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Abstract. We introduce a concept of Simplicity which in a sense cor-
responds to the reverse direction to the concept of Complexity. Many
problems of Asymptotic Geometric Analysis rotate around this notion.
We also describe the concept of Concentration and suggest a new direc-
tion of possible applications of the Concentration Phenomenon.
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1. Introduction

The study of many different high dimensional (or high parametric) systems
turns out to have a similar flavor despite the very differently sounding
questions and a huge diversity of techniques and approaches. Computer
Science type problems as well as other high parametric combinatorial type
problems (we often call it now Asymptotic Combinatorics) often rotate
around the notion of Complexity. In the main part of this paper, section 2,
we describe the concept corresponding to the reverse direction, which we
call Simplicity, and show that many (if not most) problems of Asymptotic
Geometric Analysis, i.e. asymptotic properties of high dimensional objects,
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rotate around this concept. The first time I introduced and discussed this
concept was in June, 2004, in the Learning Theory Conference in Barcelona
[18]. In section 3 we discuss a possibility of “mixing” explicit steps with
random ones to derive most interesting features of the Theory. Section 4
is very speculative. I want to open a discussion on some applications of
the Concentration Phenomenon to some problems and directions which are
very different from the standard and well known problems of this Theory.

Actually, the question I would like to understand here on some con-
ceptual (and almost philosophical) level is a well known rule of Casinos:
the closure of a table where significant wins have happened. What relation
does it have to this Theory? We will discuss it in Section 4.

Let me start by providing a few references on articles which were spe-
cially written to introduce the subject of Asymptotic Geometric Analysis
and some phenomena which govern behavior of High Dimensional Spaces.
They are [15] and [16]. Also, I recommend two recent detailed surveys on
this subject [4] and [5]. (All these papers are available through the “survey
article” part of my home page).

2. The concept of Simplicity

Let a family of procedures (we call them “steps”) be described which we
will call “simple steps” and a family of bodies are specified which we also
call “simple” objects. Starting with some, supposedly complicated, object
we would like to estimate the minimal number N of simple steps (i.e. the
steps from the family of simple procedures we introduced earlier) that may
be applied to our object in order to bring it to some other object which
belongs to the pre-defined class of simple objects. Then we say that N is
the simplicity of our object, of course, with respect to the defined families
of simple steps and simple objects.

Note, that this philosophy is exactly opposite to the standard under-
standing of Complexity: in the process of constructing an algorithm which
estimates Complexity we start with a simple object (system) and recover
the original structure; but in estimating Simplicity, we “destroy” all specific
information of our system to derive a simple one with very little remain-
ing information. However, of course, the procedures are not reversible and
“small simplicity” may co-exist with huge complexity (at least theoreti-
cally).
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A lot of recent results of Asymptotic Geometric Analysis are directed
to this goal: how quickly we may destroy all specification of a given (arbi-
trary, and a priori very complicated) object (which is in our case a normed
high dimensional space, or a convex body in high dimension) and to derive,
say, some isomorphic copy of a Euclidean space (or an ellipsoid).

There are a number of breakthroughs in this direction which we de-
scribe next using this language.

2.1. Minkowski and Steiner Symmetrizations

For some classical symmetrizations, let us check how many elementary steps
are needed to approximate an ellipsoid, starting with an arbitrary convex
body K ⊂ R

n. We will analyse two symmetrization procedures: Steiner
symmetrization (see, e.g. [12] for a definition) and Minkowski symmetriza-
tion, which is also called Blaschke symmetrization. In both cases, each
elementary step consists of selecting a hyperplane h in R

n. We will now
define the lesser known Minkowski symmetrization. Consider the reflection
rhK of the body K with respect to h, then the elementary step of this
symmetrization is ShK := K+rhK

2 , where by “+” we mean the Minkowski
sum of sets. The elementary step of the Steiner symmetrization, associated
with a hyperplane h, is denoted by SthK.

Fix some c > 1. What is the smallest N such that for any K ⊂ R
n we

may find {hi}N
1 such that there is an ellipsoid E and

E ⊂
N∏

h=1

Sthi
K := KN ⊂ c · E ? (2.1)

So, in our scheme, we are estimating the Simplicity of an arbitrary
convex set K with respect to the family of Steiner symmetrizations as sim-
ple steps and the family of convex bodies on the (Banach-Mazur) distance
from the Euclidean ball at most c as the family of simple bodies.

Here is a brief history of this question:

• Hadwiger (∼1955) estimated N from above by � (c1 · n)n/2 (where c1

is a universal constant, here and below).
• Bourgain–Lindenstrauss–Milman (∼1988) made a dramatic improve-

ment to N � c1n log n (for some c ∼ 3). However, one does not even
need the logarithmic factor and the answer is N ≤ 3

2n (Klartag–
Milman [12]).
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Actually, for every ε > 0 there is a constant c(ε), depending only on
ε, instead of c in (2.1) s.t.

N ≤ (1 + ε)n
(and, for some K, at least n − c1 log n is necessary). If we denote by D
the standard Euclidean ball then additional n − 1 symmetrizations turn
E into r · D for some r, and altogether N ≤ (2 + ε)n steps are enough
to approximate the Euclidean ball up to c(ε). (Note that the answer has
an isomorphic flavor. We did not approximate the Euclidean ball “almost
isometrically”, but up to some constant, independent of dimension and the
body K. Such isomorphic results in geometry actually have meaning as
asymptotic results which are interesting for large dimensions.)

In the case of Minkowski symmetrizations the best known result on
the same question, until 1987, was by [3]: for any ε > 0 there is a c(ε) such
that one may find {hi}N

1 for N ≤ 1
2n log n + c(ε)n and (for some r > 0)

rD ⊂
N∏

i=1

Shi
K ⊂ (1 + ε)rD (2.2)

(and a random selection of hi leads to (2.2) with high probability). So, the
estimate for Simplicity in this case was � cn log n . Klartag later showed
[9] that, for some K and random selection of hyperplanes, this answer is
precise (up to a constant factor).

However, the best selection of hyperplanes happens to be different and
Klartag showed [10] that the smallest Simplicity N is always N ≤ 5n ; this

is true for ε ∼ c
√

log log n
log n . So, in this case, we observe an isomorphic answer

which turns out to be “asymptotically isometric” for large dimension n.
The above estimates on Simplicity of any convex body are so good

(i.e., so small) that for a long period of time we thought that they are the
consequence of isomorphic answers, i.e., of these universal constants which
accompany every result above, and that almost isometric results should
have large Simplicity, perhaps even exponential. However, recent results of
B.Klartag [11] show that also in the almost isometric case (ε-isometric, for
any ε > 0) the simplicity of the above problems is very low:

There is a universal constant c such that for any dimension n and
ε > 0 the number N(n; ε) of Minkowski symmetrizations needed to bring
any convex body K to an ε-neighborhood of a Euclidean ball is at most
cn log 1/ε.

A similar estimate was proved by Klartag also for the family of Steiner
symmetrizations.
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2.2.

In a joint paper with A.Pajor [20, Theorem 7] we selected a different fam-
ily of simple steps (actually much simpler than the symmetrizations we
described above) and a different family of simple final objects (not bod-
ies with distance from ellipsoids which is bounded by a fixed constant,
but convex bodies with slightly more involved description) and again we
demonstrated a very low Simplicity of any convex body.

2.3.

The approximation of the Euclidean norm by averaging rotations of the
given norm ‖ · ‖ has a similar flavor. What is the minimal number N of
(orthogonal) rotations {ui} from O(n) such that the Euclidean norm ‖ · ‖
is well approximated, say, up to 2, by the averaging of N rotations:

|x| ∼ 1
N

N∑

i=1

‖uix‖K , ui ∈ O(n) ?

In [3] and [21] the precise formula for N is given, i.e., the Simplicity
of this problem was computed and it is never above Cn (see also [15]).
However, if we will define Simple steps as linear maps either in the space or
in its dual, and the goal is the same, i.e., the approximation of a Euclidean
norm up to some universal constant, then the picture is changed. Now the
simplicity is just the number 2. More precisely, the following statement is
correct:

For any n and any norm ‖ · ‖ in R
n there are two linear maps u1, u2

which are enough for approximation: for every x ∈ R
n let

|||x||| := ‖x‖ + ‖u1x‖
and, dualizing, consider the new norm |||x|||∗ + |||u2x|||∗: it is already C-
equivalent to a Euclidean norm (and C is a universal constant ).

This is a global version of the so-called “quotient of subspace theorem”
[19].

3. Explicit versus random

Let us move to another complexity related subject. Standardly, we are de-
scribing some very interesting features of normed spaces and convex bodies
(like, say, existence of Euclidean subspaces of very high dimension, or Eu-
clidean quotients of subspaces of dimension proportional to the dimension
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of the whole space) through random selection of corresponding subspaces in
a specific Euclidean structure. To estimate the complexity of such features
it seems appropriate to demonstrate explicit constructions which lead to
these properties. However, such explicit constructions are unknown. In the
same time, very recently, we discovered [1] that one may start with very
few randomly selected bits which are complemented by a number of explicit
simple and short constructions and lead to the features we are searching for.
Then this number of remaining random steps will estimate the remaining
(“randomized”) complexity of the feature we are studying.

As an example, let us consider the very famous example of �n
1 . It is well

known [8] that this space contains isomorphic copies of Euclidean subspaces
of any dimension proportional to n (with isomorphic constant depending
only on this proportion). In a recent joint paper with S.Artstein-Avidan [1]
we demonstrated how starting with n log n random bits (i.e. log n random
sign-vectors) one may construct (using already explicit steps) a subspace
isomorphic to Euclidean of dimension, say, n/2 and with an absolute con-
stant of isomorphism to the Euclidean space. We are using in such construc-
tions expanders and some typical derandomization schemes borrowed from
Computer Sciences. However, some more delicate derandomization results
are needed for applications in Asymptotic Geometry (see [1]).

Many more typical features of an arbitrary high dimensional convex
bodies are studied in [1], and in all examples the derandomized complexity
is very low; it is on the logarithmic level with respect to dimension.

4. New applications of the Concentration Phenomenon;
instability of equilibrium and stability of losses/gains

4.1. The Concept of Concentration

Let (X, d, µ) be a compact metric space with metric d and diameter diam(X)
≥ 1, which is also equipped with a Borel probability measure µ. We then
define the concentration function (or “isoperimetric constant”) of X by

α(X; ε) = 1 − inf
{
µ(Aε) : A Borel subset of X,µ(A) ≥ 1

2

}
,

where Aε = {x ∈ X : d(x,A) ≤ ε} is the ε-extension of A. As a consequence
of the isoperimetric inequality on the Euclidean sphere Sn+1 it is known
that

α(Sn+1; ε) ≤
√

π/8 exp(−ε2n/2),
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an estimate which is crucial in many results of Asymptotic Geometric Anal-
ysis, in particularly for the proof of Dvoretzky’s theorem.

P. Lévy (1919) was the first to observe the role of the dimension in
this particular example. For this reason, a family (Xn, dn, µn) of metric
probability spaces is called a normal Lévy family with constants (c1, c2) if

α(Xn, ε) ≤ c1 exp(−c2ε
2n), (4.1)

or, more generally, a Lévy family if for every ε > 0

α(Xn; ε) → 0

as n → ∞. It is a non-trivial and important observation that many “nat-
ural” families of such spaces are Lévy families. This observation is called
the Concentration Phenomenon. There are many examples of Lévy families
which have been discovered and used for Asymptotic Geometric Analysis
purposes. In most cases, new and very interesting techniques were invented
in order to estimate the concentration function α(X; ε). We list some of
them (and refer the reader to [17] and [13] for more information):
(1) The family of the orthogonal groups (SO(n), ρn, µn) equipped with the

Hilbert-Schmidt metric and the Haar probability measure is a Lévy
family with constants c1 =

√
π/8 and c2 = 1/8.

(2) The family Xn =
∏mn

i=1 Sn (where Sn denotes the n dimensional Eu-
clidean sphere) with the natural Riemannian metric and the product
probability measure is a Lévy family with constants c1 =

√
π/8 and

c2 = 1/2.
(3) All homogeneous spaces of SO(n) inherit the property of forming Lévy

families. In particular, any family of Stiefel manifolds Wn,kn or any
family of Grassman manifolds Gn,kn is a Lévy family with the same
constants as in (1).

[All these examples of normal Lévy families come from [6].]
(4) The space Fn = {−1, 1}n with the normalized Hamming distance

d(η, η′) = #{i ≤ n : ηi 	= η′i}/n and the normalized counting measure
is a Lévy family with constants c1 = 1/2 and c2 = 2. This follows from
an isoperimetric inequality of Harper [7], and was first put in such
form and used in [2].

(5) The group Πn of permutations of {1, . . . , n} with the normalized Ham-
ming distance d(σ, τ) = #{i ≤ n : σ(i) 	= τ(i)}/n and the normal-
ized counting measure satisfies α(Πn; ε) ≤ 2 exp(−ε2n/64). This was
proved by Maurey [14] with a martingale method, which was further
developed in [22].
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The rate of decay of the concentration function for different families (of
course, computed in a natural normalization of the metric and a natural
enumeration of the elements of the family) plays a crucial role in most
proofs of Asymptotic Geometric Analysis. It is the main technical tool of
the Theory. There are many techniques to estimate this rate.

In fact, the concept of a Lévy family (and especially a normal Lévy
family) generalizes the concept behind the law of large numbers in two
directions: a) the measures are not necessarily product measures (that is,
there is no condition of “independence”) and b) Lipschitz functions on the
space are considered instead of linear functionals only.

To explain the reason for the terminology of “concentration” and also
outline why a bound of the form (4.1) is so crucial, let us consider a 1-Lip
function f(x) defined on (X, ρ, µ), i.e.

∣∣f(x) − f(y)
∣∣ ≤ ρ(x, y) .

Denote by Lf the median of f(x), i.e.

µ
{
x ∈ X

∣∣ f(x) ≥ Lf

} ≥ 1
2 and µ

{
x ∈ Z

∣∣ f(x) ≤ Lf

} ≥ 1
2 .

Then
µ
{
x ∈ X

∣∣ |f(x) − Lf | < ε
} ≥ 1 − 2α(X, ε). (4.2)

So, if the value of α(X, ε) is very small, then the values of a Lipschitz
function “concentrate” in measure around one value, meaning that the
function is almost constant with high probability. This is the case when
X = Sn and the dimension n is large, as well as for large n for Πn or SOn

or other examples we mentioned above. It is, in fact, a general property of
high dimensional metric probability spaces which is called “concentration
phenomenon”.

Such a “concentration” of measure (these types of estimates) bal-
ances the exponentially high entropy of n-dimensional spaces (or other n-
parametric families) and leads to a “regularity” in high dimension, keeping
“diversity” under control.

4.2. Naive discussion

We would like to discuss a few new possible applications of the concept of
concentration to problems similar in spirit to the problems of Game Theory.
Consider a function f(x) defined on the permutation group Πn for some
fixed and large n, say, n = 52 (as the number of cards in a deck). Of course,
then every x may be identified with a given ordering of the cards in one
game, and the result of the game is described by the function f(x): the
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level of loss or gain in this game (in this scheme the art of the player is
encoded into the function f ).

Our function in a “fair situation” should be balanced, which is usually
expressed by Ef = 0. But let us discuss how “fair” indeed such a situation is.
To demonstrate in a more clear way our thoughts let us change the setting
and consider a function f(x) defined on the sphere Sn−1. Our assumption
is Ef :=

∫
Sn−1 f(x)dµ(x) = 0. However, it does not necessarily mean that

also the median Lf should be 0. Assume that Lf < 0. Of course, for large
n and a function f which is locally well behaved, say, Lipschitz constant
Lipf of f being not too large, concentration reasons imply that the value Lf

must be very close to Ef = 0. However, who stated that a very complicated
function f which describes the loss and the gain of the game should have a
good Lip constant? [Returning for a moment to our previous example of a
function on Πn we should actually realize that, quite oppositely, we should
not expect a good Lip. constant.] But then “fairness” of the game is easy to
beat. Indeed, as follows from (4.1), the C/

√
n - neighborhood of the level

Lf of the function f contains, for a suitable universal constant C, over half
of the whole measure of the sphere. Assume that f(x) < 0 for these vectors
x. This is natural because it is very close to the vectors where our function
is equal to Lf < 0. But then it implies that

Prob
{
x ∈ Sn−1 : f(x) < 0

}
> 3

4 . (4.3)

So, by Chernoff estimates, in N events of computing f(xi) (assuming that
xi are selected randomly and independently in every event) with exponen-
tially close to 1 probability around 3N/4 times we have f(xi) < 0 (i.e., we
lost). Of course, because Ef = 0, it means that, although we seldom win,
some positive values of f(x) may be very large to compensate many losses.
However, if your opponent (“the house”) introduces (what sounds very fair)
an “insurance policy”: any loss which is too big as well as too big a win are
cancelled (i.e., truncation of function f), then the balance is changed and
you surely lose (depending, of course, on the level of truncation).

In reality the situation is not so visible, and the gain in our game (of
random selection of x and computing the function f(x) ), if exists, is small;
I mean, that the probability

Prob
{
x ∈ Sn−1 : f(x) < 0

}
> 1

2 + ε

for a small but fixed ε > 0. However, the “compensation region” for f(x),
i.e. the set A inside Sn−1 on which our gain f(x) is very large, f(x) >

C > 0 , C is large, may be very small, and actually exponentially small
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in dimension n if f takes exponentially large values and C is exponentially
large. Then, instead of introducing an “insurance policy”, your opponent
may just limit the duration of the game.

The above discussion was very preliminary and naive. I wanted to ex-
plain that even a small “dis-balance” in the function f may lead to dramatic
unfairness because of high dimension and strong concentration. However, if,
say, our function f(x) has only two values, +1 and −1 , then automatically
Ef = Lf and such dis-balance will not happen.

4.3. Instability of equilibrium

Let now f0(x), x ∈ Sn−1, be a fair game, i.e.

Ef0 = Lf0 = 0.

Assume that our function f0 may be very slightly perturbed and in reality
we are playing with another function f(x) = f0(x) + p(x). So, we fix this
new function for a series of games.

I would like to explain now that even a very minuscule perturbation
p(x) may dramatically change the fairness and outcome of the game. Again,
a high dimension n and the strong (exponential) concentration are respon-
sible for this. Actually, I already provided the needed explanation before.
Indeed, let |p(x)| < ε for some positive but very small ε, which may be
of the order 1/na, for some a > 1/2. In a case where Lip(fo) is large (as
generally expected in many problems) also a much smaller order of ε may
dramatically change the outcome. Will it go in your favor or not?

This depends on the new Lf ; note, I ignore the new Ef ; it is not
very relevant. If Lf < 0, the series of games is not going in your favor
(and oppositely). The non-trivial remark is that even an extremely small
perturbation p(x) (say, the atmosphere around) may have a very visible
influence on the outcome.

Of course, even if the function f0(x) would be known (which is not the
case usually) the perturbed function f(x) is definitely not known. So, can
we “beat” the fate and, with small losses, predict if we have a favorable
game or not?

4.4. Stability of losses and gains

The concentration estimates are doing it, and with very few events - games
(and even one may be good enough) we may state with a high probability
if this game is in our favor or not. Indeed, if Lf > 0 (a favorable game), i.e.
the new median Lf is inside the positive region for the function f(x), and
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it is not too small (say, of the order 1/
√

n ), then already a probability of
the first gain is much above 1/2, and after very few events (games) we may
be sure with a very high probability that this series is favorable for us.

I would like to emphasize that the conclusion of this discussion is op-
posite to what we, mathematicians, would consider to be the right strategy.
We usually tend to accept an absolute, ideal independence of outcome of
the next game from the previous one. So, say, three losses in a row will not
discourage us from the next attempt (and, perhaps, without admitting it
even to ourselves, we would believe in the next luck even more). However,
the ideas we discussed above suggest to stop to play this series (after three
losses) immediately. I would like to end this section by explaining what
pushed me to create this mixture of the firm mathematical concept with
some philosophy, instead of computing some precise examples (which I ac-
tually did for myself). I was always surprised by some well known rules of
Casinos (as, say, the closure of a table where significant wins happened; but
why?), or by some expressions, like, say, “a period of luck” (or , oppositely,
“a period of bad luck”). It sounded as complete non-sense to my mathe-
matical culture and taste. I am not so sure in this now, taking into account
the enormously high number of parameters which imply the sensitivity of
functions- outcomes to unknown very small perturbations which may lead
to dramatic influences on these functions.
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