
BP-Ex – A uniform query engine for Business Process
Execution traces ∗

Eran Balan Tova Milo Tal Sterenzy
Tel Aviv University

{eranbala,milo,sterenzy}@post.tau.ac.il

Categories and Subject Descriptors
H.4 Information Systems [Information Systems Applications]:
H.4.1 Office Automation—Workflow management

ABSTRACT
Many enterprises nowadays use business processes, based on the
BPEL standard, to achieve their goals. Analyzing the execution of
such processes is critical for enforcing business policies and meet-
ing efficiency and reliability goals.
The BP-Ex system presented in this demo is an important compo-
nent of BP-Suite, a novel tools suite based on the BPEL stan-
dard, which offers a uniform, query-based, user-friendly interface
for BP analysis. BP-suite allows to gracefully combine the anal-
ysis of process specifications, monitoring of run time behavior, and
posteriorly querying of execution traces (logs), for a comprehen-
sive process management. BP-Ex is the BP-Suite query engine
for process execution traces. The goal of this demo is to highlight
the particular challenges that had to be addressed to support the
suite’s uniform, intuitive query interface, over (possibly very large)
execution traces, and to demonstrate the novel optimization tech-
niques that had to be developed for that.

1. INTRODUCTION
A Business Process (BP for short) consists of some business activ-
ities undertaken by one or more organizations in pursuit of some
particular goal. It often interacts with other BPs of the same or
other organizations and the software implementing it is rather com-
plex. Two complementary instruments facilitate the design, devel-
opment, and management of this complex software. The first is the
use of standards. In particular, the BPEL standard (Business Pro-
cess Execution Language [4]) provides an XML-based language
to describe the operational logic and execution flow of the BP, as
well as the interface it exposes to other BPs. BP specifications can
be written in BPEL in a uniform manner and then automatically
compiled into an actual code that implements the BP and runs on
a BPEL server. The second instrument is the use of supporting
∗The research has been partially supported by the European Project
MACOOSI and the Israel Science Foundation.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EDBT 2010, March 22–26, 2010, Lausanne, Switzerland.
Copyright 2010 ACM 978-1-60558-945-9/10/0003 ...$10.00

BP management tools for (1) designing the BPEL specifications,
(2) analyzing the design, (3) monitoring the BPs at run time, and
(4) analyzing, posteriorly, the process execution traces (logs). To-
gether they provide an essential infrastructure for companies to op-
timize business processes, reduce operational costs, and ultimately
increase competitive-ness [6].

As a simple example for the importance of (the different types of)
BP analysis, consider a BP of a travel agency offering its Web users
various travel-related services, such as flight, train and hotel reser-
vation, as well as corresponding payment services. An analysis of
the BP specification, (hence of the potential run-time behavior of
the BP), may allow the manager to assure that certain company
policies are enforced. For instance, she may want to query the
specification to assure that in no place a customer can confirm a
reservation without giving her credit card details first. Similarly,
run-time monitoring of process execution may allow the manager
to detect fraud attempts and track services usage and performance.
Finally, querying and analyzing, posteriorly, the process execution
traces (logs) may allow the manager to identify usage trends and
optimize the process accordingly. Observe that the querying of the
potential behavior of BPs and the monitoring/analysis of the actual
run-time behavior are complementary. Queries on the specification
can be used to focus on (the parts of) the BPs that require monitor-
ing/logs analysis. Conversely, run-time monitoring/logs analysis
can be used to complement the analysis of process properties that
cannot be statically determined by querying the specification.

The BP-Suite system presented in this demo is based on the
BPEL standard and offers a uniform, query-based, user-friendly
suite of tools that allow to gracefully combine the analysis of pro-
cess specifications, monitoring of run time behavior, and execution
traces analysis, for a comprehensive process management. Specifi-
cally, the demo will focus on BP-Ex, the sub-system that supports
querying of process execution traces.

Overall, BP-Suite consists of three tightly coupled query sub-
systems: BP-QL allows to query and analyze BP specifications.
BP-Mon allows to monitor process instances at run-time. BP-Ex
allows for a posteriori querying of the process execution traces. The
three sub-systems are all based on the same simple, intuitive, graph-
ical query language, whose GUI is very similar to that used by com-
mercial vendors for the design of BPEL processes. This is an im-
portant feature of the system, as (a) it allows faster learning curve of
the language and (b) it allows simultaneous formulation, by the BP
designer, of the BP specification and verifcation/monitoring/logs
analysis queries over it.

713

The first two sub systems, BP-QL [2] and BP-Mon [3] were demon-
strated in VLDB’06 and SIGMOD’07, resp. The present demon-
stration aims to complete the picture, presenting the third, last sub-
system, BP-Ex. The goal here is twofold. First, looking at the sys-
tem as a whole, we wish to demonstrate the flexibility and power
of its query language, showing how essentially the same query, can
be used, under different interpretations, to analyze the BP specifi-
cation, monitor the BP at run time, and analyze the logs. Second,
focusing on the new BP-Ex component, the goal is to highlight
the particular challenges that had to be addressed to support such
flexible querying of (possibly very large) execution traces, and to
demonstrate the novel optimization techniques that had to be de-
veloped for that.

2. BACKGROUND
A key property of BP-Suite is the uniformity, across all BP man-
agement tasks, of the data model, query language, and user inter-
face. To explain the novelty here, we start with some background
on current BP Management Systems.

Given the importance of BP management and the large market size,
many commercial vendors and research projects offer tools that ad-
dress (some subset of) the above mentioned needs. To fully cover
all management aspects, users often need to use several distinct
tools. A key difficulty here, from a user perspective, is the diver-
sity of models, abstraction levels, specification/query languages,
and GUIs that these tools employ. To better understand this, let us
briefly overview the main tasks involved in BP management and
the families of tools typically available for each task.

BP specification. Many enterprizes nowadays use the BPEL
standard to define their BPs. As mentioned above, BPEL is an
XML-based language that allows to describe the BP operational
logic as well as the interface it exposes to other BPs. Since the
BPEL syntax is quite complex, commercial vendors offer systems
that allow to design BPEL specifications via a visual interface, us-
ing an intuitive view of the process, as a graph of activity nodes
connected by control flow edges. The designs are automatically
converted to BPEL specifications. These are then automatically
compiled into executable code that implements the described BP
and runs on a BPEL application server [17].

Specifications analysis. There has been a vast amount of pre-
vious work in the general area of program analysis and verification
(see e.g. [15] for a sample), and more specifically in the analysis of
BPEL specifications [9, 7, 18]. These works mostly consider logic-
based query languages where queries, formulated as logic formu-
las, test if the runs of the application or program satisfies a certain
property; a witness counter example is provided if not. The query
languages and their UI are typically quite different from that used
for the BP specification and require different expertise.

Run-time monitoring. An instance of a BP specification is an
actual running process which includes specific decisions, real ac-
tions, and actual data. BPEL servers allow to trace process in-
stances - the activities they perform, messages sent or received by
each activity, variable values, performance metrics - and send this
information as events (in XML format) to monitoring systems (of-
ten called BAM - Business Activity Monitoring - systems), or log
the data. (This log is called an execution trace).

Typical monitoring systems (e.g. [1, 13, 12]) allow users to specify

Figure 1: Query example

events of interest, and actions to be performed when the events are
identified. Events may be atomic or composite (i.e. consist of a
group of other atomic or composite event). Detection and process-
ing of (composite) events has been an active research area since the
early 90’s. Rich event algebras have been proposed for describ-
ing composite events, and sophisticated evaluation and optimiza-
tion techniques have been developed for their detection [16]. While
a few systems use a high level BPEL-like GUI [12], others employ
a much lower abstraction level, requiring intimate knowledge of
both the monitored application and the specific events emitted by
each activity.

Execution traces analysis. There is a large scope of research
that deals with post-analysis of BP executions. The common ap-
proach to analyzing process traces is to gather and store them in a
data warehouse and then apply various techniques for analysis and
reporting [5, 6, 10]. Most BP management systems provide some
reporting capabilities showing basic process statistics such as per-
formance and status information. OLAP tools (drill down, roll up,
slicing, dicing, etc.) are proposed to derive reports in different lev-
els of abstractions, aggregations, and perspectives for analyzing,
understanding, and optimizing processes (e.g. [8]). Other works
use business intelligence, i.e. data mining techniques. Some ex-
amples are, BPI [5], a tool suite that allows to obtain explanations
and predictions on process metrics and behaviors, and VisImpact
[11] that uses correlation and classification analysis techniques to
abstract important business impact factors.

Although rather powerful, this diversity of tools, models, and lan-
guages, makes the management of BPs rather intricate. The BP-Suite
system presented in this demonstration addresses this problem by
offering a uniform suite of tools, all based on a standard BPEL
graphical GUI and using the same data model and query language.
Together they allow an intuitive and comprehensive process analy-
sis, including analysis of process specifications, monitoring of run
time behavior, and execution traces analysis.

3. BP-EX OVERVIEW
We next provide a brief overview of the main component of the
BP-Ex subsystem, the focus of this demonstration, highlighting
the novelty and contributions.

It should be emphasized that our goal in the development of BP-Ex
was not to compete with existing commercial tools for analyzing

714

execution traces. Rather, it was to prove that it is possible to base
such a tool on the same data model and UI as used for BP design,
and on the same query language as used by us for the analysis of
BP specifications and their run-time monitoring. That is, to show
that uniformity, expressibility, and good performance are not con-
tradictory.

Query Language. The BP-Ex query language is an adaptation
of the sister query languages used in BP-QL (for specification anal-
ysis) and BP-Mon (for run time monitoring), to the analysis of
execution traces. In all three query languages, the data (i.e. the
BP specification and its execution traces) is abstractly viewed as a
nested set of DAGs (Directed Acyclic Graphs). The DAGs struc-
ture captures the execution flow of the process; the nesting is due
to the fact that processes contain composite activities with complex
internal execution flow (itself represented by a DAG). A query con-
sists of two parts. The first (which is identical across all the three
sub-system) specifies the execution patterns that are of interest to
the user. The execution patterns used here extend string regular ex-
pressions to (nested) process DAGs. They can describe sequential
and parallel execution of activities, possibly with repetitions and/or
alternatives, and allow to zoom in inside compound BP activities or
view them as black boxes. The second part of the query (which is
specific to BP-Ex) consist of OLAP icons that can be attached to
the patterns. These allow to compute aggregate functions, over the
retrieved sub-traces, along different dimensions requested by the
user, and generate corresponding reports.

Multi-Embedding. To evaluate a query, sub-traces of the shape
specified by the query pattern need to be retrieved and analyzed.
An occurrence of a given pattern in the execution trace is called
an embedding. Identifying and handling each embedding individ-
ually may be rather expensive performance-wise. Our solution is
based on the observation that an execution trace may contain many
embeddings of the same pattern, and that embeddings of the same
(or different) patterns may overlap. To exploit this we designed
a novel compact data structure called Multi-Embedding (ME for
sort) that “factorizes" multiple matches of the same trace activities
and provides a concise representation for the existing embeddings.
Intuitively, an ME can be viewed as a graph with shape similar to
that of the query pattern and where (1) each ME node records all the
trace nodes that were matched to the corresponding pattern node,
and (2) each ME edge records the edge/path relationships between
the trace node recorded by its endpoints. The ME can be computed
efficiently and is used in query evaluation as explained below.

Algebra and logical optimization. To evaluate BP-Ex queries,
the graphical query representation is mapped into an algebraic ex-
pression. The algebra consisted of a pattern-matching operator that
retrieves the sub-traces matching the query pattern, as well as se-
lect, project, join, and standard OLAP-style operators for perform-
ing aggregation.

To allow for efficient processing, rather than applying naively the
operators on the individual sub-traces, the algebraic query is trans-
lated into an equivalent ME-based expression that operates directly
on the ME. In particular, each of the algebra operators has a cor-
responding ME variant. This includes a pattern-matching operator
that builds the ME, select, project, and join operators that operate
on it, as well as operators for performing OLAP-style analytical
processing over the ME. Dedicated algebraic rewrite rules allow to
optimize performance, by reordering operations and pushing selec-
tion conditions into the pattern matching (ME construction).

Figure 2: Architecture

Storage and physical operators. The execution traces are
stored in a relation database that records the performed activities
and their execution order. (Intuitively, the nodes and edges in the
execution trace DAG). For each composite activities, the internal
execution flow is also recorded (and, recursively, the flow of its
composite activities). The matching of the query pattern to the
execution traces (and the corresponding ME construction) is per-
formed by a set of SQL queries. To facilitate this SQL-based pattern-
matching, each trace activity is assigned a special id, such that
given the ids of two activities, one can directly determine whether
on precedes the other in the flow and/or belongs to its internal flow.
The identification scheme that we use is an adjustment of the XML
(tree) node ids of [14] to nested trace DAGs.

Each algebraic operator has two types of possible physical imple-
mentation. The first is memory-based and can be used whenever the
constructed ME is small enough to fit into main memory. When the
ME is large (as often is the case), it is stored in the database, and
each operator is then implemented by a set of SQL queries over the
stored ME. A dedicated optimization technique that we have de-
veloped allows to slice the ME into smaller parts that can fit into
main memory, thereby performing a mixed memory/databse-based
computation. A cost model, based on statistics gathered from the
execution traces repository, is used to choose among the possible
physical execution plans.

4. BP-EX SYSTEM ARCHITECTURE
The architecture of BP-Ex is depicted in Figure 2. The demon-
stration will illustrate each of the components and their interaction.
The system runs on Windows XP Professional, JBoss AS 4.0.4. Or-
acle BPEL Process Manager 10.1.2. with Oracle 10g database. The
visual interface is implemented as an Eclipse plug-in, similarly to
Oracle BPEL designer.

BPEL Server. To illustrate the operation of the system is we
will consider in the demo a set of BPEL business processes used
by a consortium offering travel-related services. The travel agency
BP runs on a standard (Oracle, in the is case) BPEL server[17].
The server traces the process instances - the activities they per-
form, messages sent or received by each activity, variable values,
etc. This data is logged and stored in a traces repository (imple-
mented using Oracle 10g).

Visual editor. BP-Ex queries are written via the BP-Suite
visual editor, in one of two modes: The user can draw the patterns
from scratch, using a drag-and-drop items palette. Or, starting from

715

a specification of a BP P , use a wizard to create queries for P
as follows: The user marks the activities of P that she wishes to
include in the query. Then by one click a query draft is created,
where non selected activities are omitted and the selected ones are
connected by edges that reflect their flow and zoom-in relationship
in P . The user can then add conditions on the activities, specify the
desired type of analytical processing, ask for various reports, make
final adjustments, and click a button to save and/or run the query.

Query Translator. The query created by the visual editor is
transformed into algebraic representation that is sent to the query
engine for evaluation.

Query engine. The query engine employs algebraic rewrite rules
to optimize the query. To evaluate the query, an ME (Multi-Embedding)
is constructed, summarizing all occurrences of the query pattern in
those traces that are of interest to the user. Based on the size of
the constructed ME and statistics gathered from the repository, the
algebraic operators are mapped to a corresponding physical execu-
tion plan. The final step is the generation of the requested reports.

5. DEMONSTRATION SCENARIO
As mentioned above, we will consider in the demo a set of BPEL
business processes used by a consortium offering travel-related ser-
vices. The processes include flight and train reservation, car rental,
and credit and accounting services. The Web interface and execu-
tion flow of the BP simulates the Yahoo! Travel application, with
the business data (prices, schedules, deals, etc.) synthetically gen-
erated. To construct a large database of execution traces, we had
first asked 20 users to use the system, performing different travel-
related tasks, and then used the obtained execution traces as a seed
for automatic generation of traces with similar characteristics.

The purpose of our demonstration is two fold. First, looking at the
full BP-Suite system, we will demonstrate the uniformity and
tight coupling of its three sub systems. Second, focusing on the
new BP-Ex component, we will demonstrate its novel features,
from both the UI and the implementation perspectives.

Query formulation. We will first show how the same intuitive
graphical query can be used to (1) check that the BP specification
obeys certain company policies, (2) perform critical run-time moni-
toring tasks, and (3) analyze the process execution traces. As a sim-
ple example, the query in Figure 1 (ignoring the OLAP icon), when
interpreted as a query over the specification, checks whether the
BP allows reservations to be confirmed without giving first credit
card details. The same query when interpreted as a monitoring task
(with the OLAP icon replaced by an appropriate Report icon),
can alert at run-time on such a confirmation attempt. Finally, when
interpreted as a query over the execution traces, the query identifies
all the occurrences of such execution pattern, groups them by user
id and sums up the transactions performed by each criminal user.
The ease of query formulation will be illustrated in the demo by
comparing our graphical query interface to that used by commer-
cial vendors for the specification of BPEL business processes (e.g.
[17]); there is a tight analogy between how processes are specified
and how they are queried.

Together with the audience we will formulate several queries, illus-
trating the richness and flexibility of the query interface, both for
specifying the execution patterns of interest, and for describing the
aggregation/reporting to be performed on them

Query execution. We will then follow tightly the execution of
the queries. Specifically, we will focus on two queries - a very se-
lective query where the ME is small and fits into main memory,
and a less selective one where the ME is very large and has to be
stored on disk. We will first show the algebraic representation of
the queries before and after optimization, highlighting the relevant
rewrite rules. Next we will demonstrate the constructed ME, show-
ing how it factorizes compactly multiple pattern embedding. Fi-
nally, we will follow the physical evaluation of the queries. For the
two queries, we will examine the possible execution plans and their
estimated execution costs, and show the plan selected by BP-Ex.
We will demonstrate the performance gain of this choice by run-
ning each of the possible plans and comparing its running time to
that of the selected BP-Ex plan. To conclude the demonstration we
will explain the cost model employed by BP-Ex and how it lead to
this optimized choice.

6. REFERENCES
[1] BEA. Bea AquaLogic BPM suite. http://www.bea.com/bpm/.
[2] C. Beeri, A. Eyal, S. Kamenkovich, and T. Milo. Querying

Business Processes. In Proc. of VLDB, pages 343–354, 2006.
[3] C. Beeri, A. Eyal, T. Milo, and A. Pilberg. Monitoring

business processes with queries. In VLDB, pages 603–614,
2007.

[4] Business Process Execution Language for Web Services.
http://www.ibm.com/developerworks/library/ws-bpel/.

[5] F. Casati, M. Castellanos, U. Dayal, and N. Salazar. A
generic solution for warehousing business process data. In
VLDB, pages 1128–1137, 2007.

[6] U. Dayal, M. Castellanos, A. Simitsis, and K. Wilkinson.
Data integration flows for business intelligence. In EDBT,
pages 1–11, 2009.

[7] A. Deutsch, R. Hull, F. Patrizi, and V. Vianu. Automatic
verification of data-centric business processes. In ICDT,
pages 252–267, 2009.

[8] J. Eder, G. E. Olivotto, and W. Gruber. A data warehouse for
workflow logs. In Proc. of EDCIS, pages 1–15, 2002.

[9] X. Fu, T. Bultan, and J. Su. Analysis of Interacting BPEL
Web Services. In Proc. of the Int. WWW Conf., 2004.

[10] H. Hacigumus. Compliance enforcement for service process
flows. In IEEE SCC, pages 682–683, 2007.

[11] M. C. Hao, Daniel A. Keim, U. Dayal, and J. Schneidewind.
Business process impact visualization and anomaly
detection. Information Visualization, 5(1):15–27, 2006.

[12] IBM. WebSphere Business Monitor. http://www-
304.ibm.com/jct03001c/software/integration/wbimonitor.

[13] ILOG JViews. http://www.ilog.com/products/jviews/.
[14] H. Kaplan, T. Milo, and R. Shabo. Compact labeling scheme

for xml ancestor queries. Theory Comput. Syst., 40(1):55–99,
2007.

[15] M. Lam, J., V. B. Livshits, M. Martin, D. Avots, M. Carbin,
and C. Unkel. Context-sensitive program analysis as
database queries. In PODS, pages 1–12, 2005.

[16] D. C. Luckham. The Power of Events: An Introduction to
Complex Event Processing in Distributed Enterprise
Systems. Addison Wesley, 2002.

[17] Oracle BPEL Process Manager 2.0 Quick Start Tutorial.
http://www.oracle.com/technology/products/ias/bpel/index.html.

[18] A. V. Paliwal, N. Adam, and C. Bornhövd. Web service
orchestration and verification using msc and cp nets. In Proc.
ACM symp. on Applied computing, pages 1693–1694, 2007.

716

