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1 IntroductionIn this article I will attempt to describe the main principles and phenomena which governthe asymptotic behavior of high dimensional convex bodies and normed spaces. I presumethat the same principles are applicable to any high parametric system in, say, asymptoticcombinatorics or complexity. A few examples for such an analogy are already known, and Iwill mention them. Of course, this account is still in a very preliminary form based on ouraccumulated knowledge and will be corrected and adjusted in the future. But, I feel thatsome order should already be made of the mosaic of facts and results.A number of surveys on this subject have recently been published (see [GM01], [GM03],[Mi00]), and I will try to avoid repetition by just referring to them. However, in some cases,I will not be able to avoid illustrating some principles with at least one or two examples, butI will be very brief. A number of books were written at the end of the 80s; [MiS86], [P89],[T89]. They present very well the state of the theory at that time, and I recommend themfor in-depth reading.Just as an appetizer, let us show a couple of very recent results where some surprisesawait us pointing to an interesting subject we should expect.2 SymmetrizationsFor some classical symmetrizations, let us check how many elementary steps are needed toapproximate an ellipsoid starting with an arbitrary convex body K � Rn . We will analyzetwo symmetrization procedures: Steiner symmetrization (see, e.g. [KlM03] for a de�nition)and Minkowski symmetrization, which is also called Blaschke symmetrization. In both cases,�Supported in part by the Israel Science Foundation (grant 142/01)1



each elementary step consists of selecting a hyperplane h in Rn . We will now de�ne the lesserknown Minkowski symmetrization. Consider the reection rhK of the body K with respectto h, then the elementary step of this symmetrization is ShK := K+rhK2 , where by \+"we mean the Minkowski sum of sets. The elementary step of the Steiner symmetrization,associated with a hyperplane h, is denoted by SthK.Fix some c > 1. What is the smallest N s.t. for 8K � Rn we may �nd fhigN1 such thatthere is an ellipsoid E and E � NYh=1SthiK := KN � c � E ? (1)Here is a brief history of this question:Hadwiger (� 55) estimated N from above by � (c1 � n)n=2.Bourgain{Lindenstrauss{Milman (�1988) made a dramatic improvement toN . c1n logn(for some c � 3). However, one does not even need a \log" factor and the answer is N � 32n(Klartag{Milman [KlM03]).Actually, for every " > 0 there is a constant c("), depending only on ", instead of c in (1)s.t. N � (1 + ")n(and, for some K, at least n � c1 logn is necessary). If D is the standard euclidean ballthen additional n � 1 symmetrizations turns E into r:D and altogether N � (2 + ")n stepsare enough to approximate the euclidean ball. (Note, the answer has an isomorphic avor.We did not approximate the euclidean ball \almost isometrically", but up to some constant,independent of dimension and the body K. Such isomorphic results in geometry actuallyhave meaning as asymptotic results which are interesting for large dimensions.)In the case of Minkowski symmetrizations the best known result on the same question,until 1987, was by [BLM88]: for any " > 0 there is a c(") such that one may �nd fhigN1 forN � 12n logn + c(")n and (for some r > 0)rD � NYi=1 ShiK � (1 + ")rD (2)(and a random selection of hi leads to (2) with high probability). Klartag later showed[Kl00] that, for some K and random selection of hyperplanes, this answer is precise (up toa constant factor), and gave an \isomorphic formula" for N for any body K.However, the best selection of hyperplanes happened to be di�erent and Klartag showed[Kl02] that the smallest N is always N � 5n (!); this is true for " � c q log log nlog n . So, in thiscase, we observe an isomorphic answer which turns out to be \asymptotically isometric" forlarge dimension n. 2



3 Uni�ed behavior, phase transitions, threshold, and other signsof high-dimensionalityWe continue to accumulate examples.3a Phase transition type behavior: \local" example.Consider a subset K � Rn . Let j � j be a euclidean norm in Rn . D denotes the unit euclideanball, D(E) = D\E, for a subspace E ,! Rn . Also, let d(K) be the diameter of K, PEK theorthoprojection of K onto subspace E. Let D`(K) := E (d(PEK) j dimE = `). (So D`(K) isthe average diameter of orthoprojections with respect to Haar measure on the GrassmannianGn;`.) We will also need the mean width of K,D1(K) := w(K) = ZSn�1 w(K; u)d�(u) ;where w(K; u) is the width in the direction u 2 Sn�1,w(K; u) = sup �(u; x) j x 2 K	� inf �(u; x) j x 2 K	 :Let k� = n�w(K)d(K)�2 :Then there is a c > 0 and C s.t. for any n and any set K � Rn for k� � ` � n,cr ǹ d(K) � D`(K) � Cr ǹ d(K)and cw(K) � D`(K) � Cw(K)for 1 � ` � k�. We observe the stabilization of the function D`(K) at the critical value k�,and a uni�ed form of behavior for the whole family of sets in high dimensional spaces (see[Mi00] for references).Additional information:The only reason for stabilization for small ` is that a \random" projection PEK for dimE ."2k� is an "-net of a euclidean ball (of radius w(K)=2). If K is convex, K = �K, and kxkKis the norm with unit ball K, then, for a random subspace E of dimension . "2k�, the setPEK itself is an almost euclidean ball,(1� ")w(K)2 D(E) � PEK � (1 + ")w(K)2 D(E) :In this case w(K; u) = 2(kukK)� := 2kukK0, where KÆ is the polar of K and w(K) := 2M� =2 RSn�1 kxkKÆd�(x), where �(x) is the probability rotation invariant measure in Sn�1.3



3b Corresponding global problems.We would now like to approximate the euclidean ball rD by averaging rotations of K:Kt = 1t Pti=1 uiK, ui 2 O(n). We will achieve this by studying decay of the diameter.We present the results in the language of Functional Analysis.Let X = (Rn ; k � k; j � j), b := kId : `n2 ! Xk, and M = RSn�1 kxjjd�(x).Consider a new averaging normkjxjkt = 1t tX1 kuixk; ui 2 O(n)and the space Xt = (Rn ; kj � jkt; j � j). Below, we use the notation a � b when two universalconstants exist, say c > 0 and C < 0, such that cb � a � C:b. Then, by [MiS97], with a veryhigh probability (by selection ui)kId : `n2 �! Xtk � 1ptkId : `n2 ! Xkfor t < (b=M)2 = (supjxj=1 kxk=E x2Sn�1kxk)2 := t0 and kjxjkt �M � jxj for t & t0.(To connect geometric language of sum of sets and analytic language of sum of norms,observe that kxk�K1+K2 = kxk�K1 + kxk�K2 where kxkT denotes the norm with the unit ball T ,i.e., the Minkowski functional of the convex set T .)Again, we see phase transition at t0, stabilization after this critical value, and the reasonfor stabilization: the averaging norm around the value t0, with high probability, becomeseuclidean.First asymptotic phenomena:These examples point to the following phenomena accompanying high dimensional processes:(a) \isomorphic" phase transition. I emphasize that it is an isomorphic analogue of whatis well known in Statistical Physics in the exact \isometric" form; our statements aretrue up to some universal factors, but they are applicable to any (convex) sets, withoutany special symmetries or structure. Also, until now, we observed, in some sense,\elementary" transitions: only one point of phase transition with constant behavior onone side.(b) The constant behavior (at the \end" of a process) corresponds to stabilization for onereason (only): \maximal" symmetry is achieved.4



(c) In addition, in the \global" process, i.e. when we study changes in the whole space,not in subspaces or projections, \the best" possibility, we are looking for, coincidesapproximately with a \random" selection. (However, there is an amount of freedom inidentifying the right notion of randomness which may change from problem to prob-lem.)3c More complicated phase transitions.The next example of phase transition has more complicated behavior, with \constant" be-havior of a di�erent nature (from Litvak{Milman{Schechtman [LiMS98]).Again, let X = (Rn ; k � k; j � j). Let, for q � 1,Mq = �ZSn�1 kxkqd�(x)�1=q ;and consider the Lq-average of rotated normskjxjkq;t =  1t tX1 kuixkq!1=q ; ui 2 O(n) :(our notation ignores dependence on operators fuig). Then8>><>>:Mq �M1 for 1 � q � k(X) = n�M1b �2Mq � bp qn for k(X) � q � nMq � b for q > n : (Mq)So, we see two (isomorphic) phase transitions: q = k(X) and = n.Let tq := tq(X) be the smallest t s.t. 9ui 2 O(n) and 8x 2 Rn12Mqjxj �  1t tX1 kuixkq!1=q � 2Mqjxj :Then:(i) tq is � the same for random choice uiand (ii) tq � t1 for 1 � q � 2t2=qq � t1�M1Mq�2 for q � 2It looks as though we have one phase transition, q = 2. But put (Mq) inside the formulaand we have another phase transition for q = k(X). So altogether, our process has two phasetransitions for tq on the most interesting interval 1 < q < n.We may now summarize additional phenomena:5



a0) More complicated processes with two (or more) phase transitions are superpositions of\elementary" ones.b0) The constant behaviour (but at the \start" of a process) corresponds to inertia; inthe behaviour of Mq, it is a concentration phenomenon and in the case of tq (atq = 2) the reason behind it is a convexi�cation: Khinchine's inequality transformsLp-averages to Lp=2-averages which, for 1 � p � 2, behave in the same way as L1because of the lack of convexity (i.e. the same as for the case p = 2).In fact, we observed this type of phase transition form behavior long ago (without rec-ognizing it). The \simplest" one known to us (since 1976 [FLM77]) is the Dvoretzky typetheorem for `np spaces k(`np) � (n 0 < p � 2pn2=p 2 < p � logn(and, of course `nlog n ' `n1). Here k(`np) denotes the largest dimension k such that `np containsa 2-isomorphic copy of `k2.3d Threshold (in Problems of Approximation).Let xi 2 Sn�1 and Ii = [�xi; xi] be an interval. We approximate a euclidean ball rD(of some radius r � 1pn) by KN = 1N PN1 Ii. We will measure the di�erence betweentwo centrally symmetric convex bodies, K and T , by geometric (multiplicative) distancedg(K; T ) = minfa � b j K � bT; T � aKg. Later, we also use the Banach{Mazur distanced(K; T ) = inffdg(uK; T ) j u 2 GLng. Then (Kashin [K77])inffxig dg(KN ;D) = 8><>:1 N < npn N = nC(�) N = �n; � > 1Also (let � < 2), by Gluskin [Gl03]C(�) � min(pn;r� log 1�� 1�.(�� 1)) :We see a sharp threshold at \n".A similar picture may be observed for di�erent convex bodies K in the problem of ap-proximating D by averaging uiK, ui 2 O(n). And, changing the parameter of study from\decay of diameter of a generic average KN" to \distance to the euclidean ball" of this av-erage, often changes the behavior we observe from \phase transition" type to \threshold"6



type behavior. It would be interesting to demonstrate similar changes from threshold typebehavior to phase transition type in problems of Asymptotic Combinatorics, which usuallydeals with thresholds.4 Complexity ConnectionThe Theory of Complexity is, of course, another subject where asymptotic behavior of highparametric systems is in the spotlight at present. I would like to show here how the ideologyof complexity brings very correct conjectures to High Dimensional Convexity and AsymptoticGeometric Analysis. Let us give one example of such inuence.The scheme works as follows: Fix convex K (say, cross-polytope K = convf�eign1 ). Letu 2 GLn be some (unknown) operator. Let T be convex body (unknown) s.t. d(T;D) � 10.Finally, let K0 = (either uKor TSelect (say, randomly) fxi 2 K0gN1 . Let N be polynomial in dimension n. What test maybe performed on fxigN1 to distinguish the case of \uK" from the case of \T"? Can wedistinguish K (presented in the form uK) from slightly distorted ellipsoid T ?The intuition coming from the Complexity circle of ideas suggests that it should not bepossible in the scale above logarithmic in dimension. For example, one may present a testof complexity, linear in dimension, which will show that a cube, i.e. the unit ball of `n1, hasdistance at least plogn from the euclidean space. However, the real distance is pn.Actually, it is not a \negative" conjecture but, on the contrary, a very \positive" one.Indeed, it means the following:Conjecture. Any test of polynomial (in dimension) computational complexity performedon any convex body K will give, up to some logarithmic factor, the same answer as for someellipsoid.(The level of impreciseness in the formulation of this conjecture is also inuenced by theComplexity Theory connection.)To show that such thinking may be very useful let us formulate one recent theorem whichshows that some test which was suggested to distinguish some spaces from a euclidean one,does not in fact distinguish between them.Theorem (E. Gluskin, V. Milman [GlM02]). 9 c > 0 s.t. 8n and 8X = (Rn ; k � kK) randomiid uniform in K variables fxi 2 Kgni=1 satisfy with probability exponentially close to 1,7



8�i 2 R, i = 1; : : : ; n, Ave�  nX1 ��ixi � cvuut nXi j�ij2:i.e. every �nite dimensional normed space has \random" cotype 2.5 Concentration PhenomenonThe \Concept of Concentration" is a concept of behavior of large systems which (roughly)states that any reasonably good (in the sense of \smoothness") function of too many variablesactually degenerates to a constant. Or, more precisely, we are unable to check that it is notan almost constant. This may be viewed as a parallel observation to the so called \self-averaging" principle in Statistical Physics.In fact it looks as though a more general outcome should occur. In many examples weobserved a \self-shaping" phenomenon, say, the example in 3b may be seen in that way:very few rotations \shape" an approximately euclidean ball from any starting \shape" K.Actually, much lighter \intervention" turns any convex K into an almost ellipsoid. (For anew example of this, see [MiP03].)This phenomenon led to a complete reversal of our intuition on high dimensional re-sults. Instead of a chaotic diversity with an increase in dimension, which previous intuitionsuggested, we observe well organized and simple patterns of behaviour.It should be mainly viewed as a (technical) tool. But, on an ideological level, it con-nects Analysis with Geometry; Geometry with Probability and Combinatorics. It extendsdeviation-type inequalities to the non-linear setting instead of the previously considered lin-ear ones, and leads, in many instances, to removing the traditional probabilistic conditions(such as \independence", \martingale", and so on). We understand now that the importanceof these conditions was, mainly, in ensuring high-dimensionality. However, high dimensionis enough to achieve the same type of results.In Combinatorics, for speci�c graphs, the concentration property is equivalent to thenotion of \expanders".There are many surveys and books on this subject, and I have discussed it enough in thepast. So, I will just give a few references [Mi88], [L01], [M00], [Gr99]
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6 Ramsey Type Results,or Concept of Spectrum/DistortionThe understanding behind this concept is that reasonably good functions are almost con-stants on large substructures. (Similarly, for maps from very high dimensional structuresto much smaller dimension.) In the discrete (combinatorial) setting we may often achieve aconstant value exactly (and derive Ramsey type results), but not in Analysis, where \almost"becomes essential and plays against the meaning of \good maps". The �rst papers where thiswas realized are [Mi69], [Mi71a], [Mi71b]; the main example on which this concept was illus-trated is the famous Dvoretzky theorem. See [Mi88] for some historical connections. LaterGromov [Gr83] analyzed these connections; for a very recent turn of an in�nite dimensionalavor see [P00], [P02]. There is also another line of such results, on the one hand discretebut on the other isomorphic, and in the spirit of the Concept of Spectrum, see [BFM86],[BLMN].However, the size of these substructures, where our map is almost constant, in general isnot large enough, even very small (say, logarithmically in the original dimension) if functionsare not good Lipschitz functions, and this blocks many potential applications in Analysis.(To my surprise, isomorphic discrete examples may be very di�erent [BLMN].)At that point another powerful principle picks up the challenge.7 Polarity(Quotient of Subspace or \QS"{principle)As the notion of \polarity" involves some convexity type structures, this principle is welldeveloped only under some convexity assumptions, however, in fact, very weak convexitytype conditions are already enough.The following example should help to show what I mean. Returning to the problem ofapproximating euclidean norm:jxj � 1t tXi=1 kuixkK ; ui 2 O(n) :Even if we use the larger family, ui 2 GLn, for some K minimal t may be as large as n= logn.So, we cannot hope to use only one u, or, say, two: u1; u2. However, let us also allow useof \dual" operations.Then the following statement is correct. 9



For any n and any norm k � k in Rn there are two linear maps u1; u2 which are enoughfor approximation: for every x 2 Rn letkjxjk := kxk+ ku1xkand, dualizing, consider the new norm kjxjk� + kju2xjk� which is already C-equivalent to aeuclidean norm (and C is a universal constant).A similar picture is seen for any pair of dual operations.The �rst fact of this kind was the following \Quotient of a Subspace Theorem" ([Mi85]):Let 1=2 � � < 1 and X be an n-dimensional normed space. Then 9 subspaces F ,!E ,! X with k = dimE=F � �n ; dist(E=F; `k2) � c j log(1� �)j1� � :There is a very interesting recent development which demonstrates a similar phenomenonin the case of discrete �nite metric space [MN]. At the same time, there are remarkabledi�erences between the linear and discrete cases. M. Mendel and A. Naor [MN] observestrange phase transitions in the discrete case which we don't see in the linear one, and it isnot yet clear if there is any corresponding analogue in the case of normed spaces.Let me provide another simply formulated example to demonstrate the inuence of po-larity on the results of \Spectrum type" in the linear setting. Let f 2 C(Sn�1), f > 0 and1-Lip. Then 8" > 0 there is a subspace E ,! Rn , k = dimE, k � c"2n= log 1=", c { universalnumber, s.t. Oscff j x 2 Sn�1 \ Eg < "(such subspaces form a set in Gn;k of exponentially close to 1 measure).However, important families ffn 2 C(Sn�1)g of functions do NOT have uniformlybounded Lip. constants which often, on the contrary, increase very fast with an increaseof dimension.Then another scheme follows:Extend f > 0 by homogeneity f̂(x) = jxjf� xjxj�, (x 6= 0). For x 2 E, a subspace of Rn , de�ne(qEf)(x) = infff̂(z) j z = x + y; y 2 E?g :Now, under very mild convexity type conditions on f̂ (say, f̂ being convex is enough, orf̂ being quasi-convex with a quasi-convexity constant C), we may state:There is an ellipsoid E (and euclidean structure connected with it) s.t.8� ; 0 < � < 1 ; and 8� ; 0 < � < �10



[say, � = 1=2, � = 1=4] for \random" (in E-structure) subspaces E, dimE = [�n] andF ,! E dimF = [�n] Oscf(qEf) j E \ Fg < C(�;�)a constant depending only on � < 1 and � < � (but not on dimension n or a function ffrom the selected class).Also now for a \random" subspace F", dimF" � ("2�)n= log 1="Oscf(qEf) j E \ F"g < " :Note, belonging to such classes means some global type \smoothness" conditions, not a localtype: the star body K = fx j f̂(x) � 1g should not have many needles, it should not looklike a hedgehog.8 ConclusionLet me conclude with one general remark about my intuition on this subject.I deal with high-dimensional systems, as some random media behind the scenes \govern"them (and I feel it this way). Di�erent \realizations" of concrete objects in such media maylook very di�erent (as, say, two realizations of Brownian motion look di�erent). But theyreveal the same, almost identical, statistical pattern. And our general theory describes thesepatterns.My thanks to Miriam Hercberg for editing this paper. Without her help it would havebeen diÆcult to decipher.References[BFM86] J. Bourgain, T. Fiegiel, V. Milman, On Hilbertian subsets of �nite metric spaces,Israel J. Math. 55:2 (1986), 147{152.[BLM88] J. Bourgain, L. Lindenstrauss, V.D. Milman, Minkowski sums and symmetriza-tions. Geometric Aspects of Functional Analysis (1986/87), Springer LNM 1317(1988), 44{66.[BLMN] Y. Bartal, N. Linial, M. Mendel, A. Naor, On metric Ramsey-type phenomena,preprint.[FLM77] T. Figiel, J. Lindenstrauss, V.D. Milman, The dimension of almost sphericalsections of convex bodies, Acta Math. 139 (1977), 53-94.11
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