
Advanced Topics in Computational and Combinatorial

Geometry

Prof. Micha Sharir

Spring 1993

Take Home Final Exam

Due back: July 5 before 4pm

Answer 3 of Problems 1–4 (30 points each) and 1 of Problems 5–7 (10 points)

Problem 1 (30 points)

Given n points in the plane, p1, . . . , pn, each moving along some straight line at some fixed
velocity (each point has a different line and a different velocity). Let CH(t) denote the
convex hull of these points at time t.

(a) Show that the number of combinatorial changes of CH(t) as t varies is O(nλs(n)), for
some constant s (give an upper bound for s). (Hint: For each fixed point pi express
the slope of the two edges of the hull incident to pi (if such edges exist at all) in terms
of upper or lower envelopes of appropriate functions of t, where each such function is
defined by pi and another pj.)

(b) Describe an efficient (close to quadratic) algorithm for finding the smallest time t0 such
that CH(t), for t > t0, does not change combinatorially.

Problem 2 (30 points)

Given k convex polygons in the plane, P1, . . . , Pn, where Pi has ni edges, for i = 1, . . . , k.
Put n = n1 + · · ·+nk. Let U denote the union of these polygons. Show that the complexity
of U is O(k2 +n log k), by applying the inductive proof technique as used in the proof of the
Zone Theorem. Specifically, we want to bound the number of edges on the boundary of U .
We remove a polygon Pi, consider the union U ′ of the remaining polygons, add Pi back, and
want to estimate how many edges of the boundary of U ′ have been split into 2 subedges by
the insertion of Pi. Show that the number of such edges is O(ni + k). (For example, charge
each such split either to a vertex of Pi or to some topological change in the structure of the
complement of U ′ that Pi generates—increase in the number of components, or merging
two boundary components of the same ‘hole’ of the union; this part of the analysis is tricky;
continue even if you don’t get this part fully done.) Now obtain a recurrence relation for
φ(k, n), the maximum complexity of the union of k polygons with a total of n edges, similar
to that used in other proofs, and show that its solution satisfies the asserted bound.
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Problem 3 (30 points)

Given a collection C of n discs in the plane, and an integer k ≤ n.

(a) Apply the Clarkson-Shor technique to show that the number of vertices of the arrange-
ment A(C), of the cicrcles bounding these discs, which are covered by at most k discs,
is O(nk). (Recall the bound proved in class for the complexity of the union of n discs.)

(b) If we are also given that no point of the plane is covered by more than k discs of C,
show that the total combinatorial complexity of A(C) is O(nk).

(c) Derive an algorithm that computes the maximum k for which there exists a point
covered by k discs, whose complexity is close to O(nk) (up to a polylogarithmic
factor). (Hint: Use (b) in the analysis of the algorithm performance.)

Problem 4 (30 points)

Given a set S of n points in 3 dimensions. We want to preprocess the points for solving
the Post Office Problem: Given a query point x, we want to find quickly the point of S

nearest to x. Derive an algorithm that uses close to quadratic storage and preprocessing
and answers queries in O(log n) time, using random sampling and the ε-net theory:

(a) Transform the problem to the problem of computing the intersection of n lower halfs-
paces in 4 dimensions, using standard techniques (we studied them in the first course).
The query now asks for the hyperplane that lies vertically above the query point (in
4 dimensions) and is closest to the point along the vertical linepassing through it (the
query point lies below all the hyperplens).

(b) Choose r points of S at random (r a big constant), compute the intersection of the r

corresponding halfspaces (what is the complexity of the intersection?), and triangulate
it into simplices.

(c) Apply the ε-net theorem to define appropriate subproblems for each simplex and con-
tinue the preprocessing recursively.

(d) Explain how a query is performed by searching with the query point through the
recursive structure computed above.

(e) Analyze the expected complexity of the storage, preprocessing, and query time of the
algorithm.

Problem 5 (10 points)

Consider the range space (X,R), where X is a set of all points in 3 dimensions, and each
range of R is a subset of X obtained by intersecting X with some ball. Show that the
VC-dimension of this range space is finite. (Hint: Take a subset A ⊆ X of n points, and
derive an upper bound on the number of ‘equivalence classes’ of balls, where all balls in the
same class intersect A in the same subset. Do it by defining in each class a ‘canonical ball’
in terms of some points of A.)
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Problem 6 (10 points)

Given k convex polyhedra in 3 dimensions, with a total of n faces. Show that the complexity
of their arrangement is O(nk2). (Hint: Show first that the complexity of the union or
intersection of a pair of convex polyhedra having n1, n2 faces respectively is O(n1 + n2).
Sum this over all pairs of the given polyhedra. Then bound the number of vertices of the
arrangement that can lie on a single edge of the union of any pair of the polyhedra (use
convexity!).)

Problem 7 (10 points)

Consider a randomized incremental algorithm for constructing the Delaunay triangulation
of n points in the plane. Show that the expected number of Delaunay triangles that the
algorithm creates during the incremental process is at most 6n (we proved in class that it
is O(n)). (Hint: Use the backwards analysis technique, which considers the algorithm as if
it runs backwards in time. Show that the expected number of Delaunay triangles that are
destroyed when we remove a random single point out of j given points, is at most 6.)

3


