
Evaluating TOP-K Queries Over Business Processes
Daniel Deutch, Tova Milo

Tel Aviv University
{danielde,milo}@post.tau.ac.il

Abstract— A Business Process (BP) consists of some business
activities undertaken by one or more organizations in pursuit
of some business goal. Tools for querying and analyzing BP
specifications are extremely valuable for companies as they allow
to optimize the BP, identify potential problems, and reduce oper-
ational costs. In particular, given a BP specification, identifying
the top-k execution flows that are most likely to occur in practice
out of those satisfying the query criteria, is crucial for various
applications. To address this need, we introduce in this paper the
notion of likelihood for BP execution flows, and study top-k query
evaluation (finding the k most likely matches) for queries over
BP specifications. We analyze the complexity of query evaluation
in this context and present novel algorithms for computing top-
k query results. To our knowledge, this is the first paper that
studies such top-k query evaluation for BP specifications.

I. INTRODUCTION

A Business Process (BP for short) is a collection of logically
related activities that, when combined in a flow, achieve a
business goal. A BP usually operates in a cross-organization,
distributed environment and the software implementing it is
fairly complex. To simplify software development, it is a
common practice to provide a high level description of the
BP operational flow (using a standard specification language
such as BPEL [1]), and then have the software be automati-
cally generated from this specification. Since the BP logic is
captured by the specification, tools for querying and analyzing
BP specifications are extremely valuable for companies [2].
They allow to optimize the BP, identify potential problems,
and reduce operational costs.

As a simple example, consider a BP of an on-line, Web-
based travel agency. An analyzer that wishes to examine the
BP execution flows may issue queries such as ”At which points
of the flow is the user asked to relay her credit card details?”,
”In what ways may one reserve a travel package containing a
flight and an hotel?”, or ”How is this done for travelers of a
particular airline company, say British Airways?”, etc.

A typical query engine is given as input the BP specification
and an execution pattern of interest, and identifies, among
the potential execution flows of the BP, all those having the
structure specified by the pattern ([2], [3]).

Note, however, that the total number of qualifying execution
flows may be very large, or even infinite in presence of
recursion. Among these qualifying flows, some are typically
more “interesting” than others. In particular, given a BP
specification, identifying the top-k execution flows that are
most likely to occur in practice, out of those satisfying the
query criteria, is crucial for various applications. It can be
used, for instance, to adjust the BP web-site design to the needs

of certain user groups, to personalize on-line advertisements,
or to provide appealing package deals.

For instance, say that we obtain that a popular execution
flow containing a British Airways reservation is one where
users first search for a package containing both flights and
hotels, but eventually book a British Airways flight without
reserving an hotel. Such result may strongly imply that the
combined deals suggested for British Airways fliers are unap-
pealing, as users are specifically interested in such deals, but
refuse those presented to them.

To address the need for such top-k analysis of BP execu-
tions, we introduce in this paper the notion of likelihood for BP
execution flows, and study top-k (most likely matches) query
evaluation for queries over BP specifications. We analyze the
complexity of query evaluation in this context and present
efficient algorithms for top-k query computation. To the best
of our knowledge, this is the first paper that studies such top-k
query evaluation over BP specifications.

Our contribution here is twofold. First, we present a simple
generic probabilistic model that allows to describe the possible
execution flows of a given BP, and their likelihoods, in
presence of different sorts of dependencies, between events
dictating the course of execution. We distinguish several
classes of likelihood functions over execution flows of the
process, according to the level of dependencies in-between
events dictating the execution course (user choices, server
states, etc.). Our model extend the model of [2], [3] to a
probabilistic context. The model there is an abstraction of the
BPEL (Business Process Execution Language [1]) standard.

Next, we consider queries. The query language that we
consider selects execution flows of interest, using execution
patterns [2]. We study the problem of identifying, for a
given BP and a query, the top-k execution flows with highest
likelihood out of these satisfying the query. We analyze the
complexity of query evaluation for various classes of likeli-
hood functions, and show that for a practically common class,
the problem can be efficiently solved. We focus in particular
on a practically common class of likelihood functions, namely
functions that are of bounded-memory. Intuitively, with such
function, the likelihood of a choice depends only on a bounded
number of previously made choices. The second contribution
of this paper is a novel algorithm that computes the top-
k execution flows conforming to a query, in presence of a
bounded-memory likelihood function.

This is a short version of our paper, summarizing the main
contributions. The reader is referred to [4] for a full version
containing exact details, along with an experimental study.

Related Work: We give next a brief review of related
work, and refer the reader to [4] for further references.

Probabilistic Databases (PDBs) [5], [6] and Probabilistic
Relational Models (PRMs) [7] allow representation of uncer-
tain information, but consider relational data and do not cap-
ture the dynamic nature of flow and the possibly unbounded
number of recursive (possibly dependent) invocations. In terms
of the possible worlds semantics, the number of worlds in
our model is infinite (rather than large, yet finite, in PDBs).
Extensions of PRMs to a dynamic setting, called Dynamic
PRMs [8], do not allow for practically efficient algorithms.

Probabilistic XML [9], [10] bears some resemblance to
our model: the data is graph (tree) shaped, and it allows
some dependencies between probabilistic events. However, our
model is more complex: first, it represents nested DAG struc-
tures, rather than trees, entailing more intricate dependencies
between events. Second, potentially infinite number of such
nested DAGs are represented, due to possible recursive calls.

We assume that the BP and a description of the likelihood
function are readily given. The design/inference of both has
been the focus of several previous works (see e.g. [11], [12]),
and is outside the scope of this work.

Paper organization: In Section II we informally define
our model and the notion of top-k execution flows. In section
III we present our algorithms for finding the top-k execution
flows conforming to a query, and we conclude in section IV.

II. PRELIMINARIES

We start by reviewing (informally) the main concepts dis-
cussed in the paper.

Business Processes: A Business Process (BP) is an ab-
straction of the BPEL standard for specification of processes.
We show its merits via an example, as follows.

Example 2.1: The business logic of a Web-based travel
agency is given as a BP in Figure 1. A BP describes a
process as a nested DAG (Directed Acyclic Graph) consisting
of activities (nodes), and links (edges) between them. Links
detail the execution order of the activities. Each activity
is represented by a pair of nodes, the first (having darker
background) standing as the activity’s activation point and
the second as its completion point. Edges represent execution
flow relations; multiple edges going out of a single node stand
for parallelism (hence the DAG structure). Activities may be
either atomic (like the Login activity) or compound (like
start, chooseTravel and Flights). In the latter case, each
of their possible internal structures (called implementation) is
also detailed as a DAG (depicted as a “bubble” and leading
to the nested structure). For instance, at the start activity, the
user may choose between three possible ways of usage. By
setting $usage to be “search travel”, a chooseTravel activity
is invoked; it has three possible implementations F3, F4,
F5. Each implementation is guarded by a guarding formula,
in this case testing the value of the $searchType variable.
This value may either be “flights only”, “flights+hotels”, or
“flights+hotels+cars”, depending on the user’s choice. At run-
time, exactly one implementation will be chosen, determined

Fig. 1. Business Process

Fig. 2. Ranking Implementation Choices

by the truth value of the guarding formulas (determined, in
turn, by the user choice). Focusing on the F3 implementation,
the Flights activity has a set of possible implementations,
corresponding to choices of $airline (“BA” stands for British
airways, “AF” for Air France, “AL” for Aer Lingus). Last,
the Confirm activity allows the option of reset, recursively
going back to F2, or alternatively to confirm or cancel.

Execution Flows: An execution flow is an actual running
instance of a Business Process. It may be abstractly viewed as
a nested DAG, containing node-pairs that represent the activa-
tion and completion of activities, and edges that represent flow
and zoom-in (implementation) relationships among activities,
along with a record of guarding formulas corresponding to
chosen implementations of compound activity nodes. Figure
2(a) depicts an example execution flow of the travel agency
process, in which the user chose to search for travel, then
chose a “flights+hotels” search, and finally made a reservation
consisting of (ignore, for now, the numbers annotating the
different choices). Zoom-in edges (denoted by dashed arrows)
connect activation and completion nodes of compound activi-
ties to the start and end nodes of the chosen implementation.

Likelihood: We define two sorts of likelihood functions:
(1) the c−likelihood function, that determines the likelihood of
the different implementation choices, and (2) the f−likelihood
function, that determines the likelihood of flows. Recall that
each execution flow corresponds to a unique sequence of
implementation choices taken throughout the execution, and
we define the f−likelihood of a flow as the multiplication of
c−likelihood values along the execution.

A c−likelihood function receives as input both a guarding

formula and a partial flow representing the “history”, i.e. flow
thus far. Intuitively, a c−likelihood function is simple if it’s
“local”, i.e. it is in fact a function of the guarding formula
solely, or a function of the formula along with a small amount
of history that affect its value. To capture this notion, we define
three classes of functions, with decreasing level of simplicity.

Memory-less functions: The simplest class of
c−likelihood functions is the memory-less class. δ is
memory-less if for each formula f and for each two partial
flows (histories) e, e′, δ(f, e) = δ(f, e′). This means that
choices are all independent.

Example 2.2: An example for such independent likelihoods
annotates the choices in Figure 2(a), and the corresponding
f−likelihood of the flow is computed as their multiplications,
that is 0.9 ∗ 0.3 ∗ 0.7 ∗ 0.5 ∗ 0.7 = 0.06615.

Bounded memory functions: A more general and more
realistic class of c−likelihood functions captures the common
case where the c−likelihood of any given choice may depend
on the execution history, but only in a bounded manner.
Intuitively, the bound b is on the maximal number of past
choices, made for any activity, that affect the likelihood of
some choice. That is, at any point of the execution, and given
the implementation choices taken for the last b occurrences of
each activity, the likelihood of every implementation choice is
indifferent to choices made further in the past.

Example 2.3: Consider for example the execution flow de-
picted in Figure 2(b). Note that the likelihood of the different
search types depends upon the choices preceding it: at first, the
likelihood of a “flights only” search type is 0.8, but given that
the user was unsatisfied with the results and chose to reset, the
likelihood of him making the same choice again decreases to
0.3. For a given flow, however, the entire history is known at
each point. Thus computation of f−likelihood values is again
obtained as a multiplications of the c−likelihood values along
the flow, that is 0.9 ∗ 0.6 ∗ 0.4 ∗ 0.7 ∗ 0.5 = 0.0756.

Unbounded-memory functions: In general, there exist
c−likelihood functions that do not fall under the bounded-
memory category. We refer to these as unbounded-memory.

Example 2.4: Consider a scenario where the likelihood of
each hotel choice depends on the exact number of “resets”
previously chosen. Here, an unbounded number of choices
for the same activity name must be known for likelihood
computation. In practice, such scenario is rare (see e.g. [13]).

Queries: Queries are defined using execution patterns,
whose structure is similar to that of execution flow. A subset
of the pattern’s edges may be marked as transitive, seeking
for a path connecting the edge end-nodes, rather than a single
edge; similarly, composite nodes may be marked as transitive,
seeking for possibly indirect implementations.

To evaluate a query over a BP specification s, we search
for occurrences of the execution pattern in execution flows
of s, represented by embeddings. An embedding is a ho-
momorphism from all nodes and edges of the pattern to
some nodes and edges of the flow, such that for matched
nodes, their activity names coincide, and composite (atomic)

Fig. 3. Query
nodes are mapped to composite (atomic) nodes. Non-transitive
edges (both regular and zoom-in) of the query are mapped to
corresponding edges of the trace, such that the end-points in
the pattern are mapped to the corresponding end-points in the
flow. Transitive edges may be mapped to paths (containing
flow or zoom-in edges), and implementations of transitive
query nodes may be mapped to indirect implementations of
the corresponding flow nodes.

Example 2.5: An example execution pattern is depicted in
Fig. 3. It zooms-in transitively into Start, searching for a
chooseTravel activity (that may follow any number of
resets). Then, it requires a reservation of a BritishAirways
flight, followed by a confirmation.

Note that double-bounded nodes (double-lined edges) de-
note transitive nodes (resp. edges).

TOP-K results: Given a BP specification s, a query q and
a number k, the top-k results of q with respect to s (denoted
top−k(q, s)) are defined as the k most likely flows of s, out
of those in which an embedding of q exists.

III. QUERY EVALUATION

We now turn to describing our results and algorithms for
query evaluation over BP specifications.

A. General Framework

Given a BP s, a c−likelihood function δ, and a query q, the
top-k query results are computed in two steps.

1) First, we construct a BP s′ and a c−likelihood function
δ′ such that the flows set of s′ is identical, up to activities
renaming, to the subset of s flows that match q, and have
correspondingly identical likelihoods.

2) Next, depending on the type of δ (memory-less,
bounded-memory), we use s′ and apply a particular
algorithm that generates a specification s′′ whose set
of flows corresponds exactly to the top-k query results.

The first step is an adaptation of the evaluation algorithm given
in [14]. We thus omit its details for brevity, and focus on
the second step, namely finding the top-k flows of a given
specification, with respect to a given likelihood function, of
each of the different classes.

B. Memory-less c−likelihood functions

For the case of memory-less c−likelihood functions, we are
able to give an efficient algorithm for computing a compact
representation of the top-k qualifying flows.

Theorem 3.1: Given a BP s, a memory-less c−likelihood
function, and a query q, we may compute a compact represen-
tation of top−k(q, s), in polynomial time (data complexity).

Proof: [Sketch]
The algorithm is based on the following lemma:
Lemma 3.2: For every memory-less c−likelihood function

δ, a BP s and a compound activity a in s,
1) There exists a best ranked (top-1) EX-flow originating

at a that does not contain another occurrence of a.
2) There exists a j + 1’th ranked EX-flow originating at

a such that for any occurrence of a in it, the sub-flow
rooted at the latter is one of the top-j EX-flows of a.

The above lemma implies that when searching for the top-k
EX-flows, it suffices to examine a finite number of EX-flows.
Thus, a simple algorithm for finding the top-k EX-flows is
to enumerate all these EX-flows, compute their f−likelihood
, and pick out the top-k ones. Note that the number of EX-
flows examined by this naive algorithm may be exponential in
the size of the BP s. To avoid examining all of them we use
a Dynamic Programming approach, that materializes in each
step only the essential front line of flows.

We can also show that, unless P = NP , no algorithm
polynomial in the query size is possible for computation of
top-k results. First, we define the BEST-MATCH decision
problem: given a BP specification, a c−likelihood function,
a query, and a bound B, decide the existence of a qualifying
flow whose f−likelihood is greater than B.

Theorem 3.3: BEST-MATCH is NP-complete w.r.t. the
query size, even for memory-less c−likelihood functions.

C. Bounded-memory functions

Bounded-memory c−likelihood functions pose further chal-
lenges, as the c−likelihood of each choice may depend on a
number of other choices. We may show the following theorem:

Theorem 3.4: Given a BP s′, a bounded-memory
c−likelihood function δ′, and a query q, we may compute a
compact representation of the top-k results, in EXPTIME.

Proof: [sketch] The general idea of the algorithm is to
create, given s′ and δ′ with a memory bounded by m, a new
BP s′′, with a new, memory-less, c−likelihood function δ′′,
such that s′ and s′′ have essentially the same set of flows with
the same f−likelihood . Then, we apply the algorithm from the
proof of Theorem 3.1. To create this memory-less function, we
annotate the activity names in s′, “factoring” within the names
all information required for the computation of c−likelihood
of formulas, namely a pre-condition vector, including the m
last choices for all activities. Additionally, the new activities
names also contain post-condition vectors, necessary to assure
consistencies between pre-conditions assumed by activities
and what has happened in their predecessors. The algorithm
is polynomial in k and exponential in |s′ | ×m.

Unfortunately, no polynomial algorithm is likely to exist in
this setting, as the following theorem holds.

Theorem 3.5: Given a BP s with a bounded-memory
c−likelihood function δ and a query q BEST-MATCH is NP-
complete w.r.t. the size of s.
The theorem is proved by a reduction from probability com-
putation over bayesian networks, known to be NP-hard.

However, the pathological scenarios that lead to this NP-
hardness are not necessarily typical. We may optimize our
EXPTIME algorithm, by identifying common cases where
more efficient processing is possible, namely by exploiting
(conditional) independencies between implementation choices.
Our experiments (omitted for lack of space) show that the
optimizations succeed in achieving feasible execution times
even for large-scaled specification and queries.
D. Unbounded-memory c−likelihood functions

Last, we may show that for general c−likelihood functions
that do not adhere to any of the previously discussed classes,
computation of the top-k results is impossible.

Theorem 3.6: The BEST-MATCH problem is undecidable
for unbounded-memory c−likelihood functions.
The proof (omitted here) is by reduction from the halting
problem of a Turing Machine, known to be undecidable.

IV. CONCLUSION

This paper studies, for the first time, the problem of top-k
query evaluation over BPs. We have studied the complexity of
the problem for various classes of likelihood functions over
the execution course, and presented efficient algorithms for
query evaluation, where possible, for each class. Important
applications of our results include adjusting web-sites design
to the needs of certain user groups, personalization of on-
line advertisements, focusing on particular target audience, and
enhancing business logic. We intend to study such applications
as future research. The development of dedicated query opti-
mization techniques is another intriguing future challenge.

REFERENCES

[1] “Business Process Execution Language for Web Services,”
http://www.ibm.com/developerworks/library/ws-bpel/.

[2] C. Beeri, A. Eyal, S. Kamenkovich, and T. Milo, “Querying business
processes,” in Proc. of VLDB, 2006.

[3] C. Beeri, A. Eyal, T. Milo, and A. Pilberg, “Monitoring business
processes with queries,” in Proc. of VLDB, 2007.

[4] D. Deutch and T. Milo, “Evaluating top-k queries over busi-
ness processes (extended version),” http://www.cs.tau.ac.il/∼danielde/
icde09Extended.pdf.

[5] N. Dalvi and D. Suciu, “Efficient query evaluation on probabilistic
databases,” in Proc. of VLDB, 2004.

[6] P. Sen and A. Deshpande, “Representing and querying correlated tuples
in probabilistic databases,” in ICDE, 2007.

[7] N. Friedman, L. Getoor, D. Koller, and A.Pfeffer, “Learning probabilistic
relational models,” in Proc. of IJCAI, 1999.

[8] S. Sanghai, P. Domingos, and D. Weld, “Dynamic probabilistic relational
models,” in Proc. of IJCAI, 2003.

[9] S. Abiteboul and P. Senellart, “Querying and updating probabilistic
information in xml,” in Proc. of EDBT, 2006.

[10] B. Kimelfeld and Y. Sagiv, “Matching twigs in probabilistic xml,” in
Proc. of VLDB, 2007.

[11] W. van der Aalst, T. Weijters, and L. Maruster, “Workflow mining:
Discovering process models from event logs,” IEEE Trans. on Knowl.
and Data Eng., vol. 16, no. 9, 2004.

[12] R. Silva, J. Zhang, and J. G. Shanahan, “Probabilistic workflow mining,”
in KDD, 2005.

[13] P. L. T. Pirolli and J. E. Pitkow, “Distributions of surfers’ paths through
the world wide web: Empirical characterizations,” World Wide Web,
vol. 2, no. 1-2, 1999.

[14] D. Deutch and T. Milo, “Type inference and type checking for queries
on execution traces,” in Proc. of VLDB, 2008.

