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Abstract. BPQL is a novel query language for querying business process
specifications, introduced recently in [5, 6]. It is based on an intuitive
model of business processes as rewriting systems, an abstraction of the
emerging BPEL (Business Process Execution Language) standard [7].
BPQL allows users to query business processes visually, in a manner
very analogous to the language used to specify the processes. The goal of
the present paper is to study the formal model underlying BPQL and in-
vestigate its properties as well as the complexity of query evaluation. We
also study its relationship to previously suggested formalisms for process
modeling and querying. In particular we propose a query evaluation al-
gorithm of polynomial data complexity that can be applied uniformly
to queries on the structure of the process specification as well as on the
potential behavior of the defined process. We show that unless P=NP
the efficiency of our algorithm is asymptotically optimal.

1 Introduction
A Business Process (BP for short) consists of a group of business activities
undertaken by one or more organizations in pursuit of some goal. It usually
depends upon various business functions for support (e.g. personnel, accounting,
inventory), and interacts with other BPs/activities carried out by the same or
other organizations. Consequently, the implementations of such BPs typically
operate in a cross-organization, distributed environment.

It is a common practice to use XML for data exchange between BPs, and Web
Services for interaction with remote processes [26]. Complementarily, the recent
BPEL standard (Business Process Execution Language [7]) allows description
not only of the interface between the participants in a process, but also of the
full operational logic of the process and its execution flow.

Since BPEL has a fairly complex syntax, commercial vendors offer systems
that allow design of BPEL specifications via a visual interface. These systems
use a conceptual, intuitive representation of the process, as a graph of activity
nodes, connected by control and data flow edges. The designs are automatically
converted to BPEL specifications, which in turn can be automatically compiled
into executable code implementing the BP [23].

Already in 2002, the importance of query languages for business processes
had been recognized by BPMI (the Business Process Management Initiative)
[8], yet no draft standard has been published since.
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To answer this need, we have recently developed BPQL, a novel query lan-
guage for querying business process specifications [5, 6]. BPQL is based on the
same graph-based view of processes, used by vendors for the specification of
BPs. It allows users to query BPs visually, in an intuitive manner, very anal-
ogous to how such processes are typically specified. In this paper we present a
thorough study of the formal model underlying BPQL, suggest a generic algo-
rithm for query evaluation on BPs, and analyze its complexity and relationship
with common formalisms for processes modeling and querying.

Next, we give the intuition behind our formalisms. The exact definitions are
given in the next section.

Data Model Intuitively, we model the specification of a BP system as a set
of directed, possibly recursive nested graphs, including a unique root graph that
serves as the entry point for the specification. Each graph has a single ’start’ and
’end’ nodes and represents the execution flow of some function (i.e. a process).
A graph may contain (possibly recursive) calls to other functions (processes),
which in turn are also represented by flow graphs. Upon an invocation of a
call to a function f , appearing in the graph of a function g, the graph of (the
implementation of) f is ’plugged-in’ into g’s graph, replacing the node that
represents the call to f . Each graph obtained from g’s graph by a sequence of
such replacements is called a refinement of g.

Query language At the core of the BPQL language are BP patterns, which
generalize the tree patterns of XML to nested BP graphs and enable users to
describe the patterns of activities/data flow that are of interest. In particular,
the patterns allow navigation along two axes: (1) the standard path-based axis,
which navigates paths in process graphs, and (2) a novel zoom-in axis, that allows
to navigate (transitively) inside the process functions, at any depth of nesting,
and query their refinements. Many data models which are all equivalent1 to
this simple model of nested graphs appear in the literature. Among them one
can find restricted versions of Rewriting Systems (e.g. [25]), Recursive State
Machines (RSMs) [4], Context Free Graph Grammars [14], and others. Each of
these works relates to some query language which is evaluated over the data
model. We identify two main branches of query languages, as follows. In the
Databases area, the query languages are structural. Namely, they allow users to
ask questions about the structure of a specification (graph). In contrast, in the
Verification area, the query languages are behavioral. These queries relate to the
possible runs of the process defined by specification, and are used to identify
invariants, execution patterns, etc. The models considered for the structural
Database queries are typically ‘flat’ graph models, without nesting. Verification-
related works query include both flat and nested graph models.

While our model for BP specifications is quite standard, we emphasize the
uniqueness of our query language with respect to common query languages (see
Section 3 for an overview). The main features of the query language are given
next.

1 The definition of models equivalence is given in section 3



1. BPQL is a unified environment for querying structural as well as behavioral
properties of business processes. Specifically, this work is the first to suggest
a query language for structural queries over nested graphs.

2. BPQL allows queries with flexible granularity. Users can ask coarse-grained
queries that consider certain process components as black boxes and allow a
high level abstraction, as well as fine-grained queries that “zoom-in” on all
(or some of) the process components, possibly recursively.

3. BPQL is a graphical query language, with the query being similar to the
specification, thus allowing intuitive formulation of the queries parallel to
the specification development.

BPQL enables a flexible and intuitive formulation of queries on BPs. We
will see, however, that this makes the evaluation of queries somewhat intricate.
First, the nested shape of the BP graphs/patterns causes the query evaluation to
be computationally more expensive than that of similar queries on flat graphs.
Indeed, we show that while the data complexity of BPQL queries is polynomial,
the combined complexity is NP-complete w.r.t. the size of the query, even for
simple classes of queries that can be evaluated on flat graphs in polynomial time
(combined complexity). Second, the need to support both structural and behav-
ioral interpretations for BP patterns required the design of a query evaluation
algorithm which can be parameterized by the desired semantics. We propose
here such a query evaluation algorithm and show that, unless P = NP , a more
efficient algorithm does not exist. Moreover, thanks to the modular nature of our
algorithm, the complexity of query evaluation over nested BPs is parameterized
by the complexity of query evaluation for flat graphs. This allows identification
of restricted classes of queries and specifications for which the performance can
be further improved.

The BPQL query language was originally introduced in [5] where a first
prototype of the BPQL system was demonstrated. There, and in a follow-up work
[6] the focus was on the graphical query interface and the system implementation.
The model that had been considered was limited to structural queries. The
formalization presented here is new, and so are the results. Since BPs in general,
and BPEL specifications in particular, are promised such a brilliant future, we
believe it is very important to develop a formal foundation for modeling and
querying such specifications, so that this technology can be better understood
and used. Querying the behavior of a system is essentially a verification problem
[12] and is typically of very high complexity (from NP-hard for very simple
specifications to undecidable in the general case [12]). To guaranty a complexity
that is polynomial in the size of the data, BPQL ignores the run-time semantics
of certain BPEL constructs such as conditional execution and variable values,
and focuses on the given specification flow. We believe that this approach offers
a reasonable balance between expressibility and complexity. Clearly, the general
problem is more complex, and further work is needed.

The paper is organized as follows. Section 2 describes the BPQL data model
and query language and its semantics. Section 3 compares BPQL to related
models. Section 4 describes the query evaluation algorithm and Section 5 studies
its complexity. We conclude in Section 6.



2 Preliminaries

In this section we present the formal model underlying BPQL. We start with
the motivation for our work, and then proceed to the formal definitions.

2.1 Motivation

The following questions may rise from the introduction: Why are structural
queries over nested graphs interesting? What are the advantages of a generic
framework for multiple query semantics? Why is it important to have a graphical
query language, similar to the specification? We give here intuitive answers to
these questions, using some examples.

Figure 1 depicts a partial specification of a travel agency system. The rectangle-
shaped nodes represent function calls. BP1 is the root BP and contains a single
node, AlphaTours, that serves as an entry point for the travel agency. BP2 de-
scribes the implementation of the AlphaTours function, where a user can choose
between searching for a trip and reserving one. BP3 is the implementation of the
SearchTrip function used in BP2. A user can request for a specific search (for
flights, cars, etc.) or can go back to the AlphaTours trip reservation process. Note
that this definition establishes recursive dependencies between the processes, as
BP2 may call BP3, which in turn, if the user decides to reset (implemented in
the BP as a call to AlphaTours), calls BP2.

Fig. 1. A BPQL Specification.

Fig. 2. A BPQL Query.

An example query is depicted in Figure 2. It is formulated graphically in
a manner very similar to the specification. This is an important feature of the
query language, as (a) it allows faster learning curve of the language and (b) it
allows simultaneous formulation, by the specification designer, of a specification
and verification queries over it.

To answer a query, we seek for occurrences of the described patterns within
the specification. Intuitively, the query in Figure 2 searches the AlphaTours BP,
and the processes that it uses, for execution paths leading to/from a Search-
Flights operation. Q2 here describes an implementation pattern for the Alpha-
Tours function. The double-headed arrows indicate that we are looking for ex-



ecution paths of arbitrary length. The double bounding of the AlphaTours rec-
tangle denotes an unbounded zoom-in; we search for the Q2 pattern inside the
implementation of AlphaTours and (recursively) the functions that it invokes. In
general, when matching a (double-bounded) function node n of the query to a
function node n′ in the specification, we require that the implementation pattern
of n, as given in the query, is matched to (a refinement of) the implementation
of n′ in the specification. Such matching is called an embedding.

Some variants of the answer to a query are suggested. The first distinction
is between boolean and explanatory answers. The former answers whether or not
some embedding exists, while the latter is a new BP, consisting of the speci-
fication parts that contributed to some possible embedding. To continue with
our example, the explanatory answer for the query in Figure 2 when applied on
the system in Figure 1 is depicted in Figure 3. The answer here is a ‘projec-
tion‘ of the travel agency system over the parts relevant to the query, and so it
contains the SearchTrip function in BP2 and the path in its implementation,
BP3, that leads to SearchFlights. It also contains the AlphaTours function call
node in BP3, as this call allows to invoke BP2 and recursively reach (by call-
ing SearchTrip) BP3 and SearchFlights, via another execution path (in fact, an
infinite number of such recursive calls, hence paths, are possible).

Fig. 3. Explanatory Query Answer.

Fig. 4. Structural vs. Behavioral

Another distinction concerns the type of embedding (of the query in the
specification) sought for. We look at two common approaches for such embed-
dings, referred to as structural and behavioral. Consider the query (BP pattern)
depicted in Figure 4. Interpreted as a query over the structure of a process
specification, this query searches for BPs whose “code” contains a loop of the
shape depicted by the query. BP1 in Figure 4 is an example for such BP. The
same query, interpreted as a query over the behavior of the BPs, will look for
processes containing execution paths of form similar to the one specified in the
query, namely an unbounded sequence of A,B’s. This is satisfied by both BP1
and BP2. The key point is that here, unlike the structural interpretation, the
use of distinct occurrences of A and B is allowed.



In previous query languages for querying process specifications, typically
only the behavioral approach was taken, with modal (and specifically tem-
poral) logics being used as the basis for the query language. The dichotomy
between the two approaches is established by the fact that subgraph isomor-
phism/homomorphism cannot be expressed by any bisimulation-invariant lan-
guage [12], and thus, in particular, by any temporal logic (as these are bisimulation-
invariant [12]). Thus, structural queries cannot be formulated using the previous
works, but are still of great interest, as explained next. Continuing with the
example above, code reuse is a common programming policy. This policy would
probably impose loops of the structure depicted in BP1 rather than the structure
in BP2. The query in Figure 4, when interpreted as structural query, enforces
this policy, in a manner not possible using behavioral queries. In general, struc-
tural queries are of high importance for any purpose that is interested also in
the code itself, and not only in its executions. Such purposes may include coding
conventions, profiling and optimizations.

2.2 Definitions
We now give the formal definitions of the specification and query languages.
To simplify the presentation we first consider a basic data model and query
language, and then enrich them to obtain the full fledged model.

BPs and BP systems We assume the existence of two infinite domains: a domain
N of nodes and a domain L of node labels, containing a sub-domain F of function
names. We model a BP as a directed labeled graph. Formally,
Definition 1. A business process (BP) is a quadruple p = (G,λ, start, end),
where G = (N,E) is a connected directed graph in which N ⊂ N is a finite set of
nodes, E is a set of edges with endpoints in N ; λ : N → L is a labeling function
for the nodes; start, end are two distinguished nodes in G and every node in G
resides on a path from start to end. Nodes labeled by function names from F
are called function calls.

A system is a collection of BPs, and a mapping of function names to imple-
mentations.

Definition 2. A system s of BPs is a triple (S, s0, τ), where S is a finite set of
BPs, s0 ∈ S is a distinguished BP, called the root process, and τ : F → 2S is a
(possibly partial) function, called the implementation function, mapping function
names in S to sets of BPs in S.

W.l.o.g we assume that the nodes in the graphs have distinct identifiers.
This will be utilized below in the construction of the explanatory answer to a
query. A function name can be mapped, through the implementation function,
to a set of BPs. These represent alternative possible implementations for the
function (one of which will be chosen at run time as the actual implementation).
The implementation function is partial if the internal implementation structure
of some functions is unknown (e.g. since their providers do not wish to expose
their specification). Given a BP p and a function call n in p, a more detailed
description of p can be obtained by replacing n by one of the function’s possible
implementations. A result of such replacements is called a refinement.



Definition 3. Given a system s = (S, s0, τ), a BP p, and a node n in p labeled
by a label l for which τ is defined, we say that p

n→ p′ (w.r.t. τ) if p′ is obtained
from p by replacing n in p by one of its possible implementations g ∈ τ(l).
[Namely, n is deleted from p, and a copy of g is plugged in its place, with the
incoming/outgoing edges of n now connected to the start/end node of g, resp.]

If p
n1→ p1

n2→ p2 . . .
nk→ pk, we say that pk is a refinement of p, and name the

sequence of node replacements a refinement sequence.
We say that a node v ∈ pk depends on a node ni in the sequence if v ∈ pi

but v 6∈ pi−1. v depends transitively on ni if it either depends on ni or depends
on some node nj transitively depending on ni.

Queries We now consider queries and their answers. Queries are modeled using
BP patterns. These generalize BPs similarly to the way tree patterns generalize
XML trees. Formally,

Definition 4. A BP pattern is a tuple p̂ = (p, Ie, If ), where p is a BP and Ie,
If are distinguished sets of edges and function names in p, resp. These are the
indirect edges and functions of p̂.

A query q is a system of BP patterns (Q, q0, τ), where Q is a set of BP
patterns, q0 is the root BP pattern, and τ is an implementation function.

Embeddings To evaluate a query, its patterns are embedded into the system
BPs. Generally speaking, every type of relation over (finite) flat graphs may
be generalized to an embedding type. We suggest here the usage of three main
types of graph relations - homomorphism, isomorphism, and bisimulation. These
are generalized to homomorphic- and isomorphic-embeddings (which capture the
structural query interpretation) and bisimilar-embedding (capturing behavioral
interpretation). We define these next. We consider first the embedding of a single
BP pattern, then of full queries.
Definition 5. Let p̂ be a BP pattern and let p be a BP. An homomorphic (resp.
isomorphic)-embedding of p̂ into p is a homomorphism (isomorphism) ψ from
the nodes of p̂ to the nodes of p s.t.

1. (nodes) each node of p̂ is mapped to a node of p having the same label; the
start (resp. end) node of p̂ is mapped to the start (resp. end) node of p.

2. (edges) for each (indirect) edge of p̂ from a node m to a node n there is an
edge (path) in p from ψ(m) to ψ(n).

Definition 6. Let p̂ be a BP pattern and let p be a BP. A bisimilar-embedding
of p̂ into p is a binary relation R between the nodes of p̂ and the nodes of some
subgraph p′ of the transitive closure 2 of p s.t.

1. (nodes’) for each node n ∈ p̂ [resp. each n′ ∈ p′] there exists some node
n′ ∈ p′ [n ∈ p̂] s.t. R(n, n′) holds; whenever R(n, n′) holds, n and n′ have
the same label and if one is a start/end node then so is the other.

2 The transitive closure of a graph is obtained by adding edges (specially marked as
’indirect’) between any two nodes n, m such that m is reachable from n.



2. (edges’) for each (indirect) edge from a node n to a node m in p̂, [resp. from
n′ to m′ in p′] there exists a (indirect) edge from some node n′ to some m′

in p′ [resp. from some n to some m in p̂] s.t. R(m,m′) and R(n, n′) hold.
In the sequel, when some definition/result applies to all homomorphic, isomor-
phic, and bisimilar embeddings we will denote all by X-embedding.

We now consider the embedding of a query consisting of a set of such BP
patterns into a specification.

Definition 7. Let q = (Q, q0, τq) be a query and let s = (S, s0, τs) be a system
of BPs. An X-embedding of q into s consists of

1. An homomorphism h from the BP patterns in Q to the BPs in S and their
refinements that (i) maps the root pattern q0 of q to the root BP s0 of s,
and (ii) maps, for each (indirect) function name c in q, the BPs in τq(c) to
(refinements of) the BPs in τs(c).

2. An X-embedding for each 〈BPpattern, BP 〉 pair in the homomorphism.

To conclude, we need to define the query semantics. We distinguish between
boolean and explanatory answers for a query. The boolean X-answer to a query
q on a system s is positive if such X-embedding exists and is negative otherwise.
The explanatory X-answer consists of s’s components participating in such X-
embeddings, as defined formally below.

Definition 8. The nodes and edges of a system s that are relevant to a given
X-embedding include

1. the nodes of s in the ranges of the mappings (ψ or R, depending on the
embedding type)

2. the edges and nodes of s appearing on paths between these nodes and which
could be used to verify requirement (edges) (resp. (edges)’) for the embed-
ding.

3. the nodes on which any of the above depend on, transitively (see Definition
3).

The explanatory X-answer of a query q on a system s, denoted qX(s), is a
restriction of s to those nodes and edges that are relevant to some X-embedding
of q in s. (Empty BPs are removed and the domain of τ is restricted to the
relevant functions).

In the sequel, we will refer to BPQL, under isomorphic, homomorphic, and
bisimilar embeddings, as isoBPQL, homBPQL, and bisBPQL, resp. One may
also consider combinations, allowing the user to specify different interpretations
for various BP patterns in the query, and our results will still hold.

3 Related Models & Languages

Before presenting our query evaluation algorithm, we first set the background
by looking at some closely related models and languages. We compare our work
to relevant works in three areas, namely Model Checking, Formal Models and
Databases. We classify the works according to the structural/behavoiural di-
chotomy, and discuss their relationships. Due to space constraints, we cannot
give the formal definitions of each model we discuss, and the reader is referred



to the literature. In the following, we use BPQLspec, and BPQLquery to denote
the specification and query parts of BPQL, respectively. We start by formally
defining the notion of model and query languages containment for models that
define sets of finite graphs. In the following, ≡ denotes graph isomorphism, and
' denotes query equivalence (where two boolean queries Q1, Q2 over graphs are
considered equivalent if a graph satisfies Q1 iff it also satisfies Q2).

Definition 9. For two models M1, M2, M1 ⊆ M2 if for all m1 ∈ M1 there exists
m2 ∈ M2 s.t. m1, m2 represent respectively (possibly infinite) sets of graphs S1,
S2, and ∀G1 ∈ S1 ∃G2 ∈ S2 s.t. G ≡ G′. Also, |m2| is required to be linear in
|m1|.

M1 ∼ M2 if M1 ⊆ M2 and M2 ⊆ M1.
For two (boolean) query languages L1, L2 over some domain D, L1 ⊆ L2 if for
all Q1 ∈ L1 there exists Q2 ∈ L2 s.t. Q1 ' Q2 , and |Q2| is linear in |Q1|.

L1 ∼ L2 if L1 ⊆ L2 and L2 ⊆ L1.

Model Checking Several models similar to our model of nested graphs appear in
works related to model checking. A common model that captures this semantics
is named Recursive State Machines (RSM) [4]. This model naturally extends
Finite State Machines (FSM), by allowing some states to be call states, invoking
other FSMs. A call is simulated by replacing the call state by its implementation.
Each FSM has some entry and exit states. The simplest form of RSM is Single
Entry Single Exit RSM (SERSM), where each FSM has unique start and exit
nodes. It is straightforward to prove the following proposition.

Proposition 1. BPQLspec ∼ SERSM

By their nature, works in the area of Model Checking use behavioral query lan-
guages, being interested in properties of the process’s possible executions rather
than its exact structure. Temporal logics are used to capture such properties. The
most common of these are LTL, CTL*, and the more powerful alternation-free
µ-calculus. These logics consider the behavior of programs over time, and differ
in their quantifiers. CTL∗ allows queries over branching execution paths, and
supply corresponding quantifiers; LTL considers the time as linear, and does
not allow branching; µ-calculus is the most general temporal logic, containing
fix-point operators (µ and ν), that allow recursive iterations over the queried
process. A particular fragment of µ-calculus, called ‘alternation-free’, is the one
consisting of formulas that contains no µ operator depending on ν or vice versa.
The exact definitions can be found in [12]. We can show the following:

Proposition 2. bisBPQLquery ⊂ alternation-free µ-calculus

Specifically, using [10] one can easily obtain an evaluation algorithm for
alternation-free µ-calculus over SERSM, of complexity poly(|spec|)∗2|query|. This
algorithm can be used to answer bisBPQL queries with the same complexity.

Formal Languages There is rich literature on Context Free Processes in the
area of Formal Models. A main branch of this research concerns Context Free
Graph Grammars, first introduced in early works such as [24]. These grammars



generalize the common model of context free grammars over strings. Similarly,
the grammar consists of a set of non-terminals and derivation rules. Each non-
terminal derives labeled graphs, which in turn contain objects (nodes, edges, etc.)
labeled by non-terminals. The rules are accompanied by instructions on how to
connect the new graphs to the original graph. These instructions are called the
connection relation. The literature (e.g. [20]) considers mainly two particular
cases of context free graph grammars: Hyperedge Replacement (HR) grammars,
where the non-terminals in the graph are hyperedges, and Vertex Replacement
(VR) grammars, where the non-terminals are graph nodes. By [20], HR ⊂ V R.

The following proposition establishes the connection between our specifica-
tion model and context free graph grammars.

Proposition 3. BPQLspec ⊂ HR ⊂ VR

The work on these models is mostly theoretic, and uses, for query formalism,
formal logics such as FO(TC)3 or MSO4. The following theorem from [14] shows
decidability of MSO over HR graph grammars.

Theorem 1. [14] It is decidable whether a given MSO formula is satisfied by
any graph generated by a given HR graph grammar

As FO(TC) and MSO are structural query languages, it is suitable to compare
the structural variants of BPQL to these logics. It is easy to see that

Proposition 4. isoBPQLquery,homBPQLquery ⊂ FO(TC) ⊂ MSO

Using Prop. 3, 4 and Thm. 1, we obtain:
Theorem 2. isoBPQL, homBPQL are decidable

Where bisBPQL is decidable as well, as implied from the discussion above.
However, though the proof of theorem 1 is constructive, i.e. provide a decision
procedure, it is unfeasible for practical use, as its complexity is non-elementary
in the size of the query.
Databases Works in the Database world typically consider the representation of
data as flat graphs (e.g. [13, 1]). Models that consider nested relations [3], actu-
ally consider flat trees . One exception that does consider nested graphs (trees)
is Active XML (AXML) [2]. AXML is an extension of XML where the XML trees
may contain nodes that represent calls to Web services. When invoked, the calls
return new AXML trees that replace the call element. AXML data is queried
using standard XML query languages like XQuery [11]. However, the semantics
relates only to the full (possibly infinite) refinement of the document and does
not allow queries of finer granularity. For this purpose, the model presented here
can be adapted.

4 Query evaluation for BPQL

To evaluate a query q on a system s, we need to embed the BP patterns in q
within (refinements) of the BPs in s. We assume first the existence of some oracle,
denoted X-match, that given a single BP pattern p̂ and some BP p, computes
3 First Order logic augmented by a Transitive Closure operator
4 Monadic Second Order Logic



the X-embeddings of p̂ into p. (We will consider the implementation of such an
oracle later). We start by showing how to use this oracle to find X-embeddings
of p̂ into refinements of p. Later, we use this to derive an evaluation algorithm
for the full query.

Our algorithm is inspired by the original BPQL query evaluation algorithm
presented in [6]. However, unlike that algorithm, which is applicable only to
structural queries, the present algorithm is designed in a modular manner that
can be parameterized by the required type of embedding. This is achieved by
modeling the queries as logic formulas – FO(TC) formulas for structural queries
and µ-calculus formulas for behavioral ones – and using a similar formula de-
composition method for both, as described below. We sketch here an intuitive
description for the boolean version of our algorithm, and then explain how to
obtain its explanatory version. A full description of the algorithm, as well as its
correctness proof, can be found in the full version of the paper [17].

Embedding a single pattern We start by explaining how to find, given a system
s, a BP p and a BP pattern p̂, X-embeddings of p̂ into refinements of p. Our
algorithm first constructs (1) a graph grammar Gp that describes the possible
refinements of p (w.r.t s), and (2) an FO(TC) or µ-calculus formula, depending
on the embedding type, Fp̂ that represents the pattern p̂. It then uses the two
to compute a new graph grammar that encodes the X-embeddings of p̂ into
refinements of p. The boolean query answer will be positive iff the constructed
grammar is not empty. We explain each of these steps below.

Grammar We first construct a graph grammar for the system s, as explained in
the previous section. We use the result of [22] stating that an HR graph grammar
can be translated into a normal form, where each graph includes only two non-
terminals. We assign to the normal-formed grammar a new root non-terminal R
that derives the BP p, and denote the resulting grammar by Gp. It is easy to
see that the set of graphs derived from R in Gp corresponds precisely to the set
of possible refinements of p w.r.t s.

Formula The formula for p̂ uses two types of predicates: LA(n) holds iff the given
BP contains a node n having a label A. Path(n,m) holds iff there is a path from
node n to node m. In general, each pattern p̂ can be expressed as a conjunction
of these predicates.

The distinction between the different embeddings sought for is expressed in
the formula construction: For homBPQL and isoBPQL, variables are interpreted
over individual nodes, while for bisBPQL they are interpreted over sets of nodes.
Also, isoBPQL formulas contain additional clauses representing inequalities be-
tween the node variables.

Algorithm We use the graph grammar Gp and the formula Fp̂ described above to
construct a new graph grammar that encodes the embeddings of p̂ in refinements
of p. The basic idea is similar to the one used in verification algorithms, e.g. [4].
We try all splits of the formula Fp̂ up into 3 parts, each of which is ‘not larger’
then the original formula. Each part is then handled separately, as follows. The
first part is embedded directly within p, where the other two parts are embedded



recursively within the implementations of p’s function call nodes. To capture
this recursive embedding, we replace within (the grammar representation of) p
its two non-terminals N1,N2, that represent the function calls, by (N1, FN1) and
(N2, FN2), (where FN1 , FN2 are the above mentioned parts of Fp̂) and we continue
recursively to finding embeddings of FN1 (FN2) within the implementation of N1

(N2). Intuitively, we find the fix-point of the set of constraints generated.
Formula Decomposition To complete the algorithm description, we only need
to describe the split of a formula F . For a BP g with two function call nodes
(grammar non-terminals) N1, N2, we define the split F into three formulas de-
noted Fg, FN1 and FN2 . This is done by considering all possible splitting of the
node predicates of F into three sets 5 fg, fN1 , fN2 (representing the nodes to be
embedded in g, N1, and N2, resp.) and then splitting the remainder of F based
on this nodes split. The node predicates in Fg, FN1 , FN2 are trivially fg, fN1 , fN2 ,
respectively. We further need to consider the paths connecting the nodes. The
splitting of the path formulas depends upon the nodes split - path predicates
with both end-nodes in fN1 (resp. fN2) are added 6 to FN1 (resp. FN2). The
treatment of path predicates with one end-node in fN1 and the other in fN2

is similar: these are split into three parts s.t. one describes the sub-path to be
embedded in N1 (the corresponding path predicate is added to FN1), the second
describes the sub-path to be embedded in g, connecting N1 to N2 (added to Fg),
and the third describes the sub-path to be embedded in N2 (added to FN2). We
can show the following theorem, used in the algorithm correctness proof.
Theorem 3. (informal) A pattern p̂ can be X-embedded within a BP p, con-
taining call nodes N1 and N2 labeled lN1 and lN2 resp., if and only if there exists
a split of Fp̂ into F1, F2, F3 (as described in the algorithm) such that F1 can be
X-embedded into p without matching N1 and N2, F2 and F3 can be X-embedded
into the implementations of lN1 and lN2 respectively.
Evaluating a full query The algorithm above constructs a graph grammar that
encodes the embedding of a single BP Pattern. Extending it to handle a full
BPQL query is fairly straightforward. For each indirect function call node in
the query, we use the algorithm above to compute the graph grammar rules
representing the embeddings of the function’s implementation into refinements
of the corresponding call node in the system. If any of the computed grammars
happens to be empty, we stop and return an empty graph grammar. For the
direct call nodes in the query, as well as for the query root BP pattern, we use
directly the X-match oracle to obtain grammar rules describing their possible
(direct) embedding into the corresponding system BPs. Here again, if any of
these embeddings fail, we stop and return an empty grammar.

The following theorem states the correctness of the algorithm. The proof
appears in the full version of the paper [17].
Theorem 4. The grammar constructed by the algorithm is not empty iff an
embedding exists
5 For structural queries the sets are required to be disjoint.
6 Note that all formulas are conjunctive, so whenever we refer to ’adding’ a formula

f1 into a formula f2 we mean generating the conjunction f1

∧
f2.



The explanatory query answer can also be easily obtained from the above
algorithm, as it maintains the unique identifiers of all nodes and edges being
used. These can be extracted from the constructed graph grammar and used to
generate the explanatory answer.
5 Complexity
The complexity of the algorithm presented in the previous section depends on
the complexity of the X-match oracles. We first examine the complexity of such
oracles for isomorphic, homomorphic and bisimilar embeddings. Next we analyze
the complexity of the full algorithm, parameterized by the oracle’s complexity.

X-match oracles Given a BP pattern p̂ and some BP p, X-match computes the
X-embeddings of p̂ into p. For the three types of embedding, the problem of test-
ing for the existence of an embedding is NP-complete w.r.t the size of the query
pattern, but polynomial in the data size. (The proof follows immediately from the
NP-completeness of subgraph isomorphism/homomorphism/bisimulation [16, 18]).
A worst case complexity for the oracles is thus O(pp̂). However, using optimiza-
tion techniques, this is typically much lower in practice [21].

The overall algorithm For a given X-match oracle, we use O(X-match(n,m)) to
denote the worst case time complexity of the oracle when embedding a query
pattern of size m into a BP of size n.
Theorem 5. Given a BP system s and a query q, the time complexity of (the
Boolean and Explanatory versions of) the query evaluation algorithm presented
in the previous section is O(| s |2 ×c|q| × O(X-match(| s |, | q |))), where c is a
constant.

Thus, the algorithm is polynomial in the size of the system s 7 and in the
complexity of the X-match oracle, but is exponential in the size of the query.
Since testing for the existence of isomorphic-, homomorphic-, and bisimilar-
embeddings is NP-hard in the size of the query, it is evident that testing if
the answer to a iso-,hom-, and bisBPQL is empty is also NP-hard in the query
size. Interestingly, we can expose an additional type of hardness that comes from
the nested shapes of the system and query graphs, as follows.
Theorem 6. 1. Boolean hom-, iso-, and bisBPQL are NP-hard in the size of

the query even when the system BPs and the query patterns belong to a re-
stricted class of graphs for which the X-match can be computed in polynomial
time.

2. For homBPQL and bisBPQL, the above holds if, furthermore, all the call
nodes in the system and the query have only one possible implementation. 8

It is open if (2) holds also for isoBPQL. The proof (appearing in the full
version) is by reduction from the problem of testing if a 3NF formula is satisfiable,
known to be NP-complete. The graphs used in the proof have very simple, almost
tree-shaped structure, where all nodes besides the end nodes have a single parent.

To give a lower bound we can show that
7 The complexity is quadratic in the size of the system because of the mapping to

normal form grammars, resulting in a quadratic size grammar
8 In general, the implementation function allows to map each function name to a set

of BPs, representing alternative possible implementations for the function.



Theorem 7. The Boolean versions of homBPQL and isoBPQL are in NP (com-
bined complexity).

The main lemma required in order to supply an NP algorithm is the following.

Lemma 1. For every BPQL system s and homBPQL (isoBPQL) query q, ex-
actly one of the following holds:
1. There is no homomorphic (isomorphic) embedding of q into s.
2. There is at least one homomorphic (isomorphic) embedding that maps nodes

of q only to nodes of refinements obtained by a polynomial number of refine-
ment steps.
The correctness of this lemma stems from the correctness of the analogous

lemma for context free string grammars. (The proof is in the full version). Inter-
estingly, when the query is viewed as a logic formula, this property can also be
viewed as an instance of the Small Model Property. It is open if the same holds
for bisBPQL.

A different kind of analysis is obtained through parameterized complexity,
where the size of one of the inputs which is typically small (the query size,
in our case) is considered as a parameter k, and the size of the rest of the
input is denoted n. A parameterized complexity class corresponding to PTIME
is FPT [19], which is the class of all problems solved with time complexity
O(f(k)∗P (n)), P being a polynomial and f being any computable function. An
important hardness class, namely W[1]-hard [19], contains problems which are
likely not to be in FPT , and thus is analogous to the class of NP-hard problems.
We can show the following proposition.
Proposition 5. If X-match is in FPT (resp. is W[1]-hard) then so is X-BPQL.

Note the difference from conventional complexity analysis, where even for
X-matches that are in PTIME, X-BPQL is NP-hard (See theorem 6(1)).
6 Conclusion
This paper studied the formal model underlying BPQL, a novel query language
for BP specifications. We investigated its properties as well as the complexity of
query evaluation, showed how queries on the structure and behavior of BPs can
be processed in a uniform manner, and analyzed the relationship to previously
suggested formalisms for processes modeling and querying. Because of space
constraints, we have discussed only parts of the full BPQL model and query
language, which include extensions such as regular path expressions, joins, and
negation. Our results extend to this setting as well, as shown in [17].

To guaranty a complexity that is polynomial in the size of the data, BPQL
ignores the run-time semantics of certain BPEL constructs such as conditional
execution and variable values. Identifying semantic constructs that can never-
theless be incorporated without increasing the complexity is a challenging future
research task. It would be interesting, following e.g. [15], to consider the data
manipulated by BPs and the messages passed from one process to another. One
may also consider a setting where calls are possibly asynchronous, or where the
knowledge of the implementation of some (remote) processes may be partial
[9]. It would also be interesting to combine our algorithm with some existing
verification techniques, e.g. [21].
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