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Dedicated to the memory of Alexander (Sasha) Reznikov, a remarkable math-
ematician with tragic fate, and who called me his advisor, of which I was
always proud.

1. Introduction

1.a. A few historical remarks

The framework of the subject we will discuss in this survey involves very high
dimensional spaces (normed spaces, convex bodies) and accompanying asymptotic
(by increasing dimension) phenomena.

The starting point of this direction was the open problems of Geometric
Functional Analysis (in the ’60s and ’70s). This development naturally led to the
Asymptotic Theory of Finite Dimensional spaces (in ’80s and ’90s). See the books
[MS86], [Pi89] and the survey [LM93] where this point of view still prevails.

During this period, the problems and methods of Classical Convexity were
absorbed by the Asymptotic Theory (including geometric inequalites and many
geometric, i.e. “isometric” as opposed to “isomorphic” problems).

As an outcome, we derived a new theory: Asymptotic Geometric Analysis.
(Two surveys, [GM01] and [GM04] give a proper picture of this theory at this
stage.)

One of the most important points of already the first stage of this development
is a change in intuition about the behavior of high-dimensional spaces. Instead
of the diversity expected in high dimensions and chaotic behavior, we observe a
unified behavior with very little diversity. We analyze this change of intuition in
[M98] and [M00]. We refer the reader to [M00] for some examples which illustrate
this. Also in [M04], we attempt to describe the main principles and phenonema
governing the asymptotic behavior of high-dimensional convex bodies and normed
spaces.
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1.b. “Convergence” of geometric functional analysis and classical convexity, cre-
ating asymptotic geometric analysis

In this introduction, we will give only one result from the past, but will present it
in two different forms: one which corresponds to the spirit of Functional Analysis,
and the other in the spirit of Convexity Theory. We will meet this result in our
main text later. I mean the result which is often called the “Quotient of a Subspace
Theorem”.

Theorem [M85]. There is a universal constant c > 0 such that for any λ, 1/2 ≤ λ <
1, and any n-dimensional normed space X, there exist subspaces F ↪→ E ↪→ X
with

k = dim E/F ≥ λn ,

and

dist(E/F, `k
2) ≤ c

| log(1− λ)|
1− λ

.

Here dist(X, Y ) is the (multiplicative) distance between two normed spaces
X and Y which is called the Banach–Mazur distance, and which is formally defined
by

dist(X, Y ) = inf
{‖T‖ · ‖T−1‖ ∣∣ T : X → Y is an invertible

linear operator between spaces X and Y
}

.

This distance is defined as infinity if such an invertible operator does not exist.
Some additional remarks: Of course, we may consider the proportion λ > 0

to be below 1/2. In this case (i.e. for 0 < λ < 1/2) there is another universal
constant C > 0 such that

dist
(
E/F, `k

2

) ≤ 1 + C
√

λ .

However, this is already an automatic consequence of the well-known and old
results of the Asymptotic Theory (see [MS86]).

But the case of λ to be close to 1 is of very special importance. This is already
a structural fact. One may start to feel how we can approach and deal with an
arbitrary convex body and normed space.

We now present the above theorem in a geometric form. We often call it the
global version of the QS-Theorem.

Theorem [M91]. Let K ⊂ Rn be a convex compact body and 0 be its barycenter.
There are two linear operators u1, u2 ∈ SLn, such that if T = K ∩ u1K then
Q = Conv(T ∪ u2T ) is c-isomorphic to an ellipsoid E (for a universal constant
c > 0), i.e. 1

cE ⊂ Q ⊂ cE . Also, the volume of E remains the same as the volume
of the original body K.

Note, that constant c doesn’t depend on the dimension n or the body K. It
is universal, and to feel the meaning of the theorem, one should think of n being
very large. In this sense, both theorems above are asymptotic and their meaning
and strength are revealed when dimension n increases to infinity.
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2. Extension of the Category of Convex Bodies to the Category of
Log-Concave Measures

Let us first define the class of log-concave measures and functions.
Definitions. A Borel measure µ on Rn is log-concave iff for any 0 < λ < 1 and
any A,B ⊂ Rn such that all involved sets (A,B, λA + (1− λ)B) are measurable

µ
(
λA + (1− λ)B

) ≥ µ(A)λµ(B)1−λ.

Here λA is a homothety and + is the Minkowski sum, i.e. λA + (1 − λ)B =
{λx + (1− λ)y | x ∈ A and y ∈ B}.

A few very important examples of log-concave measures:
(i) The standard volume on Rn, µ(K) = VolK (by Brunn–Minkowski inequal-

ity).
(ii) The restriction of volume on a convex set K: µK(A) = Vol(K ∩A), K-convex.
(iii) Marginals of volume restricted to a convex set.

Let µ be a measure on Rn with the density function f(x), i.e. dµ = f(x)dx.
Let E be a subspace of Rn. Then we define marginal ProjE µ of µ on E the measure
on E with density

(ProjE f) =
∫

x+E⊥
f(y)dy ,

where E⊥ is the orthogonal subspace of E.
Obviously, marginals of log-concave measures are log-concave measures. In

particular, for a convex set K, we consider the measure µK = 1Kdx (where 1K is
the characteristic function of K) and the marginals of this measure are log-concave
measures.

Function f(x) ≥ 0 is called log-concave if log f is concave, i.e. f(x) = e−ϕ(x)

and ϕ is convex.
The connection between log-concavity of measures and functions was estab-

lished by C. Borell [Bo74]: Let the support of a measure µ, Supp µ, not belong
to any affine hyperplane. Then µ is log-concave iff µ is absolutely continuous on
Suppµ and the density f is a log-concave function.

Now we have many more examples of log-concave densities: Let |x| define the
standard euclidean norm on Rn and ‖x‖ be any norm on Rn. Then any of the
following functions is the density of a log-concave measure:

(i) e−|x| (exponential distribution);
(ii) 1

(
√

2π)n
e−|x|

2/2 (the gaussian distribution);

(iii) e−‖x‖
p/p, for any norm and 1 ≤ p < ∞.

Log-concavity was used in Convexity Theory already from the ’50s (Hen-
stock–MacBeath) and later, say, Prékopa–Leindler extension of Brunn–
Minkowsky inequality (see [Pi89]), or the use of log-concave functions to study
volume of sections of `n

p by Meyer–Pajor [MP88]. But a purely geometric study of
log-concavity waited until the end of the ’80s, and was initiated by K. Ball [Ba86],
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who extended the study of some geometric problems of convexity to a larger cat-
egory of log-concave measures. In particular, he studied isotropicity of such mea-
sures and connected it with isotropicity of convex bodies. He also considered some
important geometric inequalities in the extended framework of log-concave mea-
sures (“functional versions” of geometric inequalities). However, just recently it
was observed that such an extension is much broader than we thought, and is
needed to understand and to solve some problems of asymptotic theory of high
dimensional convexity proper.

Three features characterize this extension.

(i) On the one hand, important geometric inequalities (and other kinds of geo-
metric statements) are interpreted, extended and proved for log-concave mea-
sures.

(ii) On the other hand, some typical probabilistic results (and thinking) are in-
terpreted and proved in a geometric framework.

(iii) And most importantly, an extension of the geometric approach to the log-
concave category is needed to solve some central problems of a purely geo-
metric nature.

The goal of this article is to demonstrate examples of results to confirm this picture.
We consider only finite measures, and only normalization distinguishes them

from probability measures. This is the reason I call this extension “Geometrization
of Probability”. In this extension we identify K with the measure

µK := Vol|K (i.e. µ(A) = Vol(A ∩K)) .

3. Functional form of some geometric inequalities

3.a. Prékopa–Leindler inequality (functional version of Brunn–Minkowski inequal-
ity).

We introduce first sup-convolution which we call, following [AKM04], the Asplund
product:

(f ? g)(x) = Supx1+x2=x f(x1)g(x2).

Example. 1K ? 1T = 1K+T .
Also λ-homothety for function is defined by

(λ · f)(x) := fλ
(x

λ

)
, λ > 0

(So f ? f = 2 · f)

In this language, the Prékopa–Leindler inequality stated that, for
f, g : Rn → [0,∞), 0 < λ < 1,

∫
(λ · f) ?

(
(1− λ) · g) ≥

( ∫
f

)λ

·
( ∫

g

)1−λ

.
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In this formulation, Prékopa-Leindler is a functional analogue of the multiplicative,
dimensional free, form of Brunn–Minkowski inequality:

Vol
(
λA + (1− λ)B

) ≥ (VolA)λ · (VolB)1−λ

(for any subsets A and B of Rn and 0 < λ < 1 such that all sets involved are mea-
surable). Also “isomorphic” inequalities have their functional form. E.g. geometric
statement:
Reverse Brunn–Minkowski inequality (Milman [M86]):
∃C such that for any convex, symmetric K,P ⊂ Rn, there are linear transforms
TK , TP ∈ SLn (where TK depends solely on K, and TP depends solely on P ), such
that if K̃ = TK(K), P̃ = TP (P ), then

Vol(K̃ + P̃ )1/n < C
[
Vol(K̃)1/n + Vol(P̃ )1/n

]
.

Its functional analogue is the following statement (Klartag–Milman,
[KM05]): For any even log-concave f, g : Rn → (0,∞) there are Tf , Tg ∈ SLn,
such that f̃ = f ◦ Tf , g̃ = g ◦ Tg satisfy

[ ∫
f̃ ? g̃

]1/n

< C

[( ∫
f̃

)1/n

+
( ∫

g̃

)1/n]

where Tf depends solely on f and Tg solely on g (and C is, as before, a universal
constant).

3.b. Notion of polarity for log-concave measures; functional version of Santaló
inequality.

Let K ⊂ Rn, convex, 0 ∈ K. The polar set K◦ is define by

K◦ :=
{
x ∈ Rn : (x, y) ≤ 1 ∀ y ∈ K

}
.

[Functional Analysis interpretation: If K = −K, ‖x‖K – Minkowski functional of
K, i.e. K is the unit ball of X = (Rn, ‖ · ‖K). Then X∗ = (Rn, ‖ · ‖∗K) has K◦ its
unit ball.]

Let D be the unit euclidean ball.
The following well-known geometric fact is called Blaschke–Santaló inequal-

ity:
Let K = −K, then

|K| · |K◦| ≤ |D|2
(i.e. maximum is achieved on K := D).

Let us recall a well-known problem: What is min |K| · |K◦| (Mahler, ∼’39)?
The asymptotic answer to this problem is given in Bourgain–Milman [BM85;87]:

∃c > 0 universal such that

c ≤
( |K| · |K◦|

|D|2
)1/n

.

Very recently, G. Kuperberg [Ku07] gave a different proof of this inequality
which does not use the standard technique of the Asymptotic Theory.
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For a general not necessarily centrally-symmetric convex body K, the Blaschke–
Santaló inequality is also correct for a suitable shift of K: There exists x0 such
that, for K̂ = K − x0,

|K̂| · |K̂◦| ≤ |D|2
(minx |K| · |(K − x)◦| is achieved for x0 called the Santaló point of K; then 0 is
the barycenter of (K − x0)◦.)

Now the functional version of these inequalities:
We start with Legendre transform

Lϕ(x) = sup
y∈Rn

[
(x, y)− ϕ(y)

]
.

If ϕ is convex and low semi-continuous, then LLϕ = ϕ.
We define polarity for non-negative functions by [AKM04]

f◦ = e−L(− log f) , i.e. − log f◦ = L(− log f) ,

or

f◦(x) = inf
y∈Rn

e−(x,y)

f(y)
.

If f is log-concave upper semi-continuous then (f◦)◦ = f .

Examples. For any convex body K, such that 0 ∈
◦
K,

1◦K = e−‖x‖K◦ ,
(
e−‖x‖

2
K/2

)◦ = e−‖x‖
2
K◦/2.

So, the following triple is associated with K:
(
1K ; e−‖x‖

2
K/2; e−‖x‖K

)

and its polar (
1K◦ ; e−‖x‖

2
K◦/2; e−‖x‖K◦

)
.

The only f such that f◦ = f is the standard Gaussian density, which plays the
role of Euclidean ball D, in the “functional” extension of convexity theory we are
discussing.

Some elementary properties of polarity :

(f ? g)◦ = f◦ · g◦
(and therefore, for log-concave functions (f · g)◦ = f◦ ? g◦);

(λ · f)◦ = (f◦)λ

(note, that the dot-product λ · f here is the λ-homothety defined in 3a).

Theorem (Artstein, Klartag, Milman [AKM04]). Let f : Rn → R+,
∫

f < ∞. Then

(i) for some x0 and f̃(x) = f(x− x0),∫
f̃ ·

∫
f̃◦ ≤ (2π)n . (1)

For log-concave f , we may take x0 =
∫

xf
/ ∫

f .
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In the case of f -even, obviously x0 = 0, and the inequality (1) was proved by K.
Ball in his thesis [Ba86].

(ii) minx0

∫
f̃ · ∫ f̃◦ = (2π)n iff f is a.e. a gaussian density.

The standard geometric Santaló inquality for convex bodies follows from (1):
apply (1) to f = e−‖x‖

2
K/2. Then

∫
Rn f dx = cn|K| where cn = (2π)n/2/|D|, and

similarly for f◦ which implies Blaschke–Santaló’s inequality.
Let us repeat the statement without using the polarity notion:

Theorem [AKM04]. Let f : Rn → R+,
∫

f < ∞. Then, for some x0,
∫

f ·
∫ [

inf
y∈Rn

e−(x,y)

f(y)

]
e−(x,x0)dx ≤ (2π)n. (2)

For log-concave f , we may take xo =
∫

xf/
∫

f . Also, minx0 of that expression is
equal to (2π)n iff f is a.e. a gaussian density function f(x) = exp[(Ax, x)+(x, z)+a]
for some vector z, and a ∈ R and an operator A ≥ 0.

Also the reverse inequality is true in the functional form.

Theorem (Klartag–Milman [KM05]). ∃c > 0, such that for every log-concave f :
Rn → R+,

∫
f < ∞, we have

c <

( ∫

Rn

f ·
∫

Rn

f◦
)1/n

.

We call a function f ≥ 0 α-concave (0 < α < ∞) if f1/α is concave on Supp f .

Important Example: Let K ⊂ Rn+α be a convex set and E be a subspace, dimE =
n. Then, f := ProjE 11K is α-concave. Obviously, an α-concave function is log-
concave.

Fact. Any log-concave function f : Rn → [0,∞) is locally uniform on Rn approx-
imated by α-concave functions fα, fα(x) → f(x) (α →∞), for

fα(x) =
(

1 +
log f(x)

α

)α

+

≤ f(x) ,

Here, ϕ(x)+ = max{ϕ(x); 0}.
Define “α-duality” by

Lαf(x) = inf
y;f(y)>0

(
1− (x,y)

α

)α

+

f(y)
≤ f◦(x) ,

for α ≥ 1, and

Lαf(x) = inf
y;f(y)>0

(1− (x, y))α
+

f(y)
,

for 0 < α < 1. Clearly, Lαf is α-concave. Note also that Lαf → f◦ for α → ∞
and Lα1K → 1K◦ for α → 0 and 1T is the characteristic function of the set T .
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Fact. If f is upper semicontinuous and α-concave, f(0) > 0, then LαLαf = f .

Theorem [AKM04]. Let f be α-concave on Rn, α is an integer, Ef < ∞ and∫
xf(x) = 0. Then

∫

Rn

f ·
∫

Rn

Lα(f) ≤ αnκ2
n+α

κ2
α

( −→
α→∞

(2π)n
)
, (3)

where κk = VolDk, and the inequality is exact.

Historical remark : The origin of the transform Lα is from the 1960s. I searched for
duality for new moduli, I worked with. Today they are called “asymptotic moduli”.

The necessary transform was [M71a]

Kϕ = Supy

(x, y) + 1
ϕ

.

To deal with this transform we consider the following substitutions. We consider
the function f = ϕ− 1 and the transform L1f = Kϕ− 1 to come to

L1(f) = Supy

(x, y)− f(y)
1 + f(y)

.

Consider it as a part of the family Lµ:

Lµ(f) = Supy∈Rn−1
(x, y)− f(y)
1 + µf(y)

,

where f is convex on Rn−1. Of course, µ = 0 gives the Legendre transform.
To understand the meaning and inversion formula introduce a norm on Rn:

∥∥∥∥
(

y;
1√
µ

)∥∥∥∥ =
1 + µf(y)√

µ
.

Then ∥∥∥∥
(

x;
1√
µ

)∥∥∥∥
∗

=
1 + µLµf(y)√

µ
.

Reflexivity of finite dimenional space implies

LµLµf = f .

Interestingly, only µ = 0, i.e., the case of the Legendre transform proper, lacks
this geometric intepretation.

The inequality (3) was written in [AKM04] only for integer value of α. We
take later α → ∞ to derive the inequality (2). However, a natural tensoration
argument provides a similar inequality for any rational α > 0 and, taking the
limit, also any α > 0. Such tensoration arguments were used by Klartag for proving
Theorem 2.1 in [K07a]. At the same time, it is also a particular case of the result
by Fradelizi–Meyer [FM07]. They prove the following fact.
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Theorem [FM07]. Let ρ : R+ → R+ be a log-concave nonincreasing function and
let ϕ be a convex function such that 0 <

∫
Rn ρ(ϕ(x)))dx < ∞. Define a shifted

Legendre transform Lz by

Lzϕ(y) = Supx

(
(x− z, y − z)− ϕ(x)

)

for any y ∈ Rn. Then, for some z ∈ Rn,
∫

Rn

ρ(ϕ(x))dx

∫
ρ
(Lz(ϕ(y))

)
dy ≤

( ∫

Rn

ρ

( |x|2
2

)
dx

)2

.

([FM07] also provides equality conditions under the condition that ρ is a decreasing
function). The particular cases corresponding to functions ρ(t) = e−t and ρ(t) =
(1− t)α

+ lead to the previous results from [AKM04].
There are many inequalities in the spirit of the above theorems. Some of them

may be developed by the original approach of Ball [Ba86], and also by the method
of [AKM04] or using the correspondence between log-concave functions and convex
bodies as was put forward by Ball in [Ba86], [Ba88] and used in [KM05]. For other
inequalities in this style, see [FM07]. However, we will concentrate our attention
on some surprizing extensions which appeared in attempts to answer a question
raised by D. Cordero-Erausquin.

He conjectured the following (very unusual) inequality:
Let K and T be any convex centrally symmetric bodies and D be the Eu-

clidean ball. Is it true that

V ol(K ∩ T ) · (K◦ ∩ T ) ≤ Vol(D ∩ T )2? (4)

He proved this conjecture [C02] for the case where K and T ⊂ R2n could
be realized as unit balls of complex Banach norms and, in addition T is invariant
under complex conjugation. One may see (4) as a “ localization” of the standard
Blaschke–Santaló inequality.

The surprizing fact is that the functional version of (4) has been proved by
Klartag [K07a] and Barthe–Cordero-Erausquin (unpublished) but the geometric
conjecture (4) does not follow from it (or, at least, we can’t see how it may follow).
So, the proved theorem is

Theorem (Klartag [K07a]; Barthe–Cordero-Erausquin). Let f : Rn→(−∞,∞] be
an even measurable function, and assume that µ is an even log-concave measure
on Rn. Then, ∫

Rn

e−fdµ

∫

Rn

e−Lfdµ ≤
( ∫

Rn

e−
|x|2
2 dµ

)2

,

whenever at least one of the integrals on the left-hand side is both finite and
non-zero.

To describe one geometric consequence, we need the following:
Definition. If A is the unit ball of the norm ‖ · ‖A and B is the unit ball of
the norm ‖ · ‖B , then A ∩2 B is defined as the unit ball of the norm ‖x‖A∩2B =√
‖x‖2A + ‖x‖2B .
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Corollary (Klartag [K07a]). Let K,T ⊂ Rn be centrally-symmetric, convex
bodies. Then,

Voln(K ∩2 T )Voln(K◦ ∩2 T ) ≤ Voln(D ∩2 T )2.

Note that A∩B ⊂ A∩2 B ⊂ √
2(A∩B) for any centrally-symmetric convex

sets A,B ⊂ Rn. Thus, the theorem immediately implies that

Voln(K ∩ T )Voln(K◦ ∩ T ) ≤ 2n Voln(D ∩ T )2.

Let us show one more fact in this spirit from [K07a].
Let ψ : Rn → (−∞,∞] be a convex, even function, and let α > 0 be a

parameter. Let µ be a measure on Rn whose density F = dµ/dx is

F (x) =
∫ ∞

0

tn+1e−αt2e−ψ(tx)dt .

Then, for any centrally-symmetric, convex body K ⊂ Rn,

µ(K)µ(K◦) ≤ µ(D)2.

An example of a measure which is covered by this theorem is, e.g. the measure
with density 1

(1+‖x‖2)n+2 where ‖ · ‖ is a norm on Rn. So, such measures may have
“heavy tails” and not be log-concave.

3.c. Functional form of Urysohn inequality (Urysohn inequality for log-concave
functions).

Recall the classical Urysohn inequality:
(

Vol K
VolD

)1/n

≤ M?(K) :=
∫

Sn−1
sup
y∈K

(x, y)dσ(x)

and, by Steiner formula,

Vol(D + εK) = VolD + εnM?(K)VolD + O(ε2) .

So, we may define the analogous quantity. Let G(x) = e−|x|
2/2. Then define

VG(f) = lim
ε→O+

∫
G ? [ε · f ]− ∫

G

ε

(one may show that lim exists).
Denote M?(f) = 2VG(f)

n
∫

G
= VG(f)

n
2 (2π)n/2 . Then M?(G) = 1.

If f = 1K then (calculation)

VG(1K) =
(2π)

n−1
2 nκn

κn−1
M?(K)

(κn = VolDn).
So M?(K) = cnM?(1K) for cn ∼

√
n.

The quantity M∗(f) has the following properties:
(i) Linearity:: M?(f ? g) = M?(f) + M?(g);
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(ii) Homogenuity:: M?(λ · f) = λM?(f), λ > 0.

Theorem [KM05]. Let f : Rn → [0,∞] be an even log-concave function such that∫
f =

∫
G (= (2π)n/2). Then

M?(f) ≥ M?(G) = 1 .

3.d. Mixed measures – what are they?

Introducing M∗(f) in the previous section creates a feeling that there is a natural
and clear notion of mixed measures which extends the notion of mixed volumes.
However, the situation is not so, and what mixed measures are is absolutely not
yet clear to me. This stage of “geometrization of probability” is still ahead of us.

We see only some examples, mostly on the level of “experiments”, which
demonstrate, however, the high interest the theory should generate. I will describe
below a couple of examples (from Klartag [K07a]).

For f : Rn → [0,∞), concave on Supp f , define a variant of the Legendre
transform

L′f = sup
y;f(y)>0

[
f(y)− (x, y)

]

(note L′f is convex).
For fi : Rn → [0,∞), i = 0, 1, . . . , n, compactly supported, concave on their

Supp, denote

V (f0, . . . , fn) =
∫

Rn

[L′fo](x)D
(
Hess[L′f1](x), . . . , Hess[L′fn]

)
dx .

(See the Appendix for a definition and a few properties of mixed discriminants
D(A1, . . . , An) of matrices Ai ≥ 0.)

Then the following is true: The multilinear form V is
(i) fully symmetric with respect to permutations of {0, 1, . . . , n};
(ii) monotone; i.e. if fi and gi as above and fi ≤ gi then V (f0, . . . , fn) ≤

V (g0, . . . , gn).
(iii) satisfies “hyperbolic” Alexandrov–Fenchel type inequality

V (f0, f1, . . . , fn)2 ≥ V (f0, f0, f2 . . . , fn) · V (f1, f1, f2, . . . , fn).

And now “the dual” statement: Let K ⊂ Rn be convex compact. Let fi : Rn → [0,∞),
i = 0, 1, . . . , n, be concave, vanishing on ∂K, with bounded second derivatives in
◦
K. Denote:

I(f0, . . . , fn) =
∫

K

f0(x)D(−Hess f1, . . . ,−Hess fn)dx .

Then, the multilinear form I is:
(i) fully symmetric with respect to permutations;
(ii) monotone (in the above class of functions);
(iii) the following “elliptic-type” inequality is satisfied:

I(f0, f1, . . . , fn)2 ≤ I(f0, f0, f2 . . . , fn) · I(f1, f1, f2, . . . , fn) .
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So, the Legendre transform “transforms” elliptic type inequalities into hyperbolic
type! Why? We could not observe this kind of phenomenon in the category of
convex sets because the functional duality is not closed in this category.

4. A Central Limit Theorem (CLT) for Convex Sets and
Log-Concave Measures

In the classical geometric approach, we study a geometric shape of projections (or
sections) of convex body K, and we know that they are, with high probability,
close to euclidean balls for small enough rank of projections.

The exact old estimate stated [M71b] that, with high probability, a random
projection PE of a convex body K in Rn of rank k∗ < cn

(M∗(K)
diam K

)2 is isomorphic
upto a constant 2 to a euclidean k∗-dimensional ball. Here c is a universal constant,
M∗(K) was defined in 3.c and diam K is the diameter of K.

But what about measure projections (marginals) of convex bodies in place
of geometric projections? This question was first asked by Gromov [Gr88]. He
made some initial observations, but recently the structure of random marginals
was understood completely. To describe the results we need some notions.

Normalize the convex body K ⊂ Rn such that

VolK = 1,

∫

K

~xdx = 0,

∫

K

〈x, θ〉2dx = |θ|2L2
K ,

for any θ ∈ Rn. We say that K is in “isotropic” position and the constant LK is
called the isotropic constant of K.

Theorem (Klartag [K07b], [K07c]). Suppose K ⊂ Rn is convex and isotropic, and
X is distributed uniformly in K. Then ∃Θ ⊂ Sn−1 with σn−1(Θ) ≥ 1 − δn, such
that for θ ∈ Θ,

sup
A⊂R

∣∣∣∣ Prob
{〈X, θ〉 ∈ A

}− 1
LK

√
2π

∫

A

e−t2/2L2
K dt

∣∣∣∣ ≤ εn .

Here, say, δn < exp(−cn0.9), εn < Cn−1/100.

Progress towards this goal was obtained earlier by Brehm–Voigt [BV00] and
Anttila–Ball–Perissinaki [ABP03]. There is an analogue multi-dimensional version

Theorem (Klartag [K07b]). Let K ⊂ Rn be convex and isotropic. The r.v. X is

distributed uniformly in K. Suppose ε > 0 and k < cε2 log n
log log n .

Then ∃E ⊂ Gn,k with σn,k(E) ≥ 1− exp(−cn0.9), such that for E ∈ E ,

sup
A⊂E

∣∣∣∣ Prob
{

ProjE(X) ∈ A
}− 1

Lk
K

∫

A

e−|x|
2/2L2

K

(2π)k/2
dx

∣∣∣∣ ≤ ε .

Very recently, Klartag [K07c] improved all estimates in the two previous re-
sults: instead of log-type estimates in the previous result, he proved a polynomial
type estimate. This means that there is a principle difference between the dimen-
sion k∗ such that geometric shape of projections on subspaces of this dimension
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can be approximately euclidean and the dimension of marginals which are approx-
imately gussian. In the first case, in some examples, say a cross-polytope – the
unit ball of `n

1 space, k∗ cannot be above ∼ log n, but in the second case we have
∼ gaussian marginals in dimensions of the order of say n1/20.

5. Isotropic Position and Isotropic Constant

We again recall that a convex body K ⊂ Rn, with the barycenter of K at 0, is in
isotropic position iff VolK = 1 and, ∀i, j = 1, . . . , n,∫

K

xixids = δijL
2
K

(x = (x1, . . . , xn)). We call LK the isotropic constant of K. It is an old and famous
problem of Bourgain if isotropic constants {LK} are uniformly bounded (by dim. n
and convex bodies in Rn). A well-known 20-year-old estimate of Bourgain’s states
that LK ≤ Cn1/4 log n. However, recently Klartag proved

Theorem (Klartag [K06]). For any convex body K ⊂ Rn and ε > 0 there exists a
convex body T ⊂ Rn, such that

(1− ε)T ⊂ K − x0 ⊂ (1 + ε)T

and LT < c/
√

ε.

Corollary (Klartag [K06], relying on Paouris’ recent theorem [P06]).

LK < Cn1/4 when K ⊂ Rn .

It is important to note that the proof of the last theorem requires the exten-
sion of Asymptotic Theory of Convexity to the category of log-concave measures.

In a very rough sketch of his proof, Klartag considered the ‘momentum’ map

F (x) = log
∫

K

e〈x,y〉dy

(K is a convex body in the isotropic position) which produces (by considering
gradient) the transportation of measure from Rn to K. This creates the family
{fx(y) = e〈x,y〉1K(y)}x∈nK◦ of log-concave densities.

The boundedness of the isotropic constant for any of these measures (the
isotropic constant of a measure should be defined) would imply the theorem (it
would construct an approximation T ). In the next step, this fact is proved in
the average (which means the existence of one such measure). The proof uses the
reverse Santaló inequality [BM87].

To give some details of the proof of the theorem, we need to establish a
connection between log-concavity and convex bodies.

For any even log-concave f : Rn → R+
we associate a norm (K. Ball [Ba86])

‖x‖f =
(∫ ∞

0

nf(rx)rn−1dr

)−1/n

.
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Denote Kf be the unit ball of ‖ · ‖f .
Let us note a few properties of this correspondence:
1. VolKf =

∫
f

2. Define Kf = {x ∈ Rn : f(x) > e−n}. Then, for a universal c > 0,

Kf ⊂ Kf ⊂ cKf .

3. Let f and g be log-concave functions and f(0) = g(0) = 1. Then, for some
universal constants c1 and c2

c1Kf?g ⊂ Kf + Kg ⊂ c2Kf?g

and
c1nK◦

f ⊂ Kf◦ ⊂ c2nK◦
f .

Let us now define the isotropic constant of a log-concave measure. We say
that f is in the isotropic position if

Supx∈Rn f(x) = 1 =
∫

f(x)dx and
∫

x∈Rn

xixj fdx = δijL
2
f

and the constant Lf is called the isotropic constant of the measure fdx.
One may write a formula for Lf without “putting” fdx in the isotropic

position,

Lf =
(

Supx∈Rn f(x)∫
Rn fdx

)1/n

(detCov f)1/2n

where covariance matrix

Cov f =
(
Covf (xi, xj)

)
,

Covf (xi, xj) =

∫
Rn xixjfdx∫

fdx
−

∫
xif∫
f
·
∫

xjf∫
f

.

Then, for any K convex, LK = L1K .

A sketch of Klartag’s proof of a solution of the “isomorphic” slicing problem. Let
K be convex compact, O ∈ K, VolK = 1. We will divide the proof into a few
steps, and we will refer to [K06] for the proofs which will not be presented.

1. Let f : K → [0,∞) be a log-concave function. Assume
(

Supx∈K f

infx∈K f

)1/n

< C .

Then Kf isomorphic to K, i.e. ∃ c1 := c1(C) such that
1
c1

Kf ⊂ K ⊂ c1Kf

(here, as before,

Kf =
{
x ∈ Rn;

∫ ∞

0

nf(rx)rn−1dr ≥ 1
}
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and is a convex set by K. Ball).
2. (K. Ball [Ba86]) Lf ' LKf

. So, our goal is to find such an f that Lf <
const. (which implies that LKf

< const.).
3. Consider a (convex) function FK(x) := F (x)

F (x) = log
∫

K

e〈x,y〉dy .

(a) This function produces a transportation of measure

∇F := ψ : Rn −→
◦
K

(similar to the so called ‘momentum’ map). Recall the notation of transportation.
Let µ1 and µ2 be two Borel measures in Rn and T : Rn → Rn such that, for any
measurable set A ⊂ Rn,

µ2(A) = µ1(T−1A) .

Then we say that T transports µ1 to µ2. Equivalently, ∀ϕ ∈ C+(Rn)
∫

Rn

ϕ(x)dµ2(x) =
∫

Rn

ϕ(Tx)dµ1(x) .

The following fact is straightforward.

Fact. Let F : Rn → R be C2-smooth strictly convex and K = Im(∇F ). Let

measure µ have density dµ
dx = detHess F (x). Then ∇F : Rn → Rn transports µ to

Vol|K .

Applying this to our situation, we see that ∇F transports the measure µ to
the uniform measure on K.

Using this, we see that, for any measurable set A ⊂ Rn,∫

A

detHess F = Vol((∇F )A) ≤ 1 .

(b) Note that ∇F (x) =
∫

y dµK,x(y) and the density of µK,x is

e〈x,y〉1K(y)∫
K

e〈x,z〉dz
.

Also Hess(F )(x) = Cov(µK,x). Therefore

detHess F (x) =
( ∫

fx/ Sup fx

)2

· L2n
fx

where fx(y) = e〈x,y〉1K(y).
So, we consider the family of log-concave functions and we search for a func-

tion as in 1. and 2. inside this family.
4. Let x ∈ nK◦. (Note that the volume |K| = 1 implies |nK◦|1/n ∼ 1 by the

Bourgain–Milman reverse Santaló inequality [BM87].)
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(a) Then
(

Supy∈K fx(y)
infy∈K fx(y)

)1/n

< C.

Indeed, Supy∈K fx(y) = Supy∈K e〈x,y〉 ≤ e‖x‖
∗ ≤ en. (Similarly for inf ≥ e−n.) So

we know that Kfx
∼ K for any x ∈ nK◦.

(b) We want to find x ∈ nK◦ such that Lfx < Const., i.e. to estimate from
above by some constant

(
detHess F (x)

)1/2n
(

Sup fx∫
fx

)1/n

.

Actually, it is enough to find x ∈ nK◦ such that

detHess F (x) < Const.n.

We prove this “on average”:

1
|nK◦|

∫

nK◦
detHess F (x) ≤ 1

|nK◦| Vol(Im(∇F )) ≤ 1
|nK◦| ≤ Cn

(this is the reverse Santaló inequality we already mentioned).

6. Is Further Extension Possible?

Does the family of log-concave measures (we discussed in sections 2 and 3) rep-
resent the largest class of probability measures where Geometry is extended so
naturally?

This is not clear. But let us consider a much larger class of “convex measures”
(I also like the terminology “hyperbolic measures”).

In section 3b, we introduced the class of α-concave functions for 0 < α < ∞.
We used there the terminology from [GrM87]. We now extend this class to negative
α but also we will change the notation and follow C. Borell’s approach. The new
“s-concavity”, for positive s, will correspond to 1/α-concavity above, i.e., s = 1/α.
Definition (C. Borell, ’74). Fix −∞ ≤ s ≤ 1; a measure µ on Rn is s-concave
iff ∀A,B ⊂ Rn non-empty and measurable, t ∈ (0, 1),

µ
(
tA + (1− t)B

) ≥ (
tµ(A)s + (1− t)µ(B)s

)1/s
.

Note, for s = 0, it is exactly the log-concavity condition:

µ
(
tA + (1− t)B

) ≥ µ(A)tµ(B)1−t,

and, for s = −∞,

µ
(
tA + (1− t)B

) ≥ min
(
µ(A), µ(B)

)
. (5)

Denote M(s) the class of all finite s-concave measures. Clearly M(s1) ⊇M(s2)
for s1 < s2, and so for any s an s-concave measure satisfies (5).
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New example: Cauchy distribution with density

p(x) =
cn

(1 + |x|2)n+1
2

;

in this case s = −1 (the so-called “heavy tails” distributions).
C. Borell: (i) ∀µ ∈ M(−∞) has a convex supp K ⊂ Rn and µ is absolutely

continuous (w.r.t Lebesgue measure) on K;
(ii) If µ is s-concave, then s ≤ 1/ dim K;
(iii) If dim K = n, the density p of µ satisfies ∀x, y ∈ K

p
(
tx + (1− t)y

) ≥ (
tp(x)sn + (1− t)p(y)sn

)1/sn

for sn = s
1−ns . (So, if µ is log-concave then also its density is a log-concave function;

however, if s = −∞ then its density is (−1/n)-concave.)
Also, levels of densities of convex measures are boundaries of convex sets.

Recently, interest in s-concave measures for negative s has been revived; see [B06].

Connection with the Classical Convexity. The definition of convex measures corre-
sponds to the unified principle behind most (or, perhaps, all) geometric inequalites,
a principle of minimization:

f(A;B) ≥ min
{
f(A; A), f(B; B)

}

[“the minimum is achieved on equal objects”].

Examples. (i) Alexandrov–Fenchel inequality is equivalent to the above mi-
minization principle

V (A; B; C1, . . . ) ≥ min
(
V (A;A; C1, . . . ); V (B; B; C1, . . . )

)
.

(ii) Brunn–Minkowski inequality: ∀ t, τ > 0 and A,B convex:

|tA + τB|1/n ≥ t|A|1/n + τ |B|1/n

is again equivalent to the minimization principle:

|tA + τB| ≥ min
(|(t + τ)A|, |(t + τ)B|).

And so on (see, [GM04] for more examples and a discussion on this subject).

Is this an incidental similarity? Or does a deeper meaning lie behind it?

Appendix: Mixed Discriminants

Consider the space Sn of real symmetric n× n matrices. We polarize the function
A → det A to obtain the symmetric multilinear form

D(A1, . . . , An) =
1
n!

∑

ε∈{0,1}n

(−1)n+
∑

εi det
( ∑

εiAi

)
,
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where Ai ∈ Sn. Then, if t1, . . . , tm > 0 and A1, . . . , Am ∈ Sn, the determinant of
t1A1 + · · ·+ tmAm is a homogeneous polynomial of degree n in ti, which we write
in the form

det(t1A1 + · · ·+ tmAm) =
∑

1≤i1≤···≤in≤m

n!D(Ai1 , . . . , Ain
)tin

· · · tin
,

where the coefficients D(Ai1 , . . . , Ain) are independent of permutations of variables
Ai. The coefficient D(A1, . . . , An) is called the mixed discriminant of A1, . . . , An.
Note that D(A, . . . , A) = det A. The fact that the polynomial P (t) = det(A +
tI) has only real roots for any A ∈ Sn plays the central role in the proof of a
number of very interesting inequalities connecting mixed discriminants, which are
quite similar to the classical Newton inequalities. They were first discovered by
Alexandrov [Al38] in one of his approaches to what is now called Alexandrov–
Fenchel inequalities. Today, they are part of a more general theory (see, e.g., [H94]
or the Appendix in [K07a]). For example, if all matrices involved are positive,
Alexandrov proved,

D(A1, . . . , An−2, B,C)2 ≥ D(A1, . . . , An−2, B, B) ·D(A1, . . . , An−2, C, C) .

There are many interesting inequalities for matrices which are corollaries of this
remarkable inequality. For example,

D(A1, A2, . . . , An) ≥
n∏

i=1

[det Ai]1/n.
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