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Randomness and pattern in convex geometric analysisVitali Milman11991 Mathematics Subject Classi�cation: 46B, 52A0. This text can be complemented by the survey [M96] where surprising geo-metric phenomena observed in high dimensional spaces are described. The presen-tation there is more geometric with the emphasis on convex asymptotic geometry.In this talk we try to understand the reasons behind these very unusual geometricphenomena. A perceived random nature of high dimensional spaces we observe isat the root of the reasons I will discuss in the talk and the patterns it producescreate the unusual phenomena we observe.A more technical description of the results of the Asymptotic Theory of FiniteDimensional Normed Spaces up to 1986 can be found in [M86]. The followingsurveys and books may complete the picture in the direction of Local Theory:[MS86], [P89], [TJ88], [LM93], [M92]. For a description of the ConcentrationPhenomenon technique and its applications to Functional Analysis, Probabilityand Discrete Mathematics, see [MS86], [M88a], [T95], [T96], [LT91], [AlSp92].In the dictionary, \randomness" is exactly the opposite of \pattern". Ran-domness means \no pattern". But, in fact, objects created by independent iden-tically distributed random processes, being di�erent, are in a sense, most undis-tinguishable and similar in the statistical sense. It is a challenge to discover thesesimilarities, a pattern, in very di�erent looking objects. We will do this on theexample of convex bodies and normed spaces of high dimension. In fact, whenwe discover very similar patterns in arbitrary, and apparently very diverse convexbodies or normed spaces of high dimension we interpret them as a manifestationof the randomness principle mentioned above.1. We demonstrate one such pattern through the following theorem. We �rstput it in a non-precise \meta" form: for every convex compact body K � Rn therecorresponds an ellipsoid EK of the same volume (volK = volEK) and with thesame barycenter { \a pattern" { which represents K in many respects.To put this in an exact form we will need some notation.Let X = (Rn ; k � k; j � j) be a normed space equipped with a norm k � k and thestandard euclidean norm j � j. Let D be the standard euclidean ball and K(= KX)be the unit ball of the normed space (X; k � k). We write jAj for the volume of theset A. We call the family of convex bodies fuK j u 2 SLng associated with Kthe family of its positions. We have two parallel languages to describe the sameresults. On one hand, we construct some special ellipsoid, say E , which represents1Partially supported by a Binational US-Israel Science Foundation Grant.Documenta Mathematica � Extra Volume ICM 1998 � 1{1000



2 V. Milmanthe body K (in a sense which will be speci�ed later), but on the other hand, wemay change the position of K and consider bK = uK, u 2 SLn, where u is chosensuch that uE = �D (� :=vol.rad. E = (jEj=jDj)1=n is the volume radius of E).Then the euclidean ball �D now represents bK; however this position of K is aspecially chosen position and our \pattern" is shifted from a \special ellipsoid" toa \special position". Below, we prefer the language of positions.Theorem 1. 9C s.t. 8n and any four convex bodies Ki, i = 1; : : : ; 4, of volumeradius 1, i.e. jKij = jDj, and with 0 being the centroid of Ki, the following is true:there are positions bKi = uiK, ui 2 SLn, for every i, and a couple of orthogonaloperators fv1; v2g � O(n) so that the bodyQ = Conv�( bK1 \ v1 bK2) [ v2( bK3 \ v1 bK4)�is C-close to the euclidean ball D, i.e. D=pC � Q � pCD. Moreover, (i) theprobability that a randomly chosen couple fv1; v2g � O(n) � O(n) satis�es thetheorem is very high; it is larger than 1� 1=2n (this is the reason we will call sucha couple \a random couple"); (ii) for any v 2 O(n)vol. rad.( bK1 \ v bK2) � 1pC and vol. rad. Conv( bK1 [ v bK2) � pC :(We may say that ellipsoids Ei = u�1i D represent \essential" symmetries of K,but only in an \isomorphic" sense, and not in the \isometric" one as it is usual ingeometry.)(This Theorem was proved by the author in the centrally-symmetric case; see[M96] for references. For an extension to the general case, see [MP98].)2. To continue with examples of very \regular" asymptotic behavior of anarbitrary high dimensional space we need more notation. As before, let a normedspace X = (Rn ; k � k) be equipped with the euclidean norm j � j. Denote b = kId :(Rn ; j � j) ! (Rn ; k � k)k and a = 12 DiamKX . So, 1a jxj � kxk � bjxj. The dualnorm kxk� = supy 6=0 j(x;y)jkyk is naturally de�ned and then b = 12 DiamK0 wherethe polar body K0 = KX� , X� is the dual space to X . Let M � RSn�1 kxkd�(x),Sn�1 = @D be the unit euclidean sphere and �(x) be the probability rotationinvariant measure on Sn�1. Similarly, M� is the expectation of kxk� on the sphereSn�1, i.e. M� = RSn�1 kxk�d�(x). There is the natural geometric meaning of M�as being half of the mean width of KX .We will show below that these four numbers: a; b;M and M�, uniquely de-scribe (but again in an \isomorphic" sense) many geometric and analytic propertiesof the space X (and its unit ball KX). Some of these properties are quantitivelydescribed by the following parameters:k(X)=max�k j �Gn;k�E 2 Gn;k �� 12M jxj � kxk�2M jxj; for 8x 2 E	>1� kn+k	;where �Gn;k in the formula is the Haar probability measure on the Grassmannianmanifold Gn;k of all k-dimensional subspaces of n-dimensional space Rn ,t(X) = min�t j 9ui 2 O(n) and 12M � jxj � 1t tX1 kuixk � 2M jxj	 :Documenta Mathematica � Extra Volume ICM 1998 � 1{1000



Randomness and pattern in convex geometric analysis 3So, k(X) is a \local" parameter, meaning it describes the behavior of the sub-spaces of a space which belongs to a set of properties we call \the local structure",and t(X) is a \global" parameter because it relates to a property of the wholespace. Let us also agree to write f � ' when there are two universal constants(independent of anything) c1 and c2 and c1' � f � c2'. So the two quantities 'and f are uniformly (universally) equivalent.Theorem 2. (i) ([M71]; [MS97]) k(X) � n(Mb )2; (ii) [(BLM88]; [MS97]) t(X) �( bM )2. Therefore, these local and global parameters are related in a very preciseform: k(X) � t(X) � n ([MS97]).A few comments and interpretations:(i) For any operator A : `n2 ! X we may similarly introduce M(A) =RSn�1 kAxkd�(x) and k(A) (putting kAxk instead of kxk in the de�nition of k(X)).Then (i) may be rewritten in the form kAk � M(A)pn=k(A). Here kAk is thestandard operator norm of operator A and this gives an asymptotic formula forthe operator norm through the average and some geometric parameters related tothe operator A.(ii) Considering the dual space X� we have, of course, k� � k(X�) �n(M�=a)2, meaning that a \random" orthogonal projection PEK onto a subspaceE of dimension k�, looks, up to a factor 4, like a euclidean ball: 12M� � D(E) �PEK � 2M� �D(E). Furthermore, for any integer n � k � k� and for a \random"subspace E, dim E = k, Diam PEK � Diam K �pk=nand PEK �M�D(E) for k � k� (in particular, Diam PEK is stabilized on 2M�).So, we observe the regular decay (by a factor pk=n) of the diameter of a\random" k-dimensional projection of K till stabilization when this projectionbecomes almost a euclidean ball itself, and this fact is true for any convex centrallysymmetric body { another pattern of behavior. It also provides us with an exampleof "phase transition" - a typical asymptotic phenomenon as we will see also later.For quite a long time, we have known how to write very precise estimates, re-ecting di�erent asymptotic behavior of high dimensional normed spaces. Usually,we knew that these estimates are exact on some important subclasses of spaces.However, the new "message", based on many recent results, indicates that, infact, available estimates are exact for every sequence of spaces of increasing di-mension (we can say, "for every individual space"). We call such exact estimates"asymptotic formulas".In the next three sections we will demonstrate more asymptotic formulas,each of which represents a speci�c pattern of behavior of an arbitrary high dimen-sional normed space. We would like to emphasize that it is less important in thispresentation how these formulas look. The central issue is that such asymptoticformulas do exist and are applicable to any norm, that very little information ona norm ( or a convex body) implies deep understanding of a complicated behaviorof these normed spaces.3. Can we also describe how the ballM�D(E) is \�lled" by random projectionsfrom the inside? A clear pattern of behavior is seen again in asymptotic formulasDocumenta Mathematica � Extra Volume ICM 1998 � 1{1000



4 V. Milmanfor the radius of the largest ball inscribed into the random projection PEK fordimE = k, k � k�. We compute it in the dual form. This means that we compute(estimate) the diameter of a random k-dimensional section of the polar body K0.There is a well-known and useful fact, the so-called Low M�-estimate (see [M85],[PT86], [Gor88]), which gives a simply formulated upper bound for such sections.However, it is not exact and is far from being the asymptotic formula we areinterested in. To perceive the kind of result that should be expected here, I willmention one particular fact from [GM97a]: Let k = [n=2] and r be the solutionof the following equation: M�(K \ rD) = 12r (the unique solution always exists);then the diameter of a random k-dimensional central section of K is less than 2r.On the other hand, solve the equation M�(K \ r1D) = (1 � 148:36 )r1; a randomk-dimensional section of K has diameter greater than 160r1.There is a more precise form of answer which requires deeper informationon the body K but is still easily computable (I am now taking a ComputationalGeometry point of view). De�ne the following functions: for k = �n, 0 < � < 1,S�K(�) = ZE2Gn;k M�(K\E)d�(E) ; and DK(�) = 12 ZE2Gn;kdiam (K\E)d�(E) :Theorem 3 ([GM98a]). Let 1bD � K � aD and ab � nt (the non-degeneracycondition). Then 8� 2 (0; 1)S�K(�) � DK(�) � c0S�K(�1)Æp1� �2for � = �1�2 (and �1 � � � c00t logn=n) and c0; c00 two universal constants.4. We will return to these asymptotic formulas but let us now continue oursearch for patterns of asymptotically \similar behavior" of any convex set in Rn .We will now study (following [LMS98]) the geometric structure of the level setsK \ rSn�1 = A(r) and will see that, from a point of view we put forward below,these sets in some interval of values of \r" appear very similar. De�nert = minn 12 Diam t\1 uiK j ui 2 O(n)o ;and also the inverse function T (r) = min�t j 9ui 2 O(n) and Tt1 uiK � rD	 :(So, T (rt) = t.) Of course, the meaning of T (r) is that there is a covering ofrSn�1 by T (r) rotations of rSn�1nA(r) and there is no covering with a smallernumber of rotations. Again, in the interval 2=b � r � 1=2M the function T (r) isexactly described [LMS98]: logT (r) ' n=r2b2 ; although under some kind of non-degeneracy condition: br .pn= logn (just note that always br � b=2M . pn).The exponential behavior of T (r) for r � 1=2M (and any �xed number � > 1may be substituted for 2) changes to \polynomial" around level 1=M : Let T �( bM )2 � 1"2 ; then, (i) for a random choice of fuigT1 � O(n), \uiK � 1+"M D, but, (ii)for any choice fuigT1 � O(n), the intersection \uiK 6� 1(1+")MD.Of course, not for every spherical level r do di�erent convex bodies looksimilar. Consider, for example, the unit balls of `n1 and `n1 (the cube and theDocumenta Mathematica � Extra Volume ICM 1998 � 1{1000



Randomness and pattern in convex geometric analysis 5cross-polytope) normalized so that they are inscribed in the euclidean ball D ofthe same radius (say 1). Then the contact points with the sphere are in the �rstcase 2n and in the second, only 2n. Naturally, for r < 1 but close to 1, thelevel sets are completely di�erent. So, on what level does this phenomenon ofsimilarity of spherical level sets start? Naturally, in this language the maximalsuch expected level cannot be above r2. So, can r2 be described by very little\statistical" information about K? The answer is \Yes":Theorem 4 ([GM97b]). (i) r2 � p2DK(1=2) (we introduced the average diameterDK(�) above); (ii) there are universal numbers C > 1 and 0 < c < 1 such thatDK(c) � C � r2.I would like to recall that we also saw that DK(�) is well described by thewell computable function S�K(�).5. Much more delicate analytic information about the level sets for r < 1=M(and even slightly above this level) may, in fact, be provided in another language.Let Mq = � RSn�1 kxkqd�(x)�1=q, q � 1, and lettq(X) = minnt j 9fuigt1�O(n) such that 12Mqjxj � �1t tX1 kuixkq�1=q� 2Mqjxjo:(Note, that the information on the level sets is obtained by choosing q such thatr = 1=Mq.) Then we again have asymptotic formulas describing the behavior ofMq and tq.Theorem 5 ([LMS98]). (i) Mq �M1 for 1 � q � k(X) � n(M=b)2, Mq � bpq=nfor k(X) � q � n and Mq � b for q � n. (Note again a \phase transition").(ii) tq � t1 (= t(X) � (b=M)2) for 1 � q � 2, t2=qq � t1(M1=Mq) for 2 � q;again a phase transition. However, because also Mq has its phase transition,we have two phase transitions for the function tq on the interval 1 � q � n:tq � (b=M)2 for 1 � q � 2, t2=qq � (b=M)2 for 2 � q � k(X) and t2=qq � n=q fork(X) � q � n.6. As another example of pattern-type behavior of any convex body in Rn , letus mention the following recent fact, proved in [ABV98]:Theorem 6. Let K be a convex body in Rn with 0 in its interior. For any " > 0the probability (measured by the standard Lebesgue measure on K) of two points,say x and y, in K having K-distance of at most t = p2(1� "), i.e. x� y 2 tK, isat most expf�"2n=2g. (Therefore there are exponentially many points in K suchthat their pairwise di�erences do not belong to tK for t < p2(1� ")).So, we again see that the number \p2" which is natural for the euclidean ballis also the crucial bound for any other convex body K.7. Let us return to the study of the special position of the body K (or, equiv-alently, the special ellipsoid) which we already encountered in Theorem 1. It isusually called the M -position of K. Its formal de�nition is the following. LetN(K;T ) denote the covering number of K by T (i.e. the minimum number ofDocumenta Mathematica � Extra Volume ICM 1998 � 1{1000



6 V. Milmanshifts of T which cover K). Then K is in an M -position (with parameter � > 0)if, for � = (jKj=jDj)1=n(�) N(K;�D) �N(�D;K) �N(K0; �D) �N(�D;K0) � e�n :(It is enough to assume N(K;�D) � e�n and (�) will follow with a di�erent�1 = C � �, where C is a universal number { see [MS97], [MP98].)Theorem 7. There is a universal number � > 0 such that any convex body Kwith barycenter 0 has an M -position with parameter � (i.e. 9u 2 SLn such thatuK is in this M -position).(For centrally symmetric K, see [M88b] or [M96] for references or the book,[P89]; extension for general convex bodies, [MP98]; generalization to centrally-symmetric p-convex bodies, [BBP95]).This position of K gives the \correct balance" between the body K (in sucha position) and the euclidean ball (or, between the norm and the euclidean struc-ture). Let us explain this by some facts. First, we already demonstrated the useof M -position of a body K in Theorem 1. A few more facts:Theorem 8 ([MS97]). Assume that the unit ball K of a space X = (Rn ; k�k; j�j) isin an M -position. Assume further that there are fuigt1 � O(n) and 0 < r, C <1such that rjxj � 1t tX1 kuixk � Crjxj (for all x 2 Rn ) :Then there is a C 0, depending on t, C and the �-constant of the M -position only,and v 2 O(n) such that, for some r0,r0jxj � kxk+ kvxk � C 0r0jxj (for all x 2 Rn ) :Note that the assumption that K is in an M -position (i.e. that the euclideanstructure is specially chosen for our norm k � k) is absolutely essential. Withoutthis assumption, for any t� n= logn, and any � < 1, one may construct a familyof norms (for spaces of dimensions increasing to in�nity) such that some averageof t-rotations will be uniformly isomorphic to the euclidean norm, but no averagesof �t rotations can be uniformly equivalent to any euclidean norm (for other suchfacts, see [MS97]).Also we observe a remarkable \restructuring" of volume distribution over Kunder \random" projections where \randomness" is understood in anM -euclideanstructure:Theorem 9 ([M90]-symmetric case; [MP98]-general case). Let a convex set Kwith barycenter at 0 be in an M -position. Then for any 0 < � < 1 a randomorthogonal projection PEK � E 2 Gn;[�n] has volume ratio bounded by a constantC(�; �) depending only on the proportion of the space � (dimE = [�n]) and theconstant � of the M -position. (The volume ratio of a body T is the 1n th powerof the ratio of jT j and the volume of the maximal volume ellipsoid inscribed in T ,called John's ellipsoid of T ; see [P89] for the importance of this notion in LocalTheory). Documenta Mathematica � Extra Volume ICM 1998 � 1{1000



Randomness and pattern in convex geometric analysis 78. Additional results. In this section I would like to give a brief review ofa few recent developments in Local Theory/Convexity.(i) Brascamp-Lieb inequalities and their applications. In 1989 Keith Ball [Bal89]discovered the relevance of the Brascamp-Lieb [BL76] inequalities to convex ge-ometry. He put these inequalities in the following form:Theorem 10. Let m � n, (ui)mi=1 be unit vectors in Rn and let (ci)mi=1 be positivereal numbers such that Pmi=1 ciui 
 ui = In. Then for all non-negative functionsfi 2 L1(R), i = 1; : : : ;m one hasZRn mYi=1 fcii (hx; uii)dx � mYi=1�Z f�ci :The additional condition which relates the ui's and the ci's is often availablein convexity and describes, for example, the isotropicity of the John ellipsoid of agiven body K. The Brascamp-Lieb inequalities provide sharp upper estimates forvolumes. As an application K. Ball obtained sharp upper bounds for the volumesof central linear sections of the unit cube. He also proved that the volume ratio ofany symmetric convex body in Rn is less than that of the cube [Bal89], and thatthe simplex has maximal volume ratio [Bal91]. This article also contains a reverseisoperimetric inequality: for every convex body K there exists an aÆne imageTK of K such that the ratio j@(TK)j=jTKjn�1n is less than the same quantitycomputed for the simplex (in the symmetric case, the cube is extremal). For otherapplications, see [SSc95], [Sc98].A general reverse Brascamp-Lieb inequality conjectured earlier by Ball [Bal91]was proved by F. Barthe [Bar98b]. His proof uses measure transportation, a newtool started by the result of Brenier [Br91] and developed by McCann [MC95]. Itprovides Lieb's general inequality and its converse altogether. This new proof al-lows one to settle the problem of equality cases in the applications of the Brascamp-Lieb inequality to convexity. The reverse inequality may be viewed as a generaliza-tion of the Prekopa-Leindler inequality. In particular, it provides lower estimatesof volumes of convex hulls and new Brunn-Minkowski type estimates for sum ofconvex sets sitted in subspaces ([Bar98b]). The particular case of these inequalitieswhich corresponds to Ball's formulation of the Brascamp-Lieb inequalities says:Theorem 11 ([Bar97]; [Bar98b]). Let m � n, let (ui)mi=1 be unit vectors in Rnand let (ci)mi=1 be positive real numbers such that Pmi=1 ciui 
 ui = In. Then forall non-negative functions fi 2 L1(R), i = 1; : : : ;m one hasZ �Rn supx=P ci�iui mYi=1 fcii (�i)dx � mYi=1�Z f�ci :This result allows Barthe ([Bar98b]) to �nd the convex bodies of extremalexterior volume ratio and to prove that among the bodies whose John ellipsoid isthe Euclidean unit ball, the regular n-simplex has maximal mean width [Bar98a](this is dual to [Sc98]).Documenta Mathematica � Extra Volume ICM 1998 � 1{1000



8 V. MilmanReturning to measure transportation type results let us emphasize that thayare used together with regularity results by Ca�arelli [Ca92]. Another curiousand useful consequence of this combination of results is the following statement[ADM98]: Let K and T be convex open sets of the same (�nite) volume; thenthere is a smooth measure preserving onto map ' : K ! T such that K + T =fx+ '(x)jx 2 Kg.(ii) Economic embedding of n-dimensional subspaces of Lq to `Np . Let us mentionhere a few new groups of results on embedding some classical spaces to otherclassical spaces which is a more traditional direction in Local Theory. First, theproblem of embedding euclidean subspaces (up to a (1 + ")-isomorphism) intodi�erent classes of normed spaces was well understood in the earlier stages of thetheory (see [MS86]). Interesting additions in isometric embeddings of `n2 into `Npwere done in [M88c], [L70], [R92], [LV93], [K95].Also, an \isomorphic form" of Dvoretzky Theorem was proved in [MS95]and [MS98] showing that `n1 gives essentially the worst embedding of `k2 for anyk > logn. More precisely, for some absolute constant K > 0 and for every n andevery logn � k < n, any n-dimensional normed space,X , contains a k-dimensionalsubspace, Y , satisfying d(Y; `k2) � Kq klog(1+n=k) , and this is exact for all the rangeof k for `n1 spaces ([CP88], [Gl89]).However, the main interest was directed to non-euclidean embeddings. First,an extremely surprising result by Johnson-Schechtman [JS82] stated that `nq maybe (1 + ")-embedded into `Np for p < q < 2 and N � c("; p; q)n (for some functionc("; p; q)). Then Schechtman [S85], [S87] discovered another simple approach todeal with the problem of economic embedding of subspaces of Lq into another`p (the so-called \empirical method"). This method is not connected with a eu-clidean structure and the standard use of the Concentration Phenomenon througheuclidean spaces, and is equally well applied to the search for large subspaces ina given space without special consideration to the structure of the norm we areworking with. It was then used in [BLM89] and [T90] and the question of economic\random" embedding of a subspace En � Lq of dimension n into `Np with exactbounds on N(n) is well understood although some \residual" log n factors are stilldistorting the picture.The question of \natural" embedding (as opposed to \random" embedding)of some subspaces of Lp in low dimensional `p-spaces happened to be completelydi�erent. The whole theory of such embeddings arose in [FJS91]. A few sampleresults follow:Theorem 12. (i) Let Rn be the span of the �rst n Rademacher functions in L1;if X is a subspace of L1 containing Rn and 2-isomorphic to `m1 then m > cn forsome universal c > 1 (and the same is true for n Gaussian functions).(ii) Every norm one operator from a C(K) space which is a good isomorphismwhen restricted to a k-dimensional well isomorphic to euclidean subspace alsopreserves a subspace of dimension ck (for some c > 1) which is well isomorphic toan `1-space.Another important type of embedding is a complemented embedding (i.e.embedding of a space to another space with a well bounded projection on it). TheDocumenta Mathematica � Extra Volume ICM 1998 � 1{1000



Randomness and pattern in convex geometric analysis 9empirical method mentioned before provides good estimates for complementedembeddings as well. However additional remarkable results were achieved in [JS91]using some kind of \discrete homothety". For example,Theorem 13 [JS91]. If `np is decomposed into a direct sum X + Y with X wellisomorphic to a Hilbert space, then Y is well isomorphic to an `mp -space.The �nal result given by the theorem is in a direction where some hard workwas also done previously (see [BTz87]).(iii) Extension of the Dvoretzky-Rogers Lemma and corresponding factorizationresults. In 1988, Bourgain and Szarek [BS88] strongly improved the classicalDvoretzky-Rogers Lemma. In the form of a \proportional factorization" theirresult states: If X is an n-dimensional normed space, then for every Æ 2 (0; 1)one can �nd m � (1 � Æ)n and two operators � : `m2 ! X , � : X ! `m1, suchthat id2;1 = � Æ � and k�k � k�k � C(Æ) for some constant C(Æ) depending onÆ only. The dependence on Æ was improved to C(Æ) . Æ�2 in [ST89]. It is nowknown (see [G96], [Ru97]) that the best possible exponent on Æ in the proportionalDvoretzky-Rogers factorization must lie between 1 and 1=2. (All these results haveimmediate application for estimating the maximal Banach-Mazur distance of `n1to any other n-dimensional normed space.)It was observed in [GM97c] that the factorization result from [G96] is a con-sequence of a coordinate version of the Low M�-estimate. The following \coordi-nate" result was proved: If E is an ellipsoid then for every Æ 2 (0; 1) we can �nd acoordinate subspace R� (= F ) where � � f1; : : : ; ng, j�j � (1� Æ)n, such that forthe orthogonal (coordinate) projection PF (E),PF (E) � cpÆplog 2=Æ M(E)D \ F(for the de�nition of the expectationM(E), see Sect.2). Note that the factorizationdiscussed above is a consequence of such a coordinate estimate. There is also anextension of this fact to some general classes of bodies (instead of to an ellipsoid).9. Isotropic positions in convex geometry. In all previous results anisomorphic view on the theory was one of the main messages. Even some de�nitionswere done in an isomorphic form (say, a universal constant � in the de�nition of anM -position or M -ellipsoid). However, it is not impossible that a more traditionalisometric approach exists which would describe our isomorphic results. (K. Ballsuggested such a possibility to me some time ago based on, I believe, his resultswhich I described in 8(i); the \isotropic" view presented below is based on ourjoint work with Giannopoulos [GM98b].)Let us start with the isotropic position of a centrally symmetric convex bodyK � Rn equipped with an inner product (�; �). So, K is isotropic i� jKj = 1 andthere is a constant L such thatZK(f; x)(x; ')dx = L(f; ')for any f and ' in Rn . Many remarkable properties of such a position are knownand well studied (see, e.g. [MP89]). But our interest is in the following remarkDocumenta Mathematica � Extra Volume ICM 1998 � 1{1000



10 V. Milman(from the same source): Consider minu2SLn RuK jxj2dx (where jxj2 = (x; x)). Thenmin. is achieved on the isotropic position.We understand now that it is a very general fact and for many natural func-tionals f(uK) considered as functions de�ned on SLn (i.e. u 2 SLn), the minimumis achieved on some kind of isotropic position (but for a measure which should befound and properly described). For example, the result of F. John about the maxi-mal volume ellipsoid inK provides such an isotropic measure supported on contactpoints of K and the maximal volume ellipsoid (and the theorem is a consequenceof such a general view [GM98b]). But our interest in the framework of this paperhas resulted in the fact that some positions used in Asymptotic Convex Geometry(and, in fact, all important used positions we know) have an isometric descriptionas isotropic positions which we derive by minimizing a correctly chosen functional.In such a way the very important `-position, after slight modi�cation becomes anisotropic position for some measure on the sphere. We will mention in additiononly an M -position which is also an isotropic position. Indeed, let jKj = jDj, andconsider the problem minfjuK +Dj j u 2 SLng :The minimum is achieved for some u0 such that the body u0K +D has minimalsurface area ([GM98b]) and u0K is in anM -position. At the same time it is known([Pe61], [GP98]) that a convex body T has minimal surface area i� its surface areameasure (supported on Sn�1) is isotropic. So, an originally isomorphically de�nedposition also has a purely isometric description.Concluding Remark. I see the results of this theory as \a window" to theWorld of very high degree of freedom, just examples of organized behavior weshould expect in the study of that World; not a chaotic diversity, exponentiallyincreasing with increasing degree of freedom (=dimension in the presented The-ory), but on the contrary, an asymptotically well organised World with \residualfreedom" reected in our Theory in a \uniformly isomorphic" view on the results.References[ABV98] J. Arias-de-Reyna, K. Ball, R. Villa, Concentration of the distance in �nitedimensional normed spaces, to appear in Mathematika.[ADM98]S. Alesker, S. Dar, V.D. Milman, A remarkable measure preserving di�eomor-phism between two convex bodies in Rn, to appear in Geom. Ded.[AlSp92] N. Alon, J.H. Spencer, The Probabilistic Method , Wiley Interscience, 1992.[Bal89] K.M. Ball, Volumes of sections of cubes and related problems. In J. Linden-strauss, V.D. Milman, eds., GAFA Israel Seminar 1376, Springer LNM 1989.[Bal91] , Volume ratio and a reverse isoperimetric inequality, J. London Math.Soc. 44:2 (1991),351{359.[Bar98a] F. Barthe, An extremal property of the mean width of the simplex, to appearin Math. Annalen.[Bar98b] , On a reverse form of the Brascamp-Lieb inequality. To appear inInvent. Math.[Bar97] , In�egalit�es de Brascamp-Lieb et convexit�e. C.R. Acad. Sci. Paris 324(1997), 885{888.[BBP95] J. Bastero, J. Bernu�es, A. Pe~na, An extension of Milman's reverse Brunn-Minkowski inequality, GAFA 5:3 (1995), 572{581.Documenta Mathematica � Extra Volume ICM 1998 � 1{1000
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