedral angle (resp., solidangle) is at least �. For any  > 4�=3, an �-fat trihedral wedge is said to be (; �)-substantiallyfat, if the sum of the angles of its three faes is at least  > 4�=3.Note that a right-angle otant, obtained by taking the intersetion of three half-spaes boundedby mutually orthogonal planes, is (3�=2; �=2)-substantially fat. However, a trihedral wedge de�nedby three planes supporting di�erent faes of a regular tetrahedron is not (; �)-fat for any  > 4�=3,beause the angles of its faes are too small. The requirement that  > 4�=3 is tehnial, made inorder to failitate our proof.All families studied in this paper onsist of n onvex polyhedral objets in R3, eah having aonstant number of verties, edges, and faes. As we pointed out earlier, to give an upper bound forthe ombinatorial omplexity of the union of suh families, it is suÆient to bound the number of2



verties of the union. Suh a vertex is either a vertex of an input polyhedron, or it an be obtainedas the intersetion of an edge of a polyhedron with a fae of another, or it is the intersetion pointof three faes belonging to three distint polyhedra. Clearly, the number of verties of the �rst twotypes is O(n2), so the main task is to estimate the number of verties of the third type.We prove the following three results. In all of them, the onstants of proportionality hidden inthe O-notation depend on the relevant �xed parameters (", �, , �).Theorem 1.2 For any �; " > 0; the ombinatorial omplexity of the union of n �-fat dihedralwedges in 3-spae is O(n2+").Theorem 1.3 For any  > 4�=3; �; " > 0; the ombinatorial omplexity of the union of n (; �)-substantially fat trihedral wedges in 3-spae is O(n2+").In Setion 5, we apply Theorem 1.3 to dedueTheorem 1.4 Let � > 1; " > 0. The ombinatorial omplexity of the union of any family of nubes in 3-spae, whose edge lengths di�er only by a fator of at most �, is O(n2+").All of these results are nearly tight in the worst ase. That is, an 
(n2) lower bound an easily beestablished in eah of these ases.An important new tool in our analysis is the onept of speial ubes.De�nition 1.5 Given a family P of onvex polyhedra in 3-spae, a speial ube C (with respet toP) is the intersetion of three members of P suh that (i) C is disjoint from every other memberof the family, and (ii) C has the ombinatorial struture of a ube, with eah of the three polyhedraontributing two opposite faes to C.Cubes that satisfy only ondition (ii) are referred to as quasi-speial ubes. The level of aquasi-speial ube C is the number of members of P that interset C, other than the three memberswhose intersetion equals to C.This notion is related to the onept of speial quadrilaterals used in [3, 4℄. The signi�ane ofspeial ubes, whih extends beyond the appliations given in this paper, is shown by the followingtheorem, whose somewhat tehnial proof is postponed to Setion 7.Theorem 1.6 Let P be a family of n onvex polyhedra in 3-spae, eah having at most someonstant number of faes. Suppose that the number of speial ubes determined by any m membersof P is O(m), for some  > 2. Then the number of verties on the boundary of the union of P isO(n).Here is a brief overview of the approah we follow. Consider a family of fat dihedral wedges.First, we `deform' the wedges to new `anonial' wedges, without losing more than quadratiallymany speial ubes in the proess. We redue the problem to the ase when there exists a plane Pinterseting every (3-dimensional) wedge in a fat 2-dimensional wedge, whose bounding rays belongto a �xed set of onstantly many `anonial' diretions. In this way, we obtain a onstant numberof families, eah onsisting of wedges with isotheti ross setions (i.e., whose ross setions aretranslates of eah other, lying in planes parallel to P ), and it suÆes to bound the omplexity of3



the union of at most three suh families. This is done in Setion 3, by �rst handling the (trivial)ase of a single family, then passing to the ase of two families, and �nally takling the general ase.For trihedral wedges, the analysis is more elaborate, sine our urrent mahinery works onlywhen, for any vertex v of the union, there exists a (anonial) plane P , so that all three wedgesinident to v interset P in unbounded regions. The reason for this is quite tehnial, and itoriginates in the method developed in [13, 14℄ for studying the ase of fat triangles in the plane.This is why we an handle only trihedral wedges that are substantially fat (with the sum of theirfae angles being greater than 4�=3). Even with this assumption, the anonization proess is moreinvolved than for dihedral wedges. We eventually manage to transform eah trihedral wedge to anew anonial wedge, all of whose ross setions by planes of some anonial diretion are eitherempty or isotheti to some anonial 2-dimensional wedge. This allows us to apply the argumentsused for dihedral wedges, with only minor modi�ations.The ase of nearly equal ubes is an easy onsequene of the result for substantially fat trihedralwedges, speialized to right-angle otants. More spei�ally, we lay a grid whose size is slightlysmaller than that of the ubes, onsider the union within eah ell of the grid separately, replaeeah ube whose boundary rosses suh a ell by an otant, and apply the bound on the omplexityof the union of suh otants.We also onsider the algorithmi problem of eÆient onstrution of the union of a family of, say,n nearly equal ubes. Using the algorithm of Aronov et al. [4℄, together with our new ombinatorialbounds, we obtain a randomized algorithm that omputes the union in expeted time O(n2+").Three interesting problems remain unsolved: In the �rst two, we wish to obtain near-quadratiupper bounds for the ombinatorial omplexity of the union of (1) any olletion of n ubes (ofwildly di�erent sizes), and (2) any olletion of n �-fat (rather than substantially fat) trihedralwedges in 3-spae. (3) Is there a superquadrati lower bound for any of the funtions disussedabove? As noted above, quadrati lower bounds are known for eah of them. We expet thatpositive answers to (1) and (2) will lead to a near-quadrati bound on the omplexity of the unionof any family of fat onvex polytopes in 3-spae.2 Canonization of Dihedral WedgesLet W be a family of n �-fat dihedral wedges in 3-spae. Let UW denote the union of W, and letA(W) denote the arrangement of the (faes bounding the) wedges in W.For a onstant parameter �, let D(�) be a set of O(1) diretions (points on the unit sphere)suh that any spherial ap of radius larger than � ontains a diretion d 2 D(�).The following lemma holds for all triples of (not neessarily fat) wedges.Lemma 2.1 There exists an absolute onstant � > 0 suh that for any three dihedral wedgesw1; w2; w3, there exists a diretion d 2 D(�) suh that jhd; ewiij � 14 , for i = 1; 2; 3, where ewidenotes the unit vetor in the diretion of the edge ewi of wi.Proof: Consider the set of diretions d suh that jhd; uij � 14 for a �xed diretion u. This set is aband of width � � 2 aros(1=4) entered at the great irle orthogonal to u. The area of suh aband is 4� � (1=4) = �. Hene, the area of the set of diretions d where the asserted ondition ond is not satis�ed is at most 3�. Thus, the omplement set of `good' diretions is of area at least�. Sine the union of three suh bands (eah around a great irle) has at most eight holes, there4



exists at least one hole of area larger than �8 . Sine any suh hole is bounded by at most a onstantnumber of irular ars, the laim readily follows. 2Lemma 2.2 Let Pd be a plane orthogonal to a diretion d satisfying the onditions in the previouslemma. If w1; w2; w3 are all �-fat then the three planar wedges wi \ Pd, for i = 1; 2; 3, are all(�=4)-fat.Proof: Let w be one of these wedges. It is a routine exerise in stereometry to show that theangle of the ross-setional wedge w \ Pd is minimized when the bisetor plane of w is orthogonalto Pd. Assume that w does indeed attain this minimum. Let �0 denote the angle of w \ Pd. Lete0 denote the orthogonal projetion of ew onto Pd. Let  denote the angle between ew and e0; notethat sin = hew; di. Denote by A the point ew \ Pd; let B be a point on e0 at distane 1 from A,let C be the foot of the perpendiular from B onto ew, and let D;E be the points of intersetionbetween �w and the line within Pd passing through B and orthogonal to e0; see Figure 1.We have BC = sin, BD = BC tan(�=2) = sin � tan(�=2), and thus tan(�0=2) = sin �tan(�=2), or �0 = 2artan(sin  � tan(�=2)). We laim that artan(�x) � � artan x for any x � 0and � � 1. Indeed, the funtion f(x) = artan(�x)� � artan x vanishes at 0, and its derivative isf 0(x) = �1 + �2x2 � �1 + x2 � 0;from whih the preeding inequality follows. We thus obtain�0 � 2 sin � �=2 = � sin = �hew; di � �=4:This ompletes the proof of the lemma. 2
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Figure 1: The setup in the proof of Lemma 2.2.A diretion satisfying the properties of Lemma 2.1 (and of Lemma 2.2) is alled a good diretionfor the triple w1; w2; w3 2 W.For eah d 2 D, let Wd � W denote the subfamily onsisting of all members of W that rossthe planes orthogonal to d in (�=4)-fat 2-dimensional wedges, i.e., in angles of size at least �=4.For simpliity, we refer to these planes as horizontal. Construt on a horizontal unit irle O(1=�)pairwise disjoint `anonial' ars, eah of length 
(�) (say, �=16), so that (i) eah horizontal line5



through the origin meets at most one of these ars, and (ii) eah ar of length at least �=4 on theunit irle fully ontains at least one of these ars.For eah wedge w 2 Wd, rotate its faes inwards about its edge (whih remains �xed) untilthe diretions of their horizontal ross setions oinide with the endpoints of one of these ars.Let W 0d denote the resulting olletion of wedges. By this proess, we deompose W 0d into O(1=�)anonial subfamilies so that the horizontal ross setions of any two wedges belonging to the samesubfamily are isotheti.The proof of the following lemma, whih justi�es the anonization proess, hinges on the fatthat the edges of the given wedges are not moved during the deformation.Lemma 2.3 The number of speial ubes for Wd is smaller than or equal to the number of speialubes for W 0d.Proof: Let C be a speial ube forWd, formed by the intersetion of three wedges w1; w2; w3 2 Wd.Let w0i denote the anonial image of wi, for i = 1; 2; 3. Put C 0 = w0i\w02\w03. We laim that afterthe anonization, C 0 remains a (nonempty) speial ube (for W 0d). This is shown as follows.(i) The anonization proess ensures that w0 � w for any w 2 W, from whih it follows thatC 0 � w1 \w2 \w3 = C. Moreover, sine C, being a speial ube, is disjoint from all other wedges,it follows that the same holds for C 0.(ii) Let h1; h2; h3 be three half-planes suh that hi is bounded by ewi and lies fully in wi, fori = 1; 2; 3. The intersetion point v = h1 \ h2 \ h3 lies in C, by onstrution. Sine the new faesof eah wedge are both half-planes of this kind, this implies that during the anonization proess,eah speial ube shrinks but does not disappear (C 0 6= ;).(iii) The boundary �C 0 does not meet any of the edges of the wi's, beause C does not meet themand they do not move during the anonization proess. Thus, C 0 must have the ombinatorialstruture of a ube and the two faes bounding eah wedge wi ontribute opposite faes to C 0. 2Theorem 2.4 The number of speial ubes for W 0d is O(n2+"), for any " > 0.Combined with Lemma 2.3, this theorem implies that the number of speial ubes for Wd is alsoO(n2+"). This, ombined with Theorem 1.6, implies that the omplexity of the union of Wd isO(n2+"), for any " > 0. Finally, sine eah vertex v 2 UW is also a vertex of UWd , for someanonial d, it follows that the omplexity of the union of W is also O(n2+"), for any " > 0, thusestablishing Theorem 1.2.3 The Complexity of the Union of Fat Dihedral WedgesThe aim of this setion is to prove Theorem 2.4. As we have argued above, it is suÆient to boundthe number of speial ubes determined by at most three anonial subfamilies of W 0d.The union of one anonial family. In this ase, it is easy to see that a single anonial familyadmits no speial ubes. Indeed, let C be the intersetion of three wedges from the same subfamilyof W 0d. Then any intersetion of C with a plane orthogonal to d is unbounded, whih is impossiblefor a speial ube. 6



The union of two anonial families. Let R and B be two anonial subfamilies of W 0d. Werefer to their wedges as red and blue, respetively.Theorem 3.1 The number of speial ubes in the union of two anonial subfamilies of n �-fatdihedral wedges in W 0d is O(n2�(n)), where �(�) is the inverse Akermann funtion.Proof: We refer to the atual wedges as 3-wedges (not to be onfused with trihedral wedges), andto their horizontal ross setions as 2-wedges (as above, d is assumed to be the diretion of the z-axis). We also assume that the red 2-wedges point to the right (in the horizontal planes ontainingthem, so that the apex of a red 2-wedge is its rightmost point and its symmetry axis is parallel tothe x-axis) and that the blue 2-wedges point upwards (the apex of a blue 2-wedge has maximumy-oordinate and its symmetry axis is parallel to the y-axis). We will thus refer to the two edgesof a red 2-wedge (and to the orresponding faes of the 3-wedge) as the `top' and `bottom' edges(and faes) and similarly use `left' and `right' for the blue wedges; f. Figure 2 for an illustration.It suÆes to estimate the number of red-red-blue speial ubes of the union (i.e., ubes formedby two red wedges and one blue wedge).We will regard the z-axis as the `time-axis' and regard the 2-wedges as translating in the xy-plane at onstant (though possibly di�erent) veloities. The verties (of the third kind; see theremark before Theorem 1.2) of the union then beome ritial events, at whih three edges boundingthe moving 2-wedges beome onurrent.Let C be a speial ube formed by the intersetion of two red wedges r; r0; and of one blue wedgeb. Thus, C has six faes: eah of r; r0; b ontributes one pair of opposite faes to its boundary. Fourfaes of C are red, and are arranged in a yle. As is easily veri�ed, up to the possible permutationof r and r0, the yle has the form (top fae of r, top fae of r0, bottom fae of r, bottom faeof r0). In other words, the ube has an edge where the two top faes of r and r0 meet. The twoendpoints of this edge are verties of C that are also verties of the union. We refer to them asspeial verties.Let v1; v2 be two speial red-red-blue verties, so that v1 is top-top-right, v2 is top-top-left, andboth are verties of the same speial ube (and are the endpoints of a ommon edge of that ube).Then v1; v2 lie on the top boundaries e; e0 of two red 2-wedges r; r0 (whih are overlapping) and onthe right and left boundaries f1; f2 of a blue 2-wedge b. We lassify the blue 2-wedges as being`short' or `long', where b is short if the portion of f1 between its apex u and v1 does not meet anyred 2-wedge, and is long otherwise.We �rst bound the number of speial red-red-blue ubes, for whih the orresponding blue 2-wedge b is short. We use a 2-dimensional oordinate frame Ff1 to represent points on f1 by (t; �),where t is the time and � is the distane along f1 from its apex u. Eah red 2-wedge r shows upin Ff1 as a (portion of a) wedge | its top and bottom edges trae straight-line segments in Ff1 ,where the trae of the top (resp., bottom) edge of r is the bottom (resp., top) segment of the traedwedge in Ff1 . In general, verties of the union of the 3-wedges along f1 appear as verties of theboundary of the union of these representing wedges in Ff1 . However, when b is short, the vertexv1 under onsideration is a vertex of the lower envelope of the traed wedges in Ff1 . Thus, thenumber of suh verties is O(n�(n)) (see, e.g., [15℄). Summing over all blue 2-wedges, we onludethat the number of (not neessarily speial) top-top-right verties for whih the blue 2-wedge isshort is O(n2�(n)).Suppose next that v1; v2 are two speial verties, as above, for whih the orresponding blue2-wedge b is long. Suppose, with no loss of generality, that at the time when these verties appear,7



r is ontained in r0. Put e1 = f1 \ r and e2 = f2 \ r. Sine v1 and v2 lie on a speial ube, e1 ande2 are segments that lie on faes of that ube, and hene, by de�nition, they do not meet any otherred or blue 2-wedge. Thus, the respetive lower endpoints w1; w2 of e1; e2 lie only in the interior ofr0 (and on the boundaries of r and b) but are outside all other red and blue wedges. See Figure 2.
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Figure 2: The ross setion of a two-olored speial ube, at the time when the top edges of r; r0overlap. The bottom verties w1; w2 lie inside r0 only and on the boundaries of r and b.We now apply the analysis of Matou�sek et al. [13℄, developed for studying the omplexity of theunion of fat planar triangles (see also [14℄). Let p denote the apex of r and let q be the leftmostpoint on the top edge e of r that does not lie in the interior of any other red 2-wedge (sine thered 2-wedges are homotheti, q is uniquely de�ned). Let � denote the ray emanating from q to theright in the diretion of the bottom edges of the red 2-wedges. It is easily veri�ed that the apexof any blue 2-wedge b whih is long with respet to r must lie above �; see Figure 3. Considerthe olletion of long blue 2-wedges that form speial verties along e. Then, by the preedingobservation, the segments of intersetion of these blue 2-wedges with the bottom edge of r arepairwise disjoint. It now follows from the analysis of [13, Lemma 3.5℄ and from its improvementin [14, Lemma 2.5℄ that the number of suh 2-wedges is O( 1� log 1�). Sine the number of overlapsbetween top edges of red 2-wedges is O(n2), we onlude that the number of red-red-blue speialubes for whih the orresponding blue 2-wedge is long is O(n2� log 1�). This ompletes the proof ofTheorem 3.1. 2Note that Theorem 3.1, in ombination with Theorem 1.6, implies that the ombinatorial om-plexity of the union of two anonial families of n �-fat dihedral wedges in W 0d is O(n2+"), for any" > 0. This fat is used in the next stage of the analysis.The union of three anonial families. Let R;G;B � W 0d be three anonial subfamilies of�-fat dihedral wedges, and refer to their members as red, green and blue, respetively. Our goal isto bound the number of speial ubes of R [ B [ G, formed by the intersetion of a red wedge, ablue wedge and a green wedge.De�nition 3.2 (a) For any r 2 R; b 2 B; we say that r is semi-free within b (with respet toR [ B), if eah of the two sides of r ontain a point (a `semi-free point') that lies inside b and8
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Figure 3: No red 2-wedge above r an have a point below �, the dashed ray amanating from q tothe right. Thus, the apex of any long blue wedge with respet to r lies above �.outside all other red and blue 2-wedges. (b) We say that r is initial for b (with respet to R[B), ifthere is a side of b that no other red 2-wedge intersets between the apex of b and r. (See Figure 4.)
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Figure 4: r2 is initial for b2, whereas r1 is not. Eah red wedge is semi-free within every blue wedge,and vie versa.Arguing as in the 2-family ase and as in [13℄, we obtain:Lemma 3.3 There exists a onstant  = O( 1� log 1�) with the property that for every red 2-wedger and any �xed time t, the number of blue 2-wedges b for whih r is semi-free within b and r isnot initial for b at time t, is at most . Similar properties hold for all other kinds of (ordered)bihromati pairs of wedges.Proof: For a red 2-wedge r, let B denote the olletion of all blue 2-wedges b suh that r is semi-free within b and r is not initial for b. Order the elements of B in the order of their ontainment ofsemi-free points along the upper or lower ray of r (this order is learly well de�ned). Let B0 be thesubsequene of B onsisting of every other element. For eah 2-wedge b in B0, r is not initial forb and b \ �r onsists of two segments that do not meet any other 2-wedge of B0. Indeed, if one ofthese segments intersets another blue 2-wedge b0 in B0 then, as is easily veri�ed, no intermediateelement b00 of B an have any free point on the same ray of r, ontrary to assumption (see Figure 5).Let e+r denote the edge of r that is loser to the apex of b, and let e�r be the other edge. Letr0 be the �rst red 2-wedge enountered when traversing e+r from the apex of r. Consider the three9
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Figure 5: Sine r is semi-free within b, the two blue neighbors b0; b00 annot overlap along �r.lines that ontain e�r0 , e+r , and e�r , respetively. Eah b 2 B0 rosses the seond line between theapex of r and the intersetion vertex e+r \e�r0 , and no two elements of B0 interset eah other withinthe slab formed between the �rst and third lines. Hene, arguing as in the ase of two anonialfamilies, we have jB0j = O( 1� log 1�). Sine jBj � 2jB0j+ 1, we have that jBj = O( 1� log 1�) as well.2De�nition 3.4 An ordered pair (r; b) of 2-wedges is alled exposed at time t, if at least one ofthe following two onditions is satis�ed (with respet to the union of the two respetive anonialsubfamilies): (i) b is initial for r, or (ii) r is semi-free within b and r is not initial for b.Clearly, Lemma 3.3 implies that for any 2-wedge r 2 R, the number of exposed pairs (r; b), forb 2 B, at any �xed t, is at most + 1.As t varies, a pair (r; b) may start or stop being exposed. It follows from the analysis of the2-family ase that the number of events at whih, say, a blue 2-wedge, b, starts or stops beinginitial for some red 2-wedge, r, is O(n2�(n)). Indeed, this event orresponds to a vertex of thelower envelope of blue wedges in the appropriate 2-dimensional frame attahed to one of the rededges.Consider an event at whih a red 2-wedge r starts or stops being semi-free within a blue 2-wedgeb. It is easily heked that at suh an event three sides of red and blue 2-wedges beome onurrentat a vertex that is ontained only in (the interior of) b. Clarkson-Shor's tehnique [6℄, ombinedwith the statement at the end of the analysis of the 2-family subase, implies that the number ofsuh events is O(n2+"), for any " > 0. Let T denote the sorted list of all ritial times at whih theoverall set of exposed pairs, with respet to all possible pairs of families, hanges. As just argued,we have jT j = O(n2+"), for any " > 0.We now return to the analysis of `triolored' speial ubes. Let r 2 R, b 2 B; and g 2 G bethree 3-wedges that form suh a ube C = r \ b \ g. Denote the ross setion of C at time t byC(t). Exluding times at whih verties of C our, C(t) is a onvex polygon with at most 6 sides,so that eah side is a portion of an edge of one of these 2-wedges, and no two suessive sides ofC(t) belong to the boundary of the same 2-wedge. It is easily veri�ed that if we sweep a planethrough any onvex polytope with the ombinatorial struture of a ube, so that the plane is notparallel to any of its faets, then there always exists a ross setion whih is either a pentagon or10



a hexagon. (Suh a ross setion arises when the plane has three verties of the polytope on oneside and �ve on the other.)Let C(t0) be a ross setion of our ube whih is either a pentagon or a hexagon. Then at leasttwo of the 2-wedges, say r and b, ontribute two sides to �C(t0).Lemma 3.5 For eah unordered pair w;w0 in fr; b; gg, either (w;w0) or (w0; w) is exposed at timet0.Proof: If r ontributes two sides to �C(t0) then r is semi-free both within b and within g (withrespet to orresponding bihromati olletion of 2-wedges). If r is not initial for b then, byde�nition, (r; b) is exposed, and if r is initial for b then (b; r) is exposed. The laim thus holds forfr; bg and, arguing similarly, for fr; gg. The ase of fb; gg follows from the fat that either b or galso ontributes two sides to �C(t0). 2We now apply a tehnique similar to that used in [12℄. The list T of ritial times partitions thetime-axis into O(n2+") atomi intervals. Let C = r \ b \ g be a triolored speial ube, as above,and let I be some atomi interval ontaining a time t0 where the property of Lemma 3.5 holds forC. That is, for eah of the unordered pairs fr; bg, fr; gg, fb; gg, (at least) one of its ordered pairsis exposed over I. Hene, up to a permutation of the 2-wedges r; b; g, either(a) (r; b) and (r; g) are exposed, or(b) (r; b), (b; g) and (g; r) are exposed.We �rst estimate the number of speial ubes of type (a). Fix a red 2-wedge r0, and let Tr0 denotethe sublist of ritial times at whih some bihromati pair (r0; w) starts or stops being exposed.The following proedure omputes a superset of all speial ubes of the form r0 \ b \ g thatsatisfy the ondition in (a). Iterate over the list Tr0 . For eah time t in that list, at whih a pair(r0; b0), for some b0 2 B, beomes exposed, output all triples (r0; b0; g), for g 2 G, for whih (r0; g)is urrently exposed (there are at most  + 1 suh triples). Apply a symmetri step when a pair(r0; g0), for g0 2 G, beomes exposed. It is easy to see that every speial ube r0\b\g that satis�esthe ondition in (a) will be output by this proedure, and that the total output size is at most(+1)jTr0 j. This is easily seen to imply that the number of triolored speial ubes that satisfy (a)is O(n2+").Consider next speial ubes of type (b). The following proedure omputes a superset of thoseubes. Iterate over the list T . For eah time t in that list, at whih a pair (r; b), for r 2 R, b 2 B,beomes exposed, output all triples (r; b; g), for g 2 G, for whih (b; g) is urrently exposed (thereare at most  + 1 suh triples). Apply an appropriately symmetri step when any other type ofbihromati ordered pair beomes exposed at t. It is easy to see that every speial ube r \ b \ gthat satis�es the ondition in (b) will be output by this proedure, and that the total output sizeis at most (+ 1)jT j = O(n2+").This shows that the overall number of triolored speial ubes is O(n2+"), from whih Theo-rems 2.4 and 1.2 follow.4 The Union of Substantially Fat Trihedral WedgesWe next extend the analysis given in the preeding setion to the ase of (; �)-substantially fattrihedral wedges. Substantial fatness is required to ensure the following property:11



Lemma 4.1 There exists a anonial set D of O(1) diretions on the unit sphere with the followingproperty. Let w1; w2; w3 be three (; �)-substantially fat trihedral wedges, for  > 4�=3. Then thereexists d 2 D suh that, for any plane � orthogonal to d and for eah i = 1; 2; 3, the ross setion� \ wi is unbounded (any suh setion is either a 2-wedge or a trunated 2-wedge), and the anglebetween its bounding rays is at least �0, for some onstant �0 that depends on � and .Proof: Let w be a trihedral wedge whose edges emanate from its apex in diretions a; b; . Adiretion d has the property that any plane orthogonal to d rosses w in an unbounded region ifand only if the signs of the salar produts ha; di, hb; di, h; di, are not all equal; (1)see Figure 7(a).Moreover, arguing as in the proof of Lemma 2.1, the angle between the two rays, bounding anyintersetion of w with a plane orthogonal to d, will be fat if the following holds:min fjha; dij; jhb; dij; jh; dijg � Æ; (2)for some �xed Æ > 0. A diretion d that satis�es (1) and (2) will be alled good for w.We next estimate the probability that a randomly seleted diretion is good for the 3-wedge w.We �rst alulate the probability that d satis�es (1).For diretions x; y, represented as points on the unit sphere, let Px:y denote the probability thata plane through the origin 0 separates x from y. Let Px:yz be the probability that a plane through0 separates x from y and z.Claim 4.2 (i) Px:y = �x;y=�, where �x;y is the angle between the vetors x and y.(ii) Px:y = Px:yz + Py:xzIndeed, to see (i), onsider the plane P spanned by x; y; 0. For any plane � passing through theorigin, � separates x from y if and only if the intersetion line ` = � \ P separates x from y in P ,and the probability for this to happen is �x;y=�, as asserted.To see (ii), we note that the event that a plane � through the origin separates x from y is thedisjoint union of the events that � separates x from y and z and that � separates y from x and z.The Claim implies that the probability that d satis�es (1) isPa:b + Pb:a + P:ab = Pa:b + Pa: + Pb:2 = �a;b + �a; + �b;2� :Thus, for a substantially fat trihedral wedge, we have that this probability is at least =(2�), thusa diretion violates (1) with probability at most 1� =(2�).As mentioned in the proof of Lemma 2.1, for a given diretion x, the measure of the set ofdiretions d for whih jhd; xij � Æ is 4�Æ. Sine the total area of the sphere is 4�, a randomdiretion violates the inequality jhd; xij � Æ with probability Æ. Repeating this argument for eahof the three edges of w, the probability for violating the inequality (2) is thus at most 3Æ.It follows that a diretion is bad for a substantially fat wedge w with probability at most1� =(2�) + 3Æ. 12



Let w1; w2; w3 be three substantially fat wedges. The preeding argument implies that a dire-tion will be good for all three wedges w1; w2; w3 with probability larger than 1�3(1�=2�+3Æ) =3=2�� 9Æ� 2. Hene, assuming that  > 4�=3 and that Æ < =(12�)� 1=9, the above probabilityis at least 3=(4�) � 1 > 0.This implies, as above, that there exists a set D of size O(1) (whih depends on  and inreasesas  approahes 4�=3) suh that, for any three substantially fat wedges, D ontains a diretion thatis good for all of them. The ross setions of the three wedges by any plane orthogonal to d satisfythe properties asserted in the lemma, with �0 > Æ�, as shown in Setion 2. 24.1 Canonization of trihedral wedgesA signi�ant step in the proof of Theorem 1.3 is the anonization proess, whih is onsiderablymore intriate than in the ase of dihedral wedges. Here is a brief overview of the anonial proess.We �x a diretion d and fous on the subsetWd of wedges that satisfy the properties in Lemma 4.1with respet to d. For eah w 2 Wd, we fold inwards eah of the three faes of w, and then replaethe shrunk wedge by the union of O(1) new wedges, so that (i) we lose at most quadratiallymany speial ubes, and (ii) the intersetion of a plane orthogonal to d with any new wedge iseither a anonial 2-wedge (as in the ase of dihedral wedges) or empty. This will allow us toapply a variant of the arguments used for the ase of dihedral wedges, from whih the assertednear-quadrati bound will follow.In more details, we proeed as follows. Fix a diretion d 2 D, and onsider the family Wd ofwedges for whih d is a good diretion. The anonization proess of Wd has two stages.First anonization stage: Folding bakward faes. Let w be a trihedral wedge inWd. De�nethe forward fae of w to be the fae spanned by those two edges of w, all them e0 and e1, forwhih the salar produt with d is of the same sign (say positive), and all the two other faes of wthe bakward faes. In what follows we refer to a ray � emerging from the apex o of w as positive(resp., negative) if the salar produt of a vetor along � with d is positive (resp., negative). Thus,the forward fae of w is spanned by the two positive edges of w, and eah of the two bakwardfaes is spanned by one positive edge and by the unique negative edge, e2, of w.We fold inwards eah of the bakward faes of w, so that any intersetion of the modi�ed wby a plane orthogonal to d will be bounded by rays whose orientations belong to some �xed setof onstant size (this property is not enfored on any bounded segment on the boundary of suh aross-setion). This deformation reates two new onave edges, e0; e00. This folding requires someare, and is done as follows.We �rst fold eah of the bakward faes of w inwards along its positive edge (e0 or e1). Let f1(resp., f4) denote the folded fae inident to e1 (resp., e0). Let �1; �4 be the two planes ontainingf1; f4, respetively, and put e� = �1 \�4\w. Note that the orientation of e� varies ontinuously asa funtion of the folding angles of f1 and f4, and that the angle between e2 and planes orthogonalto d is at least some �xed onstant (that is, arsin Æ, where Æ is as de�ned in (2)). This implies thatwe an perform the folding so that the intersetions of f1 and f4 with planes orthogonal to d haveanonial orientations, and e� is negative. Let w0 denote the wedge spanned by the edges e0; e1; e�.Clearly, the respetive portions f 01, f 04 of f1 and f4 between e� and the respetive edges e1; e0 arebakward faes of w0 and f remains its forward fae.Next, fold the two bakward faes of w again, but this time about their ommon edge e2. Again,13



using ontinuity and the fat that the angles that e0 and e1 make with planes orthogonal to d arebounded away from 0, we an perform this folding so that the following property holds: Denotethe folded faes as f2 and f3, where f2 (resp., f3) is folded from the fae of w between e1 ande2 (resp., between e0 and e2). Let e01 be the edge of intersetion of f1 and f2, and let e00 be theedge of intersetion of f3 and f4. Then we require that the intersetions of f2 and f3 with planesorthogonal to d be at anonial orientations, and that the edges e01 and e00 be both positive. Letw00 be the wedge spanned by e00, e01 and e2. It is easily veri�ed that e� must be ontained in (theinterior of) w00, and that w� = w0 [ w00 is a (nononvex) pentahedral wedge bounded by the faesf; f 01; f2; f3; f 04. Moreover, f2 and f3 are the two bakward faes of w00 and its third fae, whih wedenote as f5, is a forward fae. See Figure 6.
e0

e1

f4

f3 f2

f1

e0

e1

f5

e2 e2

e0
e1

4f’ 1f’

0e’
1e’

1e’0e’

f3 f2

e2

f5

f

d

(a)

f

e*

(b)

w

e*

f

w’

w’’

Figure 6: First anonization stage of trihedral wedges. The good diretion d is upwards (withinthe page). (a) A ross setion of w by a plane parallel to d. (b) The same ross setion after thefolding.We repeat this onstrution to eah wedge w 2 Wd, and onsider the olletion W 0d onsistingof all new wedges like w0; w00, onstruted above. The size of W 0d is at most twie that of Wd.We now relate the number of speial ubes in Wd to those inW 0d. First, arguing as in the proofof Lemma 2.3, it follows that the total number of speial ubes in the olletion of the deformedpentahedral wedges w� dereases by at most O(n2). Indeed, a speial ube C = w1 \ w2 \ w3 inWd an stop being a speial ube only if a onave edge of one of the deformed w�1; w�2; w�3 appearson the boundary of the ube. In partiular, this edge rosses the original C.Let us then bound the number of speial ubes in Wd rossed by a onave edge t, say of w1.Sine t is ontained in w1, by de�nition, any speial ube rossed by t is formed by w1 and by twoother wedges w2; w3. For eah other wedge w, let Iw denote the interval w \ t. The endpoints ofthese intervals partition t into at most 2n atomi intervals, and the intersetion of t with a speialube C onsists of one or of several onseutive atomi intervals. Atually, suh an intersetionmust be a single atomi interval, for otherwise a fourth wedge would have interseted C, ontrary14



to the properties of speial ubes. For the same reason, no atomi interval an lie in two distintspeial ubes. It follows that the number of speial ubes rossed by t is at most 2n, so the totalnumber of suh speial ubes, over all possible hoies of w1, is O(n2). This establishes the laim.Next we relate the number of speial ubes in the olletion of deformed pentahedral wedges tothe number of speial ubes in W 0d, through the following lemma.Lemma 4.3 Let C be a speial ube formed by the intersetion of w� with two other deformedwedges. Then C is, or ontains, a quasi-speial ube in W 0d formed by the intersetion of these twoother wedges and one of the (undeformed) wedges w0, w00.Proof: w� has �ve faes. Sine the boundary of any speial ube formed by the intersetion of w�with two other wedges meets exatly two faes of w�, there are �52� = 10 ases to onsider.Sine faes f 01; f2 form a onave angle between them, no speial ube as above an meet bothf 01 and f2, so this ase is impossible. The same argument rules out the pair f3, f 04.The faes f; f 01; f 04 are all ontained in w0. Thus, any speial ube that meets a pair of thesefaes is a quasi-speial ube in W 0d that involves w0.The pair of faes f2; f3 are faes of w00, so a speial ube C that meets these faes will be aquasi-speial ube in W 0d de�ned by w00 and the only new wedge that intersets C (but does notde�ne it) is w0.The remaining four ases involve pairs of faes, one from ff2; f3g and one from ff; f 01; f 04g(exluding the pairs (f 01; f2) and (f3; f 04)). Any suh speial ube C must ross the forward faef5 of w00 and annot meet any edge of f5, sine those are also edges of w�. Thus, C \ w00 has thestruture of a ube, with opposite faes belonging to the same subwedge, so it is a quasi-speialube inW 0d, and the only new wedge that intersets C (but does not de�ne it) is w0. This ompletesthe proof of the lemma. 2We note that the weight of any quasi-speial ube onstruted in the preeding proof is at mostthree: it an be interseted (and not de�ned) by at most one new wedge that replaes eah of thethree pentahedral wedges that formed the original ube.We have thus transformed the trihedral wedges ofWd into a familyW 0d of new trihedral wedges,whose size is at most 2jWdj and suh that (a) the two bakward faes of any new wedge haveross setions orthogonal to d at anonial orientations; and (b) the number of speial ubes inthe original family is at most the number of quasi-speial ubes of level at most three in the newolletion W 0d, plus O(n2). Following Clarkson-Shor's tehnique [6℄, the number of quasi-speialubes at level at most three is at most proportional to the number of speial ubes in an appropriaterandom subfamily of W 0d. Hene, it suÆes to bound the number of speial ubes in W 0d.Seond anonization stage: Folding forward faes. Let w 2 W 0d and let � be a planeorthogonal to d. The ross setion w \ � is either a (anonial) 2-wedge (of angle � �0) or atrunated 2-wedge (whose rays have anonial orientations). There is a unique plane �0 orthogonalto d (passing through the apex of w) so that, as we sweep � parallel to itself from in�nity to �0,the ross setion w \ � is a 2-wedge that translates at onstant veloity. After reahing �0, theapex of this 2-wedge `attens out' and is replaed by a new edge that keeps widening as we sweep;see Figure 7(a). We note though that the above desription �ts wedges whose forward fae pointsat the diretion of inreasing time. Handling wedges whose forward fae points at the diretion ofdereasing time an be aomplished in a fully symmetri manner.15
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Figure 7: The ross setions of a trihedral wedge w by planes in a good diretion: (a) for theoriginal w; (b) after folding inwards a fae of w.We replae the family of the ross setions of w that are trunated wedges by another family,as follows. For a plane � preeding �0 we leave the ross setion � \ w unhanged. For a plane �sueeding �0, let w0 denote the trunated 2-wedge w\�, with bounding rays �1, �2 and boundingsegment e. We replae w0 by two 2-wedges w01, w02, whose apies are at the endpoints of e andwhose bounding rays are parallel to �1 and �2; see Figure 7(b).Lemma 4.4 There exist three trihedral wedges w1, w2, w3, all ontained in w, so that:(i) w1 [ w2 [ w3 has one vertex|the apex o of w.(ii) w1 [ w2 [ w3 has four (unbounded) edges, where three of these edges are onvex and oinidewith the edges of w and the fourth is onave.(iii) w1 [w2 [w3 has four faes, two of whih oinide with two faes of w and the other two areobtained by folding the third fae of w inwards about eah of its edges.(iv) The ross setions � \ (w1 [ w2 [ w3), over all planes � orthogonal to d, oinide with themodi�ed ross setions of w.(v) Eah of the intersetions � \ w1, � \ w2, � \ w3, for planes � orthogonal to d, is empty onone side of the apex o, and is a 2-wedge translating at onstant veloity on the other side ofo. All three kinds of 2-wedges are homotheti (and anonial).Proof: Let a; b;  be unit vetors along the edges of w, as above. We may assume, without loss ofgenerality, that ha; di and h; di have the same sign, and that the sign of hb; di is opposite; that is,the fae between a and  is the forward fae of w.16



Let Fx;y denote the planar wedge bounded by the two rays that emanate from the apex o of win the diretions x; y, respetively. Take the bakward fae Fa;b (resp., Fb;) of w and draw in itthe ray u (resp., v) orthogonal to d. Let w1 be the onvex hull of the edges a; u; v, let w2 be theonvex hull of the edges ; u; v, and let w3 be the onvex hull of the edges b; u; v. Note that anyintersetion of Fa;v with a plane orthogonal to d is empty if the plane lies in the negative side ofo, and is a ray parallel to v, otherwise. This, and a symmetri statement onerning F;u, implythat all ross setions orthogonal to d of eah of w1; w2; w3, if nonempty, are all homotheti to eahother. This is easily seen to imply all �ve properties asserted in the lemma. 2Let W 00d denote the olletion of the transformed, anonial wedges, obtained, as in Lemma 4.4,from the wedges ofW 0d. Arguing as in the proof of Lemma 2.3, and in the preeding analysis of the�rst anonization stage, we obtain:Lemma 4.5 The number of speial ubes for W 0d is smaller than or equal to the number of speialubes for W 00d plus O(n2).Proof: Let w1; w2; w3 be three trihedral wedges inW 0d, forming a speial ube C, and let w01; w02; w03be their anonial images, that is, the union of the three partial wedges that replae eah originalwedge, as in Lemma 4.4. Denote by twi the diretion of the new onave edge of w0i, for i = 1; 2; 3.By de�nition, C = w1 \w2 \w3. We may assume that C does not meet any plane orthogonal to dand passing through the apex of one of the wi's. Indeed, sine the overall number of suh planes isO(n), the number of speial ubes that violate this assumption is O(n2), so we may ignore them.De�ne C 0 = w01\w02\w03. Sine eah w0i � wi, it follows that C 0 � C. The ube C has two oppositefaes from the boundary of eah wi. Sine only one fae of wi has been folded in the anonizationproess, it follows that C has three faes, one on the boundary of eah wi, suh that these faesalso lie on the respetive boundaries �w0i. Let a be the point of intersetion of these faes. Then ais a vertex of C and also a vertex of C 0.Consider the onneted omponent C 00 of C 0 that ontains a. If C 00 has the ombinatorialstruture of a ube with pairs of opposite faes lying on the boundary of the same w0i then, arguingas in the proof of Lemma 4.3, C 00 is easily seen to be a quasi-speial ube in W 00d . Hene, eahspeial ube forW 0d of this kind is mapped (in a 1-1 manner) to a quasi-speial ube forW 00d , whoselevel is, as above, at most three.If C 00 does not have the ombinatorial struture of a ube, as above, then �C 00 must meet oneof the new onave rays twi . Suppose, without loss of generality, that tw1 meets �C 00. In partiular,tw1 rosses C. Arguing as in the analysis of the �rst anonization stage, the overall number of suhspeial ubes is O(n2). This ompletes the proof of the lemma. 2To reap, we have taken the original familyWd, for a �xed diretion d, and have deformed eahwedge w 2 Wd in two steps. We �rst have folded inwards its two bakward faes and replaed the`pinhed' wedge w� by the union of two new wedges, so that the bakward faes of eah new wedgehave planar ross setions orthogonal to d with anonial orientations. Then we have taken eahnew wedge w0 and folded inwards its forward fae, so that this pinhed wedge an be replaed bythe union of three other wedges, so that any ross setion orthogonal to d of any new wedge iseither empty or is a anonial 2-wedge, and all these anonial 2-wedges (from the same w0) arehomotheti to eah other. The resulting set W 00d is partitioned to O(1) subfamilies, eah onsistingof 3-wedges with homotheti ross setions, as above.
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4.2 Speial ubes and omplexity of the union for anonial trihedral wedgesThe estimation of the number of speial ubes for W 00d is similar to that for dihedral wedges, withthe following signi�ant di�erene. Let w be a trihedral wedge inW 00d . From the point of view of thesweeping plane �, the modi�ed ross setion � \ w is a 2-wedge translating at some �xed veloityuntil enountering some ritial plane �0, after whih it disappears altogether, or, symmetrially,the intersetion is empty until the 2-wedge suddenly appears in � and then translates at someonstant veloity. We thus need to modify the preeding analysis so that it also handles theseappearanes and disappearanes.The ase of a single anonial family is trivial, and is handled as in the ase of dihedral wedges.The union of two anonial families. For two families, denoted red and blue, we estimate thenumber of speial red-red-blue ubes.We �rst bound the number of speial red-red-blue ubes, for whih the orresponding blue 2-wedge is short (see the analysis of dihedral wedges for the de�nition). Using the same 2-dimensionalframes introdued there, it is easily veri�ed that the number of suh ubes is O(n2�(n)). Indeed,as shown there, this number is proportional to the overall omplexity of the lower envelopes, overtime, of the red 2-wedges as seen along some ray bounding a blue 2-edge, summed over all blue2-wedges. Sine a red 2-wedge r an appear or disappear at some ritial time, it means that r isrepresented in suh a 2-D frame by a segment that may start or stop at that ritial time. Hene,eah envelope is still an envelope of O(n) segments and rays, and the laim follows as above.Consider next speial red-red-blue ubes for whih the orresponding blue 2-wedge is long. Anysuh ube has, as in the dihedral ase, a top-top-right vertex. This vertex lies on a `top-top' rededge (in a ross-setion where the boundaries of two red 2-wedges overlap). Sine appearanes anddisappearanes of 2-wedges do not a�et suh overlaps, the number of overlaps is O(n2), as before.Consider the planar ross setion at the time of a red top-top overlap. This is a planar arrange-ment of two families of �=4-fat wedges. Thus, there are at most  = O(1=� log(1=�)) blue 2-wedgesthat are long and form a red-red-blue speial ube in this arrangement.Thus, the total number of speial ubes for two anonial families is O(n2(�(n)+1=� log(1=�))).This, ombined with Theorem 1.6, implies that the omplexity of the union of two anonial familiesof trihedral wedges is O(n2+").The union of three anonial families. For three anonial families, denoted red, green andblue, we estimate the number of speial red-green-blue ubes, following and adapting the analysisof the dihedral ase.Let C = r \ g \ b, for r 2 R; g 2 G; b 2 B, be suh a `triolored' speial ube. The followingproperties, established for the ase of dihedral wedges, ontinue to hold for the trihedral wedges ofW 00d , as is easily veri�ed.(i) There exists a plane � suh that � \ C has �ve or six edges.(ii) At the time (i) ours, for any w;w0 2 fr; g; bg, either (w;w0) is exposed or (w0; w) is exposed.(iii) For eah wedge w, the number of bihromati exposed pairs (w;w0), at any �xed time, is atmost some onstant  (equal to O( 1� log 1�)).18



The number of events at whih some wedge b starts or stops being initial for some other wedger is O(n2�(n)), as follows from the arguments used in the ase of two families of trihedral wedges.Consider next an event at whih some 2-wedge r starts or stops being semi-free within another2-wedge b. It is easily heked that at suh an event either (a) three sides of red and blue 2-wedgesbeome onurrent at a vertex that is ontained only in b (as in the ase of dihedral wedges), or(b) some 2-wedge appears or disappears. Clarkson-Shor's tehnique, ombined with the preedingresult for two families of trihedral wedges, implies that the number of events of type (a) is alsoO(n2+"). Conerning events of type (b), we note that the 2-wedge(s) that newly appear oinide atthat ritial time with the 2-wedge(s) that disappear. It follows that the status of being semi-freean hange at this time only for pairs that involve one of the 2-wedges that appear or disappear.Sine the number of suh pairs is O(n) (at the time of appearane/disappearane), and there areonly O(n) events of appearane/disappearane, it follows that the number of hanges of type (b)is only O(n2).Let T denote the sorted list of all ritial events at whih the set of exposed pairs hanges.Following the proedure presented for the ase of dihedral wedges, it is easily veri�ed that thenumber of speial ubes in this ase is at most ( + 1)jT j, where  is the onstant given in (iii)above. Sine jT j = O(n2+"), we onlude that the number of speial ubes in the ase of threeanonial families is O(n2+").Hene, the number of speial ubes in W 00d , and thus also in Wd, is O(n2+") for any " > 0.Summing this over all diretions in D, the same asymptoti bound also holds for the overall numberof speial ubes in W. This, ombined with Theorem 1.6, implies that the omplexity of the unionof the original W is also O(n2+") for any " > 0.This ompletes the proof of Theorem 1.3.Remark: Trying to extend the proof of Theorem 1.3 to the ase of wedges that are not substantiallyfat faes the diÆulty that we might have planar ross setions that are bounded triangles. In thisase it is not neessarily true that the number of exposed pairs (r; b) involving a �xed 2-wedge ris onstant at any given time. This is the main reason why substantial fatness is needed in ouranalysis, and an obvious open problem is to extend the present tehnique, so that it an also handlebounded ross setions of wedges.5 The Union of Nearly Equal CubesIn this setion, we apply Theorem 1.3 to derive Theorem 1.4. Without loss of generality, we mayassume that the side length of any ube in the given olletion C is between 1 and �. Fix someonstant parameter t < 1=p3. Construt a grid G of ubes with side length t. Clearly, any ube 2 C intersets only a onstant number of grid ubes. Consider the olletion G0 of grid ubesQ, for whih the olletion CQ of ubes of C that interset Q is nonempty. Then jG0j = O(n) andPQ2G0 jCQj = O(n).Let Q be a grid ube in G0, and put nQ = jCQj. Let  be a ube in CQ. By the hoie of t, Qannot ontain a pair of points that lie on opposite faes of . It follows that there exists a vertex vof  so that the intersetion of � with Q is ontained in the union of the three faes of  inident tov. Moreover, any edge of  that meets Q must be inident to v. Replae  by the trihedral wedgew that has v as an apex and is spanned by  (formally, w = fv + �(x� v) j x 2 ; � � 0g). Then \ Q = w \ Q. Let WQ denote the resulting olletion of trihedral wedges, for all  2 CQ. Thenany vertex of the union of CQ within Q is also a vertex of the union of WQ.19



By Theorem 1.3, the omplexity of the union of WQ is O(n2+"Q ), for any " > 0. Summing overall grid ubes Q, Theorem 1.4 follows.Theorem 1.4 an be extended in several ways, using essentially the same proof.Theorem 5.1 Let B be a family of n boxes so that the ratio between the side lengths of any pairof edges belonging to distint members or to the same member of B is at most �, for some onstantparameter � > 1. Then the omplexity of the union of B is O(n2+"), for any " > 0.Theorem 5.2 Let P be a family of n onvex polytopes, eah bounded by a onstant number offaes, so that the solid angles at the verties of these polytopes are all (; �)-substantially fat, forsome onstants  > 4�=3, � > 0, and the ratio between the distane from a vertex of some polytopeto a non-inident edge of the same polytope, and any other similar distane (within the same oranother polytope) is at most �, for some �xed onstant parameter � � 1. Then the omplexity ofthe union of P is O(n2+"), for any " > 0.6 EÆient Constrution of the UnionIn this setion we onsider the problem of onstruting eÆiently the (boundary of the) union of nnearly ongruent ubes (or of any of the other kinds of objets studied in this paper). For this weadapt the randomized algorithm of Aronov et al. [3, 4℄, whih onstruts the boundary of the unionalong eah fae of eah ube separately, and then `stithes' together these boundary portions.Let F be a fae of one of the ubes. The algorithm intersets all other ubes with F , therebyobtaining a olletion of onvex polygons, and then omputes the union of these polygons by astraightforward randomized inremental onstrution that inserts these polygons one by one in arandom order. By adapting the analysis in [4℄ to the ase at hand, it is easily seen that the expetedrunning time of the algorithm is O(n2+"), for any " > 0. The reader is referred to [4℄ for furtherdetails. In other words, we have shown:Theorem 6.1 The union of n nearly equal ubes an be omputed in randomized expeted timeO(n2+"), for any " > 0. Similar near quadrati bounds hold for the omputation of the union of fatdihedral wedges or of substantially fat trihedral wedges.7 The Complexity of the Union and Speial CubesIn this setion we onlude the paper by proving Theorem 1.6. This provides a general-purposeanalysis that obtains a bound on the omplexity of the union of an arbitrary family of onvexpolyhedra in three dimensions, whih depends on bounds on the number of speial ubes in anysubfamily.We �rst reall the tehnique of Aronov et al. [4℄ for analyzing the omplexity of the union ofarbitrary onvex polyhedra in 3-spae. We then extend it and show that the omplexity dependson bounding the number of speial ubes.LetW = fw1; : : : ; wng be a olletion of n fat wedges in 3-spae. Let wi; wj ; wk be three distintwedges inW. Let F 1i , F 2i denote the two faes of wi. The triple (F ai ; wj ; wk), for a 2 f1; 2g, de�nesa speial quadrilateral, denoted as Qi;a:j;k, if the following onditions hold:20



(i) Qi;a:j;k = F ai \ wj \ wk is a quadrilateral.(ii) Eah of the intersetions F ai \ �wj \ wk and F ai \ �wk \ wj onsists of two opposite edges ofQi;a:j;k.(iii) Qi;a:j;k \ wl = ; for any wl 2 W n fwi; wj ; wkg.Let Q(W) denote the number of speial quadrilaterals for W, and let Q(n) denote the maximumvalue for Q(W), taken over all olletions of n �-fat wedges (with � �xed).The level of a vertex v of the arrangement A(W) is the number of polyhedra inW that ontainv in their interiors. Let us denote by C0(W) the number of verties on �UW (whih is equal to thenumber of level-0 verties of A(W)), and by C0(n) the maximum value of C0(W), taken over allolletions W of n �-fat wedges (with � �xed).Following Aronov et al. [4℄, we all a triple (f; e; e0) speial if f is a level-1 2-dimentional faeof A(W), and e; e0 are 0-level edges of f , and we an trae the boundary of f from e to e0 withoutpassing through any other level-0 edge. We denote by C(1)(W) the number of speial triples inA(W), and by C(1)(n) the maximum value of C(1)(W), taken over all olletions W of n �-fatwedges (with � �xed).The following relation is established in [4℄ between C0(n) and Q(n). First we haven� 5=3n C0(n) � C0(n� 1) +O(n2) + 4nC(1)(n) : (3)The number of speial triples is bounded in turn by the reurrene:n� 2n C(1)(n) � C(1)(n� 1) + 1nO(n2 +Q(n)) : (4)Notie that De�nition 1.5 implies that every fae of a speial ube is a speial quadrilateral. Theproof proeeds by harging speial quadrilaterals to speial ubes or to verties at shallow levels inthe arrangement A(W). Let Q = Q1;a:2;3 be a speial quadrilateral. Consider the orrespondingintersetion C = w1 \w2 \ w3. We distinguish between two ases:Case (a): C has the ombinatorial struture of a ube. Let pij = F 11 \F i2\F j3 , for i; j = 1; 2, denotethe four verties of Q, and let sij = w1 \ F i2 \ F j3 denote the edge of C emanating from pij `away'from Q. Let t denote the total number of intersetions of the edges sij with faes of other wedges.Fix some threshold parameter k, to be spei�ed later, and onsider the following two subases:(i) t > k: We harge Q to the �rst k intersetions enountered along the inoming edges, and notethat eah of the harged verties is a vertex of the arrangement at level at most k. Moreover, anysuh vertex v an be harged by at most six speial quadrilaterals. Indeed, any suh quadrilateralontains a vertex (at level 0) that lies on one of the intersetion edges inident to v, and the portionof that edge between the quadrilateral and v does not ontain any other vertex at level 0.Denote by C�(n) (and C��(n)) the maximum number of verties at level � (resp., at most �) inan arrangement of n �-fat wedges. Applying Clarkson-Shor's probabilisti analysis tehnique [6℄,we have C�k(n) = kX�=0C�(n) = O(k3C0(n=k)) :This, and the argument in the preeding paragraph, imply that the number of speial quadrilateralsof this type is O(k2C0(n=k)). 21



(ii) t � k: Suppose �rst that C is rossed by an edge of some polyhedron in W (that is, the edgeintersets �C at two points). We laim that there exists an intersetion point q between suh anedge and �C that lies at level � k in A(W). Indeed, if an edge e rosses �C then, sine it does notross Q, it must ross one of the four `side faes' of C adjaent to Q. Let F be suh a fae. Thereexist at most k polyhedra that ross the two side edges of F (those adjaent to Q). The rosssetion of any other polyhedron with F must be a onvex polygon whih is either fully ontainedin F or `exits' it only through its bottom edge. It is easily veri�ed that the boundary of the unionof the ross setions F \ w, over all suh polyhedra w, must ontain a vertex v, whih is thus anintersetion of a polyhedron edge with F that lies at level at most k in A(W). We then harge Q tov, and note that v an be harged by at most O(k2) speial quadrilaterals Q. Indeed, v determinesthe fae F and thus one of the three polyhedra that indue Q. The other two must be two of theat most k other polyhedra that ontain v in their interior. The number of intersetions betweenedges and faes of polyhedra is O(n2), whih implies that the number of speial quadrilaterals Qunder onsideration is O(k2n2).Suppose next that C is interseted by an edge e of a polyhedron in W whih has an endpointinside v. By assumption, the polyhedron bounded by e is either fully ontained within C or `exits'C only through its bottom fae (the one opposite to Q). As above, the boundary of the union ofthe portions within C of all suh polyhedra must ontain a vertex of one of them, whih is thus avertex at level at most k in A(W). Arguing as above, the number of speial quadrilaterals Q forwhih this subase applies is only O(k2n).We may thus assume that C is not rossed by any edge of a polyhedron in W, so the onlypolyhedra that interset C are those t � k polyhedra that interset some of the four side edgesof C. De�ne the level of a ube C that satis�es onditions (i) and (ii) of De�nition 1.5 to be thenumber of polyhedra of W, that interset C. other than those three that de�ne C. Hene, in thease at hand, C is a ube at level at most k. We harge Q to C (whih an be harged in thismanner at most six times). Denote the maximum number of ubes at level � (resp., at most �) ina olletion of n �-fat wedges by  �(n) (resp., by  ��(n)). In partiular,  0 bounds the number ofspeial ubes in the given olletion. Applying again Clarkson-Shor's tehnique, we obtain �k(n) = kX�=0 �(n) = O(k3 0(n=k))Hene, the number of speial quadrilaterals under onsideration is O(k3 0(n=k)).Case (b): C does not have the ombinatorial struture of a ube. (This ase is easy to analyze inthe ase of wedges, and most of the foregoing analysis is not required for that speial ase.)For onveniene, assume that the fae F a1 of w1 that ontains Q is F 11 . Denote by F 12 ; F 22 thetwo faes of w2 that ontain two opposite edges of Q and by F 13 ; F 23 the two faes of w3 that ontainthe other two opposite edges of Q. If C is not a ube then one of the following ases has to arise:(i) One of the four intersetion edges w1 \ F i2 \ F j3 , for i; j = 1; 2, is unbounded.(ii) One of those four intersetion edges ends within the interior of w1.(iii) Not all four of those intersetion edges leave w1 from the same fae.(Note that ase (iii) annot our for dihedral wedges, sine any suh wedge has only two faes.)In subases (i) and (ii) we an harge Q to the orresponding intersetion edge F i2 \ F j3 . It islear that any suh edge an be harged in this manner at most twie. Indeed, if it is harged by a22



speial quadrilateral Q as above, then the portion of the edge between its intersetion point v withQ and its endpoint, or from v to in�nity, is fully ontained in the third polyhedron w1. Sine v isa vertex at level 0, the laim is immediate. It follows that the number of speial quadrilaterals insubases (i) and (ii) is O(n2).In subase (iii) at least one of the `side faes' F i2, F j3 (say, F 12 ), has the property that ' = C\F 12is not a quadrilateral. Moreover, if e is the edge of ' that is also an edge of Q, then the edges of 'adjaent to e both lie on �w3 and the two (neessarily distint!) edges adjaent to these edges lieon �w1; ' may have additional edges that lie on either boundary.We �rst assume that neither of the two edges w1 \ F 12 \ F j3 is rossed by more than k otherpolyhedra, for the threshold parameter k that we have hosen. If this does our, we use the sameharging sheme employed in Case (a) above.Suppose that the remaining portion of �' ontains two suessive edges that lie on �w1. Then' has a vertex that is an intersetion of an edge of w1 with F 12 . We an then harge Q to suh anintersetion v, and note that v annot be harged more than 2k times. Indeed, onsider the faeK = F 12 \w1. This is a onvex polygon with O(1) edges and with v as a vertex, and ' is obtainedby interseting K with w3. Let w be another polyhedron in W that ontains v and indues a fae'0 = K \ w with the same struture as above, so that '0 is adjaent to a speial quadrilateral Q0along some edge of K. Then, as is easily veri�ed, at least one of the two edges of ' lying on �w3and one of the two edges of '0 lying on �w must ross eah other (see Figure 8(a)), whih impliesthe asserted property. Hene, the number of speial quadrilaterals Q in this subase is O(n2k).Consider next the ase where ' has two suessive edges that lie on �w3. In this ase ' hasa vertex that is an intersetion of an edge of w3 with F 12 . We harge Q to suh an intersetionv. Given v, we know w3 and F 12 . Their intersetion is a onvex polygon K 0 with O(1) sides,and ' touhes at least three of its sides, so that one of the `hords' of ', i.e., an edge of ' lyingin the interior of K 0, is disjoint from any other polyhedron|this is the edge inident to Q (seeFigure 8(b)). It is easily heked that, one the two edges of K 0 onneted by this hord are �xed(there are O(1) hoies for suh a pair of edges) the hord is unique, from whih the laim follows.Hene, the number of speial quadrilaterals Q in this subase is only O(n2).Otherwise, the edges of ' alternate between edges inident to �w1 and edges inident to �w3,and their total number is at least six. We laim that, when F 12 and w3 are �xed, there an be onlyO(1) polyhedra w1 that generate a speial quadrilateral Q with F 12 and w3, as above. Indeed, putK = F 12 \w3. K is a onvex polygon with O(1) edges but with at least three edges that lie on �w3,and �' has at least three hords of �w1 that onnet pairs of these edges, with one of the hords(the one inident to Q) being disjoint from any other polyhedron. Arguing as above, it is easy tosee that, one the two edges of K onneted by this hord are �xed (there are O(1) hoies for suha pair of edges), the hord is unique (see Figure 8()). Indeed, if two hords onnet the same pairof edges of K 0 then one of them bounds a quadrilateral within K 0, ontrary to assumption. Thisimplies that the number of speial quadrilaterals Q in this subase is only O(n2).Thus, if we add all the bounds obtained so far, we obtain the following reurrene for themaximum number Q(n) of speial quadrilaterals:Q(n) = O(k2n2 + k2C0(n=k) + k3 0(n=k)) :By assumption,  0(n=k) = O((n=k)), so we haveQ(n) = O(k2n2 + k3�n + k2C0(n=k)): (5)23
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