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ABSTRACT
We study the problem of concealing functionality of a proprietary
or private module when provenance information is shown over re-
peated executions of a workflow which contains both public and
private modules. Our approach is to use provenance views to hide
carefully chosen subsets of data over all executions of the workflow
to ensure Γ-privacy: for each private module and each input x, the
module’s output f(x) is indistinguishable from Γ−1 other possible
values given the visible data in the workflow executions. We show
that Γ-privacy cannot be achieved simply by combining solutions
for individual private modules; data hiding must also be propagated
through public modules. We then examine how much additional
data must be hidden and when it is safe to stop propagating data
hiding. The answer depends strongly on the workflow topology as
well as the behavior of public modules on the visible data. In partic-
ular, for a class of workflows (which include the common tree and
chain workflows), taking private solutions for each private module,
augmented with a public closure that is upstream-downstream safe,
ensures Γ-privacy. We define these notions formally and show that
the restrictions are necessary. We also study the related optimiza-
tion problems of minimizing the amount of hidden data.

Categories and Subject Descriptors
F.2.0 [Analysis of Algorithms And Problem Complexity]: Gen-
eral; H.2.0 [Database Management]: General—Security, integrity,
and protection; H.2.8 [Database Management]: Database appli-
cations—Scientific databases
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1. INTRODUCTION
Workflow provenance has been extensively studied, and is in-

creasingly captured in workflow systems to ensure reproducibility,
enable debugging, and verify the validity and reliability of results.
However, as pointed out in [18], there is a tension between prove-
nance and privacy: Confidential intermediate data may be shown
(data privacy); the functionality of proprietary modules may be-
come exposed by showing the input and output values to that mod-
ule over all executions of the workflow (module privacy); and the
exact execution path taken in a specification, hence details of the
connections between data, may be revealed (structural privacy).
An increasing amount of attention is therefore being paid to spec-
ifying privacy concerns, and developing techniques to guarantee
that these concerns are addressed [33, 35, 7, 8].

This paper focuses on privacy of module functionality, in partic-
ular in the general – and common – setting in which proprietary
(private) modules are used in workflows which also contain non-
proprietary (public) modules, whose functionality is assumed to be
known by users. There are proprietary modules for tasks like gene
sequencing, protein folding, medical diagnoses, that are commer-
cially available and are combined with other modules in a work-
flow for different biological or medical experiments [2, 1]. The
functionality of these proprietary modules (i.e. what result will be
output for a given input) is not known, and owners of these pro-
prietary modules would like to ensure that their functionality is not
revealed when the provenance information is published. In contrast
for a public module (e.g. a reformatting or sorting module), given
an input to the module a user can construct the output even if the
exact algorithm used by the module is not known by users (e.g.
Merge sort vs Quick sort).

Following [17], the approach we use is to extend the notion of
`-diversity [30] to the workflow setting by carefully choosing a sub-
set of intermediate input/output data to hide over all executions of
the workflow so that each private module is “Γ-private”: for every
input x, the actual value of the output of the module, f(x), is in-
distinguishable from Γ − 1 other possible values w.r.t. the visible
data values in the provenance information (in Section 6 we dis-
cuss ideas related to differential privacy). The complexity of the
problem arises from the fact that modules interact with each other
through data flow defined by the workflow structure, and therefore
merely hiding subsets of inputs/outputs for private modules may
not guarantee their privacy when embedded in a workflow. We
consider workflows with directed acyclic graph (DAG) structure,
that are commonly used in practice [3], contain common chain and
tree workflows, and comprise a fundamental yet non-trivial class of
workflows for analyzing module privacy.

As an example, consider a private modulem2, which we assume
is non-constant. Clearly, when executed in isolation as a standalone
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module, then either hiding all its inputs or hiding all its outputs
over all executions guarantees privacy for any privacy parameter
Γ. However, suppose m2 is embedded in a simple chain workflow
m1 −→ m2 −→ m3, where both m1 and m3 are public, equality
modules. Then even if we hide both the input and output of m2,
their values can be retrieved from the input to m1 and the output
from m3. Note that the same problem would arise if m1 and m3

were invertible functions, e.g. reformatting modules, a common
case in practice.

In [17], we showed that in a workflow with only private modules
(an all-private workflow) the problem has a simple, elegant solu-
tion: If a set of hidden input/output data guarantees Γ-standalone-
privacy for a private module, then if the module is placed in an
all-private workflow where a superset of that data is hidden, then
Γ-workflow-privacy is guaranteed for that module in the workflow.
In other words, in an all-private workflow, hiding the union of the
corresponding hidden data of the individual modules guarantees Γ-
workflow-privacy for all of them. Clearly, as illustrated above, this
does not hold when the private module is placed in a workflow
which contains public and private modules (a public/private work-
flow). In [17] we therefore explored privatizing public modules,
i.e. hiding the names of carefully selected public modules so that
their function is no longer known, and then hiding subsets of in-
put/output data to ensure their Γ-privacy. Returning to the example
above, if it were no longer known that m1 was an equality mod-
ule then hiding the input to m2 (output of m1) would be sufficient.
Similarly, if m3 was privatized then hiding the output of m2 (in-
put to m3) would be sufficient. It may appear that merging some
public modules with preceding or succeeding private modules may
give a workflow with all private modules and then the methods from
[17] can be applied. However, merging may be difficulty for work-
flows with complex network structure, large amounts of data may
be needed to be hidden, and more importantly, it may not be possi-
ble to merge at all when the structure of the workflow is known.

Although privatization is a reasonable approach in some cases,
there are many practical scenarios where it cannot be employed,
e.g. when the workflow specification (the module names and con-
nections) is already known to the users, or when the identity of the
privatized public module can be discovered through the structure of
the workflow and the names or types of its inputs/outputs.

To overcome this problem, we propose an alternative novel solu-
tion, based on the propagation of data hiding through public mod-
ules. Returning to our example, if the input to m2 were hidden
then the input tom1 would also be hidden, although the user would
still know that m1 was the equality function. Similarly, if the out-
put ofm2 were hidden then the output ofm3 would also be hidden;
again, the user would still know that m3 was the equality function.
While in this example things appear to be simple, several techni-
cally challenging issues must be addressed when employing such a
propagation model: 1) whether to propagate hiding upward (e.g. to
m1) or downward (e.g. to m3); 2) how far to propagate data hid-
ing; and 3) which data of public modules must be hidden. Overall
the goal is to guarantee that the functionality of private modules is
not revealed while minimizing the amount of hidden data.

In this paper we focus on downward propagation, for reasons
that will be discussed in Section 3. We define a class of workflows,
called single-private-predecessor workflows or simply single-pred-
ecessor workflows, which include the common tree and chain work-
flows. For these workflows, we show the following strong result:
taking a solution for Γ-standalone-privacy of each private module,
augmenting the solution with specially chosen input/output data of
certain public modules, and hiding the union of these augmented
solutions will ensure Γ-workflow privacy for all private modules. In

particular, the augmented solution should ensure upstream-down-
stream safety (UD-safety) for modules in the public closure (up
to a successor private module) of private modules. We define these
notions formally in Section 3. We also show that single-predecessor
workflows is the largest class of workflows for which propagation
of data hiding only within the public closure suffices.

Since data may have different costs in terms of hiding, and there
may be different safe subsets for private modules as well as dif-
ferent UD-safe subsets for public modules, the next problem we
address is finding a minimum cost composition of the individual
solutions: first identify safe and UD-safe subsets for the pri-
vate and public modules, respectively, then assemble them together
optimally. The complexity of identifying safe subsets for a pri-
vate module was studied in [17] and the problem was shown to be
NP-hard (in EXP-time) in the number of module attributes. Here
we show that identifying UD-safe subsets for public modules is
of similar complexity: even deciding whether a given subset is
UD-safe for a module is coNP-hard in the number of inputs and
outputs. We note however that this is not as negative as it might
appear, since the number of inputs/outputs of individual modules is
not high; furthermore, the computation may be performed as a pre-
processing step or expert knowledge (from the module designer)
can be used. We show that, for chain and tree-shaped workflows,
the optimization problem has a poly-time solution in the size of the
workflow and the maximum number of safe/UD-safe subsets for
private/public modules. The algorithm can also be applied to gen-
eral single-predecessor workflows where the public closures have
chain or tree shapes. In contrast, when the public closure has an ar-
bitrary DAG shape, the problem becomes NP-hard (in EXP-time)
in the size of the public closure.

We then consider general acyclic workflows, and give a suffi-
cient condition to ensure Γ-privacy that is not the trivial solution of
hiding all data in the workflow. In contrast to single-predecessor
workflows, hiding data within a public closure no longer suffices;
data hiding must continue through other private modules to the en-
tire downstream workflow. In return, the requirement from data
hiding for public modules is somewhat weaker here: hiding must
only ensure that the module is downstream-safe (D-safe), which
typically involves fewer input/output data than UD-safety.

The remainder of the paper is organized as follows: Our work-
flow model and notions of standalone- and workflow-module pri-
vacy are given in Section 2. Section 3 describes our propagation
model, defines upstream-downstream-safety and single-predecessor
workflows, and states the privacy theorem for single-predecessor
workflows. We give the proof of privacy theorem in Section 4 and
discuss the related optimization problem. General public/private
workflows are considered in Section 5. We review related work in
Section 6 and conclude in Section 7.

2. PRELIMINARIES
We start by reviewing the formal definitions and notions of mod-

ule privacy from [17], and then extend them to the context studied
in this paper.1 Readers familiar with the definitions and results in
[17] can move directly to Section 3.

2.1 Modules, Workflows and Relations
Modules. A module m with a set I of input data and a set O of
(computed) output data is modeled as a relation R. R has the set
of attributes A = I ∪ O, and satisfies the functional dependency
I → O. We assume that I ∩ O = ∅ and will refer to I and O as
the input attributes and output attributes of R respectively.
1The example in this section is also taken from [17].
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I O
a1 a2 a3 a4 a5

0 0 0 1 1
0 1 1 1 0
1 0 1 1 0
1 1 1 0 1

(a) R1: Functionality of m1

a1 a2 a3 a4 a5 a6 a7

0 0 0 1 1 1 0
0 1 1 1 0 0 1
1 0 1 1 0 0 1
1 1 1 0 1 1 1

(b) R: Workflow executions

I \ H O \ H
a1 a3 a5

0 0 1
0 1 0
1 1 0
1 1 1

(c) R′ =ΠA\H(R1)

Figure 1: Module and workflow executions as relations, and view

We assume that the values of each attribute a ∈ A come from
a finite but arbitrarily large domain ∆a, and let Dom =

∏
a∈I ∆a

and CoDom =
∏

a∈O ∆a denote the domain and co-domain of the
module m respectively.2 The relation R thus represents the (possi-
bly partial) function m : Dom → CoDom and tuples in R describe
executions of m, namely for every t ∈ R, ΠO(t) = m(ΠI(t)).
We overload the standard notation for projection, ΠA(R), and use
it for a tuple t ∈ R. Thus ΠA(t), for a set A of attributes, denotes
the projection of t to the attributes in A.

Workflows. A workflowW consists of a set of modulesm1, · · · ,
mn, connected as a DAG (e.g. the workflow in Figure 1). We as-
sume that (1) the output attributes of distinct modules are disjoint,
namely Oi ∩ Oj = ∅, for i 6= j (i.e. each data item is produced
by a unique module); and (2) whenever an output of a module mi

is fed as input to a module mj the corresponding output and in-
put attributes of mi and mj are the same. The DAG shape of the
workflow guarantees that these requirements are not contradictory.

We model executions of W as a relation R over the set of at-
tributesA = ∪n

i=1Ai, satisfying the set of functional dependencies
F = {Ii → Oi : i ∈ [1, n]}. Each tuple in R describes an ex-
ecution of the workflow W . In particular, for every t ∈ R, and
every i ∈ [1, n], ΠOi(t) = mi(ΠIi(t)). One can think of R as
containing (possibly a subset of) the join of the individual module
relations.

EXAMPLE 1. Figure 1 shows a workflow involving three mod-
ules m1,m2,m3 with boolean input and output attributes imple-
menting the following functions: (i) m1 computes a3 = a1∨a2,
a4 = ¬(a1∧a2) and a5 = ¬(a1⊕a2), where ⊕ denotes XOR;
(ii) m2 computes a6 = ¬(a3+a4); and (iii) m3 computes a7 =
a4∧a6. The relational representation (functionality) R1 of mod-
ule m1 with the functional dependency a1a2 −→ a3a4a5 is shown
in Figure 1a. For clarity, we have added I (input) and O (out-
put) above the attribute names to indicate their role. The relation
R describing the workflow executions is shown in Figure 1b which
has the functional dependencies a1a2 −→ a3a4a5, a3a4 −→ a6,
a4a5 −→ a7 from modules m1,m2,m3 respectively.

Data sharing refers to an output attribute of a module acting as
input to more than one module (hence Ii ∩ Ij 6= ∅ for i 6= j). In
the example above, attribute a4 is shared by both m2 and m3.

2We distinguish between the possible range O of the function m
that we call co-domain and the actual range {y : ∃x ∈ I s.t. y =
m(x)}

2.2 Module Privacy
We consider the privacy of a single module, which is called stan-

dalone module privacy, then privacy of modules when they are con-
nected in a workflow, which is called workflow module privacy. We
study this given two types of modules, private modules (the focus
of [17]) and public modules (the focus here).

Standalone module privacy. Our approach to ensuring stan-
dalone module privacy, for a module represented by the relation R,
is to hide a carefully chosen subset H of R’s attributes (called hid-
den attributes). In other words, we project R on a restricted subset
A \H , where A is the set of all attributes of m. The set A \H is
called visible attributes. The users are allowed access only to the
view R′ = ΠA\H(R).

One may distinguish two types of modules. (1) Public modules
whose behavior is fully known to users. Here users have a prior
knowledge about the full content of R and, even if given only the
view R′, they are able to fully (and exactly) reconstruct R. Exam-
ples include reformatting or sorting modules. (2) Private modules
where such a priori knowledge does not exist. Here, the only in-
formation available to users, on the module’s behavior, is the one
given by R′. Examples include proprietary software, e.g. a genetic
disorder susceptibility module.

Given a view (projected relation) R′ of a private module m, the
possible worlds of m are all the possible full relations (over the
same schema as R) that are consistent with the view R′. Formally,

DEFINITION 1. Let m be a private module with a correspond-
ing relation R, having input and output attributes I and O respec-
tively. Let A = I ∪ O be the set of all attributes. Given a set of
hidden attributes H , the set of possible worlds for R with respect
to H , denoted Worlds(R,H), consists of all relations R′ over the
same schema as R that satisfy the functional dependency I → O,
and where ΠA\H(R′) = ΠA\H(R).

To guarantee privacy of a module m, the view R′ should ensure
some level of uncertainly with respect to the value of the output
m(ΠI(t)), for tuples t ∈ R. To define this, we introduce the notion
of Γ-standalone-privacy, for a given parameter Γ ≥ 1. Informally, a
view R′ is Γ-standalone-private if for every t ∈ R, Worlds(R,H)
contains at least Γ distinct output values that could be the result of
m(ΠI(t)).

DEFINITION 2. Let m be a private module with a correspond-
ing relation R having input and output attributes I and O resp.
Then m is Γ-standalone-private with respect to a set of hidden at-
tributesH , if for every tuple x ∈ ΠI(R), |OUTx,m,H | ≥ Γ, where
OUTx,m,H = {y | ∃R′ ∈ Worlds(R,H), ∃t′ ∈ R′ s.t x =
ΠI(t′) ∧ y = ΠO(t′)}.3

If m is Γ-standalone-private with respect to hidden attributes H ,
then we call H a safe subset for m and Γ.

A module cannot be differentiated from its possible worlds with
respect to the visible attributes, and therefore, whether the original
module, or one from its possible worlds is being used cannot be
recognized. Hence, Γ-standalone-privacy implies that for any input
the adversary cannot guess m’s output with probability > 1

Γ
, even

if the module is executed an arbitrary number of times.

EXAMPLE 2. Returning to module m1, suppose the hidden at-
tributes are H = {a2, a4} resulting in the view R′ in Figure 1c.
3In [17], we (equivalently) defined privacy with respect to visi-
ble attributes V instead of hidden attributes H , and we used the
notation “OUTx,m with respect to V ” instead of OUTx,m,H .
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For clarity, we have added I \H (visible input) and O \H (visible
output) above the attribute names to indicate their role. Naturally,
R1 ∈ Worlds(R1, H), and we can check that overall there are 64
relations in Worlds(R1, H).

Furthermore, it can be verified that, if H = {a2, a4}, then for
all x ∈ ΠI(R1), |OUTx,m1,H | ≥ 4, so {a1, a3, a5} is safe for
m1 and Γ = 4. As an example, when x = (0, 0), OUTx,m,H ⊇
{(0, 0, 1), (0, 1, 1), (1, 0, 0), (1, 1, 0)} (hidden attributes are un-
derlined) – we can define four possible worlds that map (0, 0)
to these outputs (see [17] for details). Also, hiding any two out-
put attributes from O = {a3, a4, a5} ensures standalone privacy
for Γ = 4, e.g. if H = {a2, a4}, then the input (0, 0) can be
mapped to one of (0, 0, 0), (0, 0, 1), (0, 1, 0) and (0, 1, 1); this
holds for other assignments of input attributes as well. However,
H = {a1, a2} (input attributes) is not safe for Γ = 4: for any
input x, OUTx,m,H = {(0, 1, 1), (1, 1, 0), (1, 0, 1)}, containing
only three possible output tuples.

Workflow Module Privacy. To define privacy in the context
of a workflow, we first extend the notion of possible worlds to a
workflow view. Consider the view R′ = ΠA\H(R) of the rela-
tion R of a workflow W , where A is the set of all attributes across
all modules in W . Since W may contain private as well as pub-
lic modules, a possible world for R′ is a full relation that not only
agrees with R′ on the content of the visible attributes and satisfies
the functional dependency, but is also consistent with respect to the
expected behavior of the public modules. In the following defini-
tions, m1, · · · ,mn are the modules in W and F = {Ii → Oi :
1 ≤ i ≤ n} is the set of functional dependencies in R.

DEFINITION 3. The set of possible worlds for the workflow
relation R with respect to hidden attributes H (denoted by
Worlds(R,H)) consists of all relationsR′ over the same attributes
asR that satisfy (1) the functional dependencies inF , (2) ΠA\H(R′)
= ΠA\H(R), and (3) ΠOi(t

′) = mi(ΠIi(t
′)) for every public

module mi in W and every tuple t′ ∈ R′.

We can now define the notion of Γ-workflow-privacy, for a given
parameter Γ ≥ 1. Informally, a view R′ is Γ-workflow-private if
for every tuple t ∈ R, and every private module mi in the work-
flow, the possible worlds Worlds(R,H) contain at least Γ distinct
output values that could be the result of mi(ΠIi(t)).

DEFINITION 4. A private module mi in a workflow W is Γ-
workflow-private with respect to a set of hidden attributesH , if for
every tuple x ∈ ΠIi(R), |OUTx,W,H | ≥ Γ, where OUTx,W,H =
{y | ∃R′ ∈ Worlds(R,H), s.t., ∀ t′ ∈ R′, x = ΠIi(t

′)⇒ y
= ΠOi(t

′)}.
W is called Γ-private if every private module mi in W is Γ-

workflow-private. IfW (resp. mi) is Γ-private (Γ-workflow-private)
with respect to H , then we call H a safe subset for Γ-privacy of W
(Γ-workflow-privacy of mi).

Similar to standalone module privacy, Γ-workflow-privacy en-
sures that for any input to a modulemi, the output cannot be guessed
with probability ≥ 1

Γ
even if mi belongs to a workflow with arbi-

trary DAG structure and interacts with other modules with known
or unknown functionality, and even the workflow is executed an
arbitrary number of times. For simplicity, the above definition as-
sume that the privacy requirement of every module mi is the same
Γ. The results and proofs in this paper remain unchanged when
different modules mi have different privacy requirements Γi. Note
that there is a subtle difference in workflow privacy of a module
defined as above and standalone-privacy (Definition 2); the former

uses the logical implication operator (⇒) for defining OUTx,W,H

while the latter uses conjunction (∧) for defining OUTx,m,H . This
is due to the fact that some modules are not onto4; and as a result
the input x itself may not appear in any execution of the possible
world R′. Nevertheless, there is an alternative definition of mod-
ule mi that maps x to y and can be used in the workflow for R′

consistently with the visible data.

2.3 Composability Theorem and Optimization
Given a workflow W and parameter Γ, there may be several in-

comparable (in terms of set inclusion) safe subsets H for the (stan-
dalone) modules in W and for the workflow as a whole. Some
of the corresponding R′ views may be preferable to others, e.g.
they provide users with more useful information, allow more com-
mon/critical user queries to be answered, etc. If cost(H) denotes
the penalty of hiding the attributes in H , a natural goal is to choose
a safe subset H that minimizes cost(H). A particular instance of
the problem is when the cost function is additive: each attribute
a has some penalty value cost(a) and the penalty of hiding H is
cost(H) = Σa∈Hcost(a).

On the negative side, it was shown in [17] that the correspond-
ing decision problem is hard in the number of attributes, even for
a single module and even in the presence of an oracle that tests
whether a given attribute subset is safe. On the positive side, how-
ever, it was shown that when the workflow consists only of private
modules (we call these “all-private” workflows), once privacy has
been analyzed for the individual modules, the results can be lifted
to the whole workflow. In particular, the following theorem says
that, hiding the union of hidden attributes of standalone-private so-
lutions of the individual modules in an all-private workflow guar-
antees Γ-workflow-privacy for all of them.

THEOREM 1. (Composability Theorem for All-private Work-
flows [17]) LetW be a workflow consisting only of private modules
m1, · · · ,mn. For each i ∈ [1, n], letHi ⊆ Ai be a set of safe hid-
den attributes for Γ-standalone-privacy of mi. Then the workflow
W is Γ-private with respect to hidden attributes H =

⋃n
i=1 Hi.

It was also observed in [17] that the number of attributes of in-
dividual modules can be much smaller than the total number of
attributes in a workflow, and that a proprietary module may be used
in many different workflows. Therefore, the obvious brute-force
algorithm, which is essentially the best possible, can be used (pos-
sibly as a pre-processing step) to find all standalone-private solu-
tions of individual modules. Then any set of “local solutions” for
each module can be composed to give a global feasible solution.
Moreover, the composability theorem ensures that the private so-
lutions are valid even with respect to future workflow executions
which have not yet been recorded in the workflow relation.

Given Theorem 1, [17] focused on a modified optimization prob-
lem: find a workflow-private solution by optimally combining the
standalone-private solutions. This optimization problem, which we
refer to as optimal composition problem, remains NP-hard even
in the simplest scenario, and therefore, [17] proposed efficient ap-
proximation algorithms.

3. PRIVACY VIA PROPAGATION
Workflows with both public and private modules are harder to

handle than workflows with all private modules. In particular, the

4For a function f : D → C, D is the domain, C is the co-domain,
and R = {y ∈ C : ∃x ∈ D, f(x) = y} is the range. The function
f is onto if C = R.
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composability theorem (Theorem 1) does not hold any more. To
see why, we revisit the example mentioned in the introduction.

EXAMPLE 3. Consider a workflow with three modules m1,m2

and m3 as shown in Figure 2a. For simplicity, assume that all
modules have a boolean input and a boolean output, and implement
the equality function (i.e., a1 = a2 = a3 = a4). Module m2 is
private, and the modules m1,m3 are public. When the private
module m2 is standalone, it can be verified that either hiding its
input a2 or hiding its output a3 guarantees Γ-standalone-privacy
for Γ = 2. However, in the workflow, if a1 and a4 are visible
then the actual values of a2 and a3 can be found exactly since it is
known that the public modules m1,m3 are equality modules.

One intuitive way to overcome this problem is to propagate the
hiding of data through the problematic public modules, i.e., to hide
the attributes of public models that may disclose information about
hidden attributes of private modules. To continue with the above
example, if we choose to hide input a2 (respectively, output a3) to
protect the privacy of module m2, then we propagate the hiding
upstream (resp. downstream) to the public modules and hide the
input attribute a1 of m1 (respectively, the output attribute a4 of
m3).

The workflow in the above example has a simple structure, and
the functionality of its component modules is also simple. In gen-
eral, three main issues arise when employing such a propagation
model: (1) upward vs. downward propagation; (2) repeated propa-
gation; and (3) choosing which attributes to hide. We discuss these
issues next.

3.1 Upstream vs. Downstream propagation
Which form of propagation can be used depends on the safe sub-

sets chosen for the private modules as well as properties of the
public modules. To see this, consider again Example 3, and as-
sume now that public module m1 computes some constant func-
tion (e.g., m1(0) = m1(1) = 0). If input attribute a2 for module
m2 is hidden, then using upward propagation to hide the input at-
tribute a1 of m1 does not preserve the Γ-workflow-privacy of m2

for Γ > 1. This is because it suffices to look at the (visible) out-
put attribute a3 = 0 of m2 to know that m2(0) = 0. In gen-
eral, upward propagation from a subset of input attributes which
gives Γ1-standalone-privacy for a private modulem will only yield
Γ2-workflow-privacy for m, where Γ1 ≥ Γ2. It is possible that
Γ1 >> Γ1 unless upstream public modules are onto functions; in
the worst case, if upstream modules are constant functions, then
Γ2 = 1 whereas Γ1 can be arbitrarily large. Unfortunately, it is not
common for modules to be onto functions (e.g. some output values
may be well-known to be non-existent).

In contrast, when the privacy of a private module is achieved by
hiding output attributes only, using downstream propagation it is
possible to achieve the same privacy guarantee in the workflow as
with the standalone case without imposing any restrictions on the
public modules. Observe that safe subsets of output attributes al-
ways exist for all private modules – one can always hide all the out-
put attributes. They may incur higher cost than that of an optimal
subset of both input and output attributes, but, in terms of privacy,
by hiding only output attributes one does not harm its maximum
achievable privacy. In particular, it is not hard to see that hiding
all input attributes can give a maximum of Γ1-workflow-privacy,
where Γ1 is the size of the range of the module. On the other hand
hiding all output attributes can give a maximum of Γ2-workflow-
privacy, where Γ2 is the size of the co-domain of the module, which
can be much larger than the actual range. We therefore focus in the
rest of this paper on safe subsets that contain only output attributes.
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Figure 2: (a) Propagation model, (b) A single-predecessor work-
flow. White modules are public, grey are private; the box denotes
the composite module M for H2 = {a3}.

3.2 Repeated Propagation
Consider again Example 3, and assume now that public module

m3 sends its output to another public module m4 that implements
an equality function (or a one-one invertible function). Even if the
output of m3 is hidden as described above, if the output of m4

remains visible, the privacy of m2 is again jeopardized since the
output of m3 can be inferred using the inverse function of m4. We
thus need to propagate the attribute hiding tom4 as well. More gen-
erally, we need to propagate the attribute hiding repeatedly, through
all adjacent public modules, until we reach another private module.

To formally define the closure of public modules to which at-
tributes hiding must be propagated, we use the notion of a public
path. Intuitively, there is a public path from a public module mi to
a public modulemj if we can reachmj frommi by a path compris-
ing only public modules. In what follows, we define both directed
and undirected public paths; recall that Ai = Ii ∪ Oi denotes the
set of input and output attributes of module mi.

DEFINITION 5. A public module m1 has a directed (resp. an
undirected) public path to a public module m2 if there is a se-
quence of public modules mi1 ,mi2 , · · · ,mij such that mi1 =
m1, mij = m2, and for all 1 ≤ k < j, Oik ∩ Iik+1 6= ∅ (resp.
Aik ∩Aik+1 6= ∅).

This notion naturally extends to module attributes. We say that
an input attribute a ∈ I1 of a public modulem1 has an (un)directed
public path to a public module m2 (and also to any output attribute
b ∈ O2), if there is an (un)directed public path fromm1 tom2. The
set of public modules to which attribute hiding will be propagated
can now be defined as follows.

DEFINITION 6. Given a private module mi and a set of hidden
output attributes hi ⊆ Oi of mi, the public-closure C(hi) of mi

with respect to hi is the set of public modules reachable from some
attribute in hi by an undirected public path.

EXAMPLE 4. We illustrate these notions using Figure 2b. The
public modulem4 has an undirected public path to the public mod-
ule m6 through the modules m7 and m3. For private module m2,
if hidden output attributes h2 = {a2}, {a3}, or {a2, a3}, the
public closure C(h2) = {m3,m4,m6,m7}. For h2 = {a4},
C(h2) = {m5,m8}. In our subsequent analysis, it will be conve-
nient to view the public-closure as a virtual composite module that
encapsulates the sub-workflow and behaves like it. For instance,
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a1 a2 a3 a4

0 0 0 0
0 1 0 1
1 0 1 0
1 1 1 1

(a) R1

a1 a2 a3 a4

0 0 1 0
0 1 1 0
1 0 0 1
1 1 0 1

(b) R2

Figure 3: UD-safe solutions for modules

the box in Figure 2b denotes the composite module M represent-
ing C({a2}), that has input attributes a2, a3, and output attributes
a10, a11 and a12.

3.3 Selection of hidden attributes
In Example 3, it is fairly easy to see which attributes of m1 or

m3 need to be hidden to preserve the privacy of m2. For the gen-
eral case, where the public modules are not as simple as equality
functions, to determine which attributes of a given public module
need to be hidden we use the notions of upstream and downstream
safety. To define them we use the following notion of tuple equiv-
alence with respect to a given set of hidden attributes. Recall that
A denotes the set of all attributes in the workflow; we also use
bold-faced letters x,y, z, etc. to denote tuples in the workflow or
module relations with one or more attributes.

DEFINITION 7. Given two tuples x and y on a subset of at-
tributes B ⊆ A, and a subset of hidden attributes H ⊆ A, we say
that x ≡H y iff ΠB\H(x) = ΠB\H(y).

DEFINITION 8. Given a subset of hidden attributes H ⊆ Ai of
a public module mi, mi is called

• downstream-safe (or, D-safe in short) with respect
to H if for any two equivalent input tuples x,x′ to mi with
respect to H , their outputs are also equivalent:[

x ≡H x′
]
⇒
[
mi(x) ≡H mi(x

′)
]
,

• upstream-safe (or, U-safe in short) with respect to H
if for any two equivalent outputs y,y′ of mi with respect
to H , all of their preimages are also equivalent:[
(y ≡H y′) ∧ (mi(x) = y,mi(x

′) = y′)
]
⇒
[
x ≡H x′

]
,

• upstream-downstream-safe (or, UD-safe in short)
with respect to H if it is both U-safe and D-safe.

Note that UD-safe ty is not monotone with respect to set in-
clusion. Also, if H = A (i.e. all attributes are hidden) then mi

is clearly UD-safe with respect to to H . We call this the trivial
UD-safe subset for mi.

EXAMPLE 5. Figure 3 shows some example module relations.
For an (identity) module having relation R1 in Figure 3a, the hid-
den subsets {a1, a3} and {a2, a4} are UD-safe. Note that H =
{a1, a4} is not a UD-safe subset: for tuples having the same val-
ues of visible attribute a2, say 0, the values of a3 are not the same.
For a module having relation R2 in Figure 3b, a UD-safe hidden
subset is {a2}, but there is no UD-safe subset that does not in-
clude a2. It can also be checked that the module m1 in Figure 1a
does not have any non-trivial UD-safe subset.

The first question we attempt to answer is whether there is a
composability theorem analogous to Theorem 1 that works in the
presence of public modules. In particular, we will show that for
a class of workflows called single-predecessor workflows one can
construct a private solution for the whole workflow by taking safe
standalone solutions for the private modules, and then ensuring the
UD-safe properties of the public modules in the corresponding
public-closure. Next we define this class of workflows:

DEFINITION 9. A workflow W is called a single-predecessor
workflow, if

1. W has no data-sharing, i.e. for mi 6= mj , Ii ∩ Ij = ∅, and,

2. for every public module mj that belongs to a public-closure
with respect to some output attribute(s) of a private module
mi, mi is the only private module that has a directed public
path to mj (i.e. mi is the single private predecessor of mj).

EXAMPLE 6. Again consider Figure 2b which shows a single-
predecessor workflow. Modules m3,m4, m6,m7 have undirected
public paths from a2 ∈ O2 (output attribute of m2), whereas m5

andm8 have undirected (also directed) public paths from a4 ∈ O2;
also m1 is the single private-predecessor of m3, ...,m8 that has a
directed path to each of module. The public module m1 does not
have any private predecessor, butm1 does not belong to the public-
closure with respect to the output attributes of any private module.

Although single-predecessor workflows are more restrictive than
general workflows, the above example illustrates that they can still
capture fairly intricate workflow structures, and more importantly,
they can capture commonly found chain and tree workflows [3].
Next in Section 4, we focus on single-predecessor workflows; then
we explain in Section 5 how general workflows can be handled.

4. SINGLE-PREDECESSOR WORKFLOWS
The main motivation behind the study of single-predecessor work-

flows is to obtain a composability theorem similar to Theorem 1
combining solutions of standalone private and public modules. In
Section 4.1, we show that such a composability theorem indeed ex-
ists for this class of workflows. Then we study how to optimally
compose the standalone solutions in Section 4.2.

4.1 Composability Theorem for Privacy
The following composability theorem says that, for each private

module mi, it suffices to (i) find a safe hidden subset of output at-
tributes (downstream propagation), (ii) find a superset of these hid-
den attributes such that each public module in their public closure is
UD-safe, and (iii) no attributes outside the public closure and mi

are hidden (i.e. no unnecessary hiding). The union of these subsets
of hidden attributes is workflow-private for each private module in
the workflow. Theorem 2 stated below formalizes these three con-
ditions.

THEOREM 2. (Composability Theorem for Single-pred-
ecessor Workflows) Let W be a single-predecessor workflow. For
each private module mi in W , let Hi be a subset of hidden at-
tributes such that (i) hi = Hi∩Oi is safe for Γ-standalone-privacy
of the module mi, (ii) each public module mj in the public-closure
C(hi) is UD-safe with respect to Aj ∩Hi, and (iii) Hi ⊆ Oi ∪⋃

j:mj∈C(hi)
Aj . Then the workflow W is Γ-private with respect

to H =
⋃

i:mi is private Hi.

First, in Section 4.1.1, we argue why the conditions and assump-
tions in the above theorem are necessary; then we prove the theo-
rem in Section 4.1.2.

4.1.1 Necessity of the Assumptions in Theorem 2
Theorem 2 has two non-trivial conditions: (1) the workflows are

single-predecessor workflows, and (2) the public modules in the
public closure must be UD-safe with respect to the hidden sub-
set; the third condition that there is no unnecessary data hiding is
required since the property UD-safety of public modules is not
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valid with respect to set inclusion. The necessity of the first two
conditions are discussed in Propositions 1 and 2 respectively.

In the proof of these propositions we will consider the different
possible worlds of the workflow view and focus on the behavior
(input-to-output mapping) m̂i of the module mi as seen in these
worlds. This may be different than its true behavior recorded in the
actual workflow relation R, and we will say that mi is redefined as
m̂i in the given world. Note that mi and m̂i, viewed as relations,
agree on the visible attributes of the the view but may differ in the
non visible ones.

Necessity of Single-Predecessor Workflows. The next propo-
sition shows that single-predecessor workflows constitute the largest
class of workflows for which a composability theorem involving
both public and private modules can succeed.

PROPOSITION 1. There is a workflowW , which is not a single-
predecessor workflow, (either because it has data sharing or be-
cause more (or fewer) than one such private-predecessor exists for
some public module), and a private module mi in W , where even
hiding all output attributes ofmi and all attributes of all the public
modules in W does not give Γ-privacy for any Γ > 1.

PROOF. By Definition 9, a workflow W is not a single-pred-
ecessor workflow if one of the following holds: (i) there is a public
module mj in W that belongs to a public-closure of a private mod-
ule mi but has no directed path from mi, (ii) such a public module
mj has a directed path from more than one private module, or (iii)
W has data sharing. We now show an example for (i). Examples
for the remaining conditions can be found in the full version [19].

Consider the workflow Wa in Figure 4a. Here the public mod-
ule m2 belongs to the public-closure C({a3}) of m1, but there
is no directed public path from m1 to m2, thereby violating the
condition of single-predecessor workflows (though there is no data
sharing). Module functionality is as follows: (i) m1 takes a1 as
input and produces a3 = m1(a1) = a1. (ii) m2 takes a2 as input
and produces a4 = m2(a2) = a2. (iii) m3 takes a3, a4 as input
and produces a5 = m3(a3, a4) = a3 ∨ a4 (OR). (iv) m4 takes
a5 as input and produces a6 = m4(a5) = a5. All attributes take
values in {0, 1}.

Clearly, hiding output {a3} of m1 gives 2-standalone privacy.
We claim that hiding all output attributes of m1 and all attributes
of all public modules (i.e. {a2, a3, a4, a5}) gives only trivial 1-
workflow-privacy for m1, although it satisfies the UD-safe con-
dition ofm2,m3. To see this, consider the relationRa of all execu-
tions of Wa given in Table 1, where the hidden values are in Grey.
The rows (tuples) here are numbered r1, . . . , r4 for later reference.

a1 a2 a3 a4 a5 a6

r1 0 0 0 0 0 0
r2 0 1 0 1 1 1
r3 1 0 1 0 1 1
r4 1 1 1 1 1 1

Table 1: Relation Ra for workflow Wa given in Figure 4a

When a3 is hidden, a possible candidate output of input a1 = 0
to m1 is 1. So we need to have a possible world where m1 is
redefined as m̂1(0) = 1. This would restrict a3 to 1 whenever
a1 = 0. But note that whenever a3 = 1, a5 = 1, irrespective of
the value of a4 (m3 is an OR function).

This affects the rows r1 and r2 in R. Both these rows must have
a5 = 1, however r1 has a6 = 0, and r2 has a6 = 1. But this is
impossible since, whatever the new definition m̂4 of private module
m4 is, it cannot map a5 to both 0 and 1; m̂4 must be a function and

maintain the functional dependency a5 → a6. Hence all possible
worlds of Ra must map m̂1(0) to 0, and therefore Γ = 1.

Necessity of UD-safety for public modules. Example 3 in
the previous section motivated why the downward-safety condition
is necessary and natural. The following proposition illustrates the
need for the additional upward-safety condition in Theorem 2, even
when we consider downstream-propagation.

(a) Workflow Wa (b) Workflow Wb

Figure 4: Necessity of the conditions in Theorem 2: (a) Single-
predecessor workflows, (b) UD-safety for public modules; White
modules are public, grey are private.

PROPOSITION 2. There is a workflow W with a private mod-
ule mi, and a safe subset of hidden attributes hi guaranteeing Γ-
standalone-privacy for mi (Γ > 1), such that satisfying only the
downstream-safety condition for the public modules in C(hi) does
not give Γ-workflow-privacy for mi for any Γ > 1.

PROOF. Consider the chain workflow Wb given in Figure 4b
with three modules m1,m2,m3 defined as follows. (i) (a3, a4) =
m1(a1, a2) where a3 = a1 and a4 = a2, (ii) a5 = m2(a3, a4) =
a3∨a4 (OR), (iii) a6 = m3(a5) = a5. m1,m3 are private whereas
m2 is public. All attributes take values in {0, 1}. Clearly hiding
output a3 of m1 gives Γ-standalone privacy for Γ = 2. Now sup-
pose a3 is hidden in the workflow. Sincem2 is public (known to be
OR function), a5 must be hidden (downstream-safety condition).
Otherwise from visible output a5 and input a4, some values of hid-
den input a3 can be uniquely determined (eg. if a5 = 0, a4 = 0,
then a3 = 0 and if a5 = 1, a4 = 0, then a3 = 1). On attributes
(a1, a2, a3, a4, a5, a6), the original relation R is shown in Table 2
(the hidden attributes and their values are underlined in the text and
in grey in the table).

a1 a2 a3 a4 a5 a6

0 0 0 0 0 0
0 1 0 1 1 1
1 0 1 0 1 1
1 1 1 1 1 1

Table 2: Relation R for workflow given in Figure 4b
Let us first consider an input (0, 0) to m1. When a3 is hidden,

a possible candidate output y of input tuple x = (0, 0) to m1 is
(1, 0). So we need to have a possible world where m1 is redefined
as m̂1(0, 0) = (1, 0). To be consistent on the visible attributes,
this forces us to redefine m3 to m̂3 where m̂3(1) = 0; otherwise
the row (0, 0, 0, 0, 0, 0) in R changes to (0, 0, 1, 0, 1, 1). This in
turn forces us to define m̂1(1, 0) = (0, 0) and m̂3(0) = 1. (This is
because if we map m̂1(1, 0) to any of {(1, 0), (0, 1), (1, 1)}, either
we have inconsistency on the visible attribute a4, or a5 = 1, and
m̂3(1) = 0, which gives a contradiction on the visible attribute
a6 = 1.)

Now consider the input (1, 1) tom1. For the sake of consistency
on the visible attribute a3, m̂1(1, 1) can take value (1, 1) or (0, 1).
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But if m̂1(1, 1) = (1, 1) or (0, 1), we have an inconsistency on
the visible attribute a6. For this input in the original relation R,
a5 = a6 = 1. Due to the redefinition of m̂3(1) = 0, we have
inconsistency on a6. But note that the downstream-safety condition
has been satisfied so far by hiding a3 and a5. To have consistency
on the visible attribute a6 in the row (1, 1, 1, 1, 1, 1), we must have
a5 = 0 (since m̂3(0) = 1). The pre-image of a5 = 0 is a3 =
0, a4 = 0, hence we have to redefine m̂1(1, 1) = (0, 0). But (0, 0)
is not equivalent to original m1(1, 1) = (1, 1) with respect to the
visible attribute a4. So the only solution in this case for Γ > 1,
assuming that we do not hide output a6 of private module m3, is
to hide a4, which makes the public module m2 both upstream and
downstream-safe.

This example also suggests that upstream-safety is needed only
when a private module gets input from a module in the public-
closure. We will see later in the proof of Lemma 1 (Section 4.1.2)
that this is indeed the case.

4.1.2 Proof of Composability Theorem
To prove Γ-privacy, we need to show the existence of at least

Γ possible outputs for each input to each private module, originat-
ing from the possible worlds of the workflow relation with respect
to the visible attributes. First we present a crucial lemma, which
shows the existence of many possible outputs for any fixed input
to any fixed private module in the workflow, when the conditions
in Theorem 2 are satisfied. In particular, this lemma shows that
any candidate output for a given input for standalone privacy re-
mains a candidate output for workflow-privacy, even when the pri-
vate module interacts with other private and public module in a
(single-predecessor) workflow. Therefore, if there are ≥ Γ can-
didate outputs for standalone-privacy, there will be ≥ Γ candidate
outputs for workflow-privacy. Later in this section we will formally
prove Theorem 2 using this lemma.

LEMMA 1. Consider a standalone private module mi, a set of
hidden attributes hi, any input x to mi, and any candidate output
y ∈ OUTx,mi,hi of x. Then y ∈ OUTx,W,Hi when mi belongs
to a single-predecessor workflow W , and a set attributes Hi ⊆ A
is hidden such that (i) hi ⊆ Hi, (ii) only output attributes from Oi

are included in hi (i.e. hi ⊆ Oi), and (iii) every module mj in the
public-closure C(hi) is UD-safe with respect to Aj ∩Hi.

To prove the lemma, we will (arbitrarily) fix a private module
mi, an input x to mi, a hidden subset hi, and a candidate output
y ∈ OUTx,mi,hi for x. The proof comprises two steps:

• (Step-1) Consider the connected subgraph C(hi) as a sin-
gle composite public module M , or equivalently assume that
C(hi) contains a single public module. By the properties
of single-predecessor workflows, M gets all its inputs from
mi, but can send its outputs to one, multiple, or zero (for fi-
nal output) private modules. Let I (respectively O) be the
input (respectively output) attribute sets of M . In Figure 2b,
the box is M , I = {a2, a3} and O = {a10, a11, a12, a13}.
We argue that when M is UD-safe with respect to visible
attributes (I∪O)∩Hi, and the other conditions of Lemma 1
are satisfied, then y ∈ OUTx,W,Hi .

• (Step-2) We show that if every public module in the com-
posite moduleM = C(hi) is UD-safe, thenM is UD-safe.
To continue with our example, in Figure 2b, assuming that
m3, m4, m6, m7 are UD-safe with respect to the hidden
attributes, we have to show that M is UD-safe.
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(b) Redefined m̂1, m̂3

Figure 5: Illustration of Example 7: Input-output relationship in (a)
original workflow, (b) possible world mapping x to y.

Proof of Step-1. The proof of Lemma 1 is involved even for
the restricted scenario in Step-1, in which C(hi) contains a single
public module; the proof can be found in the full version of the
paper [19]. Here we illustrate here the key ideas using a simple
example of a chain workflow.

EXAMPLE 7. Consider a chain workflow, for instance, the one
given in Figure 4b with the relation in Table 2. Fix module mi =
m1. Hiding its output h1 = {a3} gives Γ-standalone-privacy for
Γ = 2. Fix input x = (0, 0), with original output z = m1(x) =
(0, 0) (hidden attribute a3 is underlined). Also fix a candidate out-
put y = (1, 0) ∈ OUTx,m1,h1 . Note that y and z are equivalent
on the visible attribute {a4}.

First, consider the simpler case when m3 does not exist, i.e. W
contains only two modules m1,m2, and the column for a6 does
not exist in Table 2. As we mentioned before, when the composite
public module does not have any private successor, we only need
the downstream-safety property for modules in C(hi); in this case,
C(hi) comprises a single public module, m2. We construct a pos-
sible worldR′ ofR by redefining modulem1 to m̂1 as follows: m̂1

simply maps all pre-images of y to z, and all pre-images of z to y.
In this case, both y, z have single pre-image. So x = (0, 0) gets
mapped to (1, 0) and input (1, 0) gets mapped to (0, 0). To make
m2 downstream-private, we hide output a5 of m2. Therefore, the
set of hidden attributesH1 = {a3, a5}. FinallyR′ is formed by the
join of relations for m̂1 and m2. Note that the projection of R,R′,
will be the same on visible attributes a1, a2, a4 (in R′, the first row
will be (0, 0, 1, 0, 0) and the third row will be (1, 0, 0, 0, 0)).

Next consider the more complicated case, when the modules in
C(hi) have private successors (in this example, when the private
module m3 is present). We already argued in the proof of Propo-
sition 2 that we also need to hide the input a4 to ensure workflow
privacy for Γ > 1 (UD-safety). Let us now describe the proof
strategy when a4 is hidden, i.e. H1 = {a3, a4, a5}.

Let wy = m2(y) and wz = m2(z) (see Figure 5a). We rede-
fine m1 to m̂1 as follows (see Figure 5b). For all input u to m1

such that u ∈ m−1
1 m−1

2 (wz) (respectively u ∈ m−1
1 m−1

2 (wy)),
we define m̂1(u) = y (respectively m̂1(u) = z). Note that the
mapping of tuples u that are not necessarily m−1

1 (y) or m−1
1 (z)

are being redefined under m1 (see Figure 5b). For m̂3, we de-
fine, m̂3(wy) = m3(wz) and m̂3(wz) = m3(wy). Recall that
y ≡H1 z (y, z have the same values of visible attributes). Since
m2 is downstream-safe wy ≡H1 wz. Since m2 is also upstream-
safe, for all input u to m1 that are being redefined by m̂1, their
images under m1 are equivalent with respect to H1 (and there-
fore with y and z). In our example, wy = m2(1, 0) = (1),
and wz = m3(0, 0) = (0). m−1

1 m−1
2 (wz) = {(0, 0)} and

m−1
1 m−1

2 (wy) = {(0, 1), (1, 0), (1, 1)}. So m̂1 maps (0, 0) to
(1, 0) and all of {(0, 1), (1, 0), (1, 1)} to (0, 0); m̂3 maps (0) to
(1) and 1 to (0).

Consider the relation R′ formed by joining the relations of m̂1,
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a1 a2 a3 a4 a5 a6

0 0 1 0 1 0
0 1 0 0 0 1
1 0 0 0 0 1
1 1 0 0 0 1

Table 3: Relation R′, a possible world of the relation R for the
workflow in Figure 4b with respect to H1 = {a3, a4, a5}.

m2, m̂3 (see Table 3). The relation R′ has the same projection
on visible attributes {a1, a2, a6} as R in Table 2, and the public
modulem2 is unchanged. SoR′ is a possible world ofR that maps
x = (0, 0) to y = (1, 0) as desired, i.e. y ∈ OUTx,W,H1 . 2

The argument for more general single-predecessor workflows,
like the one given in Figure 2b, is more complex. Here a private
module (likem11) can get inputs frommi (in Figure 2b,m2), from
its public-closure C(hi) (in the figure, m8), and also from the pri-
vate successors of the modules in C(hi) (in the figure, m10). In
this case, the tuples wy,wz are not well-defined, and redefining
the private modules is more complex. In the proof of the lemma we
give the formal argument using an extended flipping function, that
selectively changes part of inputs and outputs of the private module
based on their connection with the private module mi.

Proof of Step-2. We formalize the claim in Step-2 below:

LEMMA 2. Let M be a composite module consisting only of
public modules. Let H be a subset of hidden attributes such that
every public modulemj inM is UD-safe with respect toAj∩H .
Then M is UD-safe with respect to (I ∪O) ∩H .

PROOF SKETCH. The formal proof of this lemma can be found
in the full version of the paper [19]. We sketch here the main ideas.
To prove the lemma, we show that if every module in the public-
closure is downstream-safe (respectively upstream-safe), then M
is downstream-safe (respectively upstream-safe). For downstream-
safety, we consider the modules in M in topological order, say
mi1 , · · · ,mik (in Figure 2b, k = 4 and the modules in order may
be m3,m6,m4,m7). Let M j be the (partial) composite public
module formed by the union of modules mi1 , · · · ,mij , and let
Ij , Oj be its input and output (the attributes that are either from a
module not in M j to a module in M j , or to a module not in M j

from a module inM j . Clearly,M1 = {mi1} andMk = M . Then
by induction from j = 1 to k, we show that M j is downstream-
safe with respect to (Ij ∪ Oj) ∩ H if all of mi` , 1 ≤ ` ≤ j are
downstream-safe with respect to (Ii` ∪Oi`) ∩H = Ai` ∩H . For
upstream-safety, we consider the modules in reverse topological
order, mik , · · · ,mi1 , and give a similar argument.

Proof of Theorem 2. Now we complete the proof of Theorem 2
using Lemma 1.

PROOF OF THEOREM 2. We first argue that if Hi satisfies the
conditions in Theorem 2 then H ′i =

⋃
`:m` is private H` satisfies the

conditions in Lemma 1. Since hi = Hi ∩ Oi, (i) hi ⊆ Hi ⊆⋃
`:m` is private H` = H ′i ; and (ii) hi ⊆ Oi. Next we argue that the

third condition in the lemma also holds: (iii) every module mj in
the public-closure C(hi) is UD-safe with respect to H ′i ∩Aj .

To see (iii), observe that the Theorem 2 has an additional con-
dition on Hi: Hi ⊆ Oi ∪

⋃
j:mj∈C(hi)

Aj . Since W is a single-
predecessor workflow, for two private modules mi,m`, the pub-
lic closures C(hi) ∩ C(h`) = ∅ (this follows directly from the
definition of single-predecessor workflows). Further, since W is
single-predecessor, W has no data-sharing by definition. So for
any two modules mj ,m` in W (public or private), the set of at-
tributes Aj ∩ A` = ∅. Clearly, when mi is a private module,

mi /∈ C(h`) for any private module m` in W , by the defini-
tion of public-closure. Hence for any two private modules mi,m`,(
Oi ∪

⋃
j:mj∈C(hi)

Aj

)
∩
(
O` ∪

⋃
j:mj∈C(h`) Aj

)
= ∅. In par-

ticular, for two private modules mi 6= m`, Hi ∩H` = ∅. Hence,
for a public module mj ∈ C(hi), and for any other private module
m`, Aj ∩H` = ∅. Therefore, Aj ∩H ′i = Aj ∩ (

⋃
`:m` is private H`)

= Aj \Hi. Since mj is UD-safe with respect to Aj ∩Hi from
the condition in the theorem, mj is also UD-safe with respect
to Aj ∩H ′i . Hence H ′i satisfies the conditions in the lemma.

Theorem 2 assumes that each private modulemi is Γ-standalone-
private with respect to hi, i.e., |OUTx,mi,hi | ≥ Γ for all input
x to mi (see Definition 2). From Lemma 1, using H ′i in place
of Hi, this implies that for all input x to private modules mi,
|OUTx,W,H′

i
| ≥ Γ where H ′i =

⋃
`:m` is private H`. From Defini-

tion 4, this implies that each private module mi is Γ-workflow-
private inH ′i which is the same asH in Theorem 2. Since this holds
for all private modules mi, W is Γ-private with respect to H .

4.2 Optimal Composition for Single Predeces-
sor Workflows

Recall the optimal composition problem mentioned in Section 2.3.
This problem focused on optimally combining the safe solutions
for private modules in an all-private workflow in order to minimize
the cost of hidden attributes. In this section, we consider optimal
composition for a single-predecessor workflowW with private and
public modules. Our goal is to find subsets Hi for each private
modulemi inW satisfying the conditions given in Theorem 2 such
that cost(H) is minimized for H =

⋃
i:mi is private Hi. This we

solve in four steps: (I) find the safe solutions for standalone-privacy
for individual private modules; (II) find the UD-safe solutions for
individual public modules; (III) find the optimal hidden subset Hi

for the public-closure of every private module mi using the out-
puts of the first two steps; and (IV) combine Hi-s to find the final
optimal solution H . We next consider each of these steps.

I. Private Solutions for Individual Private Modules. For
each private module mi we compute the set of safe subsets Si =
{Si1, · · · , Sipi}, where each Si` ⊆ Oi is standalone-private for
mi. Here pi is the number of safe subsets for mi. Recall from
Theorem 2 that the choice of safe subset for mi determines its
public-closure (and consequently the possible Hi sets and the cost
of the overall solution). It is thus not sufficient to consider only the
safe subsets that have the minimum cost; we need to keep all safe
subsets for mi, to be examined by subsequent steps.

The complexity of finding safe subsets for individual private mod-
ules has been thoroughly studied in [17] under the name standalone
Secure-View problem. It was shown that deciding whether a
given hidden subset of attributes is safe for a private module is
NP-hard in the number of attributes of the module. It was fur-
ther shown that the set of all safe subsets for the module can be
computed in time exponential in the number of attributes assuming
constant domain size, which almost matches the lower bounds.

Although the lower and upper bounds are somewhat disappoint-
ing, as argued in [17], the number of attributes of an individual
module is fairly small. Further, this computation is done only once
as a pre-processing step and the cost can be amortized over possibly
many uses of the module in different workflows. The integers and
reals are represented using a fixed number of bits, and the domain
size for these inputs/outputs can still be assumed to be a constant.
However, in these cases the individual relations can be big. For
practical purposes, the module designers should be able to provide
some insight, from their semantic knowledge of what the module
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does, without actually enumerating all possibilities.

II. Safe Solutions for Individual Public Modules. This
step focuses on finding the set of all UD-safe solutions for the
individual public modules. We denote the UD-safe solutions
for a public module mj by Uj = {Uj1, · · · , Ujpj}, where each
UD-safe subset Uj` ⊆ Aj ; pj denotes the number of UD-safe
solutions for the public module mj . We will see below in Theo-
rem 3 that even deciding whether a given subset is UD-safe for a
module is coNP-hard in the number of attributes (and that the set of
all such subsets can be computed in exponential time). However,
as argued in the first step, this computation can be done once as
a pre-processing step with its cost amortized over possibly many
workflows where the module is used. In addition, it suffices to
compute the UD-safe subsets for only those public modules that
belong to some public-closure for some private module.

THEOREM 3. Given public module mj with k attributes, and a
subset of hidden attributes H , deciding whether mj is UD-safe
with respect toH is coNP-hard in k. Further, all UD-safe subsets
can be found in EXP-time in k.

PROOF SKETCH OF CONP-HARDNESS. The reduction is from
the UNSAT problem, where given n variables x1, · · · , xn, and a
3CNF formula f(x1, · · · , xn), the goal is to check whether f is not
satisfiable. In our construction,mi has n+1 inputs x1, · · · , xn and
y, and the output is z = mi(x1, · · · , xn, y) = f(x1, · · · , xn) ∨
y (OR). The set of hidden attributes is x1, · · · , xn (i.e. y, z are
visible). We claim that f is not satisfiable if and only if mi is
UD-safe with respect to H .

The above construction, with attributes y and z assigned cost
zero and all other attributes assigned some higher constant cost,
can be used to show that testing whether a safe subset with cost
smaller than a given threshold exists is also coNP-hard.

Regarding the upper bound, the trivial algorithm of going over
all 2k subsets h of Aj , and checking if h is UD-safe for mj ,
can be done in EXP-time in k when the domain size is constant.
Since the UD-safe property is not monotone with respect to fur-
ther deletion of attributes, if h is UD-safe, its supersets may not
be UD-safe. Recall however that the trivial solution h = Aj

(deleting all attributes) is always UD-safe for mj . So for practi-
cal purposes, when the public-closure for a private module involves
a small number of attributes of the public modules in the closure, or
if the attributes of those public modules have small cost, this solu-
tion can be used. The complete proof of the theorem can be found
in the full version of the paper [19].

III. Optimal Hi for Each Private Module. The third step
aims to find a set Hi of hidden attributes, of minimum cost, for
every private module mi. As per the theorem statement, this set
Hi should satisfy the conditions: (a) Hi ∩ Oi = Si`, for some
safe subset Si` ∈ Si; (b) for every public module mj in the clo-
sure C(Si`), there exists a UD-safe subset Ujq ∈ Uj such that
Ujq = Aj ∩ Hi; and (c) Hi does not include any attribute out-
side Oi and C(Si`). We show that, for the important class of
chain and tree workflows, this optimization problem is solvable in
time polynomial in the number of modules n, the total number of
attributes in the workflow |A|, and the maximum number of sets in
Si and Uj (denoted by L):

THEOREM 4. For each private module mi in a tree workflow
(and therefore, in a chain workflow), the optimal subset Hi can be
found in polynomial time in n, |A| and L.

On the other hand, the problem is NP-hard when the workflow
has arbitrary DAG structure even when both the number of at-
tributes and the number of safe and UD-safe subsets of the in-
dividual modules are bounded by a small constant.

In contrast, the problem becomes NP-hard in n when the public-
closure forms an arbitrary directed acyclic subgraph, even when L
is a constant and the number of attributes of the individual modules
is bounded by a small constant.

Chain workflows are the simplest class of tree-shaped workflow,
hence clearly any algorithm for trees will also work for chains.
However, for the sake of simplicity, we give the optimal algorithm
for chain workflows first; then we discuss how it can be proved for
tree workflows.

Optimal algorithm for chain workflows. Consider any private
module mi. Given a safe subset Si` ∈ Si, we show below how
an optimal subset Hi in C(Si`) satisfying the desired properties
can be obtained. We then repeat this process for all safe subsets
(bounded by L) Si` ∈ Si, and output the subset Hi with minimum
cost. We drop the subscripts to simplify the notation (i.e. use S for
Si`, C for C(Si`), and H for Hi).

Our poly-time algorithm employs dynamic programming to find
the optimal H . First note that since C is the public-closure of out-
put attributes for a chain workflow, C should be a chain itself. Let
the modules in C be renumbered asm1, · · · ,mk in order. Now we
solve the problem by dynamic programming as follows. Let Q be
an k × L two-dimensional array, where Q[j, `] denotes the cost of
minimum cost hidden subset Hj` that satisfies the UD-safe con-
dition for all public modulesm1 tomj andAj∩Hj` = Uj` ∈ Uj .
Here j ≤ k, ` ≤ pj ≤ L, and Aj is the attribute set of mj ; the
actual solution can be stored easily by standard argument.

The initialization step is, for 1 ≤ ` ≤ p1,

Q[1, `] = c(U1,`) if U1,` ⊇ S, =∞ otherwise

Recall that for a chain, Oj−1 = Ij , for j = 2 to k. Then for
j = 2 to k, ` = 1 to pj , Q[j, `]

= ∞ if @1 ≤ q ≤ pj−1 s.t. Uj−1,q ∩Oj−1 = Uj,` ∩ Ij
= c(Oj ∩ Uj`) + min

q
Q[j − 1, q] otherwise

It is interesting to note that such a q always exists for at least
one ` ≤ pj : while defining UD-safe subsets in Definition 8, we
discussed that any public module mj is UD-safe when its entire
attribute set Aj is hidden. Hence Aj−1 ∈ Uj−1 and Aj ∈ Uj ,
which will make the equality check true (for a chain Oj−1 = Ij).
It can be shown that (see the full version [19]) Q[j, `] correctly
stores the desired value. Then the optimal solution H has cost
min1≤`≤pk Q[k, `]; the corresponding solution H can be found by
standard procedure, which proves Theorem 4 for chain workflows.

Observe that, more generally, the algorithm may also be used for
non-chain workflows, if the public-closures of the safe subsets for
private modules have chain shape. This observation also applies to
the following discussion on tree workflows.

Optimal algorithm for tree workflows. Now consider tree-
shaped workflows, where every module in the workflow has at most
one immediate predecessor (for all modulesmi, if Ii∩Oj 6= ∅ and
Ii ∩ Ok 6= ∅, then j = k), but a module can have one or more
immediate successors.

The treatment of tree-shaped workflows is similar to what we
have seen for chains. Observe that, here again, since C is the
public-closure of output attributes for a tree-shaped workflow, C
will be a collection of trees all rooted at mi. As for the case of
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chains, the processing of the public closure is based on dynamic-
programming. The key difference is that the modules in the tree
are processed bottom up (rather than top down as in what we have
seen above) to handle branching. The proof of Theorem 4 for tree
workflows can be found in the full version [19].

NP-hardness for public-closure of arbitrary shape. Finding
the minimal-cost solution for public-closure with arbitrary DAG
shape is NP-hard. The NP-hardness of this problem follows by a
reduction from 3SAT (see the full version [19]). The NP algorithm
simply guesses a set of attributes and checks whether it forms a
legal solution and has cost lower than the given bound; the optimal
solution can be found in EXP-time by iterating over all subsets.

The NP-hardness here is in the number of modules in the pub-
lic closure. Hence whenever the number of public modules in the
public closure is small, our solution is better than the the naive one,
which is exponential in the size of the full workflow.

IV. Optimal Hidden Subset H for the Workflow. Accord-
ing to Theorem 2, H =

⋃
i:mi is private Hi is a Γ-private solution

for the workflow. Observe that finding the optimal (minimum cost)
such solution H for single-predecessor workflows is straightfor-
ward, once the minimum cost Hi-s are found: Due to the condition
in Theorem 2 that no unnecessary data are hidden, it can be easily
checked that for any two private modules mi,mk in a single pre-
decessor workflow, Hi ∩ Hk = ∅. Hence the optimal solution H
can be obtained by taking the union of the optimal hidden subsets
Hi for individual private modules obtained in the previous step.

5. GENERAL WORKFLOWS
The previous sections focused on single-predecessor workflows.

In particular, we presented a privacy theorem for such workflows
and studied optimization with respect to this theorem. The fol-
lowing two observations highlight how this privacy theorem can be
extended to general workflows. For lack of space the discussion
is informal; the proof techniques are similar to single-predecessor
workflows and are given in the full version of the paper [19].

Observation 1: Need for propagation through private mod-
ules. All examples in the previous sections that showed the ne-
cessity of the single-predecessor assumption for private modulemi

had another private modulemk as which is a successor of one pub-
lic module in the public closure of mi. For instance, in the proof
of Proposition 1 (see Figure 4a) mi = m1 and mk = m4. If we
had continued hiding output attributes of m4, we could obtain the
required possible worlds leading to a non-trivial privacy guarantee
Γ > 1. This implies that for general workflows, the propagation
of attribute hiding should continue outside the public closure and
through the descendant private modules.

Observation 2: D-safety suffices (instead of UD-safety).
The proof of Lemma 1 shows that the UD-safety property of
modules in the public-closure is needed only when some public
module in the public-closure has a private successor whose output
attributes are visible. If all modules in the public closure have no
such private successor, then a downstream-safety property (called
the D-safety property) is sufficient. More generally, if attribute
hiding is propagated through private modules (as discussed above),
then it suffices to require the hidden attributes to satisfy D-safety
rather than the stronger UD-safety property.

The intuition from the above two observations is formalized in
a privacy theorem for general workflows, analogous to Theorem
2. First, instead of public-closure, it uses downward-closure: for a
private modulemi, and a set of hidden attributes hi, the downward-
closure D(hi) consists of all modules (public or private) mj , that
are reachable from mi by a directed path. Second, instead of re-

quiring the sets Hi of hidden attributes to ensure UD-safety , it
requires them to only ensure D-safety.

The proof of the revised theorem is similar to that of Theorem 2,
with the added complication that the Hi subsets are no longer dis-
joint. This is resolved by proving that D-safe subsets are closed
under union, allowing for the (possibly overlapping) Hi subsets
computed for the individual private modules to be unioned.

The hardness results from the previous section transfer to the
case of general workflows. Since the Hi-s in this case may be
overlapping, the union of optimal Hi solutions for individual mod-
ules mi may not be optimal for the workflow. Whether or not there
exists a non-trivial approximation is an interesting open problem.

To conclude the discussion, note that for single-predecessor work-
flows, we now have two options to ensure workflow-privacy: (i)
to consider public-closures and ensure UD-safety properties for
their modules (following the privacy theorem for single-predecessor
workflows); or (ii) to consider downward-closures and ensure the
D-safety property for their modules (following the privacy the-
orem for general workflows). Observe that these two options are
incomparable: Satisfying UD-safety properties may require hid-
ing more attributes than what is needed for satisfying D-safety
properties. On the other hand, the downward-closure includes more
modules than the public-closure (for instance the reachable private
modules), and additional attributes must be hidden to satisfy their
D-safety properties. One could therefore run both algorithms,
and choose the lower cost solution.

6. RELATED WORK
Privacy concerns with respect to provenance were articulated in

[18], in the context of scientific workflows, and in [20], in the con-
text of business processes. Preserving module privacy in all-private
workflows was studied in [17] and the idea of privatizing (hiding
the “name” of) public modules to achieve privacy in public/private
workflows was proposed. Unfortunately this is not realistic for
many common scenarios. This paper thus presents a novel prop-
agation model for attribute hiding which does not place any as-
sumptions on the user’s prior knowledge about public modules.

Recent work by other authors includes the development of fine-
grained access control languages for provenance [33, 35, 7, 8], and
a graph grammar approach for rewriting redaction policies over
provenance [9]. The approach in [6] provides users with informa-
tive graph query results using surrogates, which give less sensi-
tive versions of nodes/edges, and proposes a utility measure for the
result. A framework to output a partial view of a workflow that
conforms to a given set of access permissions on the connections
and input/output ports was proposed in [10]. Although related to
module privacy, the approach may disconnect connections between
modules rather than just hiding the data which flows between them.
More importantly, the notion of privacy is informal and no guaran-
tees on the quality of the solutions are provided. Also related to
our work are the recent papers on provenance security [13, 12]; a
general and formal model for provenance and its security properties
like obfuscation and disclosure are proposed in [12].

A related area is that of privacy-preserving data mining (see sur-
veys [4, 36], and the references therein). Here, the goal is to hide
individual data attributes while retaining the suitability of the data
for mining patterns. Privacy preserving approaches have been stud-
ied for social networks (e.g. [5]), auditing queries (e.g. [32]), net-
work routing [27], and several other contexts.

Our notion of module privacy is closest to the notion of `-diversity
[30] which addresses some shortcomings of κ-anonymity [34]. The
notion of `-diversity tries to generalize the values of the non-sensitive
attributes so that for every such generalization, there are at least `
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different values of sensitive attributes. The view-based approach
for k-anonymity along with its complexity has been studied in [40].
Leakage of information due to knowledge on the techniques for
minimizing data loss has been studied in [37, 25, 16, 38]; however,
our privacy guarantees are information theoretic under our assump-
tions.

Nevertheless, the privacy notion of `-diversity is susceptible to
attack when the user has background knowledge [26, 28]. Differ-
ential privacy [23, 21, 22], which requires that the output distri-
bution is almost invariant to the inclusion of any particular record,
gives a stronger privacy guarantee. Although it was first proposed
for statistical databases and aggregate queries, it has since been
studied in domains such as mechanism design [31], data stream-
ing [24], and several database-related applications (e.g. [29, 39,
15, 11]). However, it is well-known that no deterministic algo-
rithm can guarantee differential privacy, and the standard approach
of including random noise is not suitable for our purposes — prove-
nance queries are typically not aggregate queries, and we need the
output views to be consistent (e.g. the same module must map the
same input to the same output in all executions of the workflow).
Defining an appropriate notion of differential privacy for module
functionality with respect to provenance queries is an interesting
open problem. It would also be interesting to study natural attacks
for our application, and (theoretically or empirically) study the ef-
fectiveness of various notions of privacy under these attacks [14].

7. CONCLUSIONS
In this paper, we addressed the problem of preserving module

privacy in public/private workflows (called workflow-privacy), by
providing a view of provenance information in which the input to
output mapping of private modules remains hidden. As several ex-
amples in this paper show, the workflow-privacy of a module crit-
ically depends on the structure (connection patterns) of the work-
flow, the behavior/functionality of other modules in the workflow,
and the selection of hidden attributes. We showed how workflow-
privacy can be achieved by propagating data hiding through public
modules in both single-predecessor and general workflows.

Several interesting future research directions related to the ap-
plication of differential privacy were discussed in Section 6. We
assumed certain assumptions in the paper (constant domain size,
acyclic nature of workflows, analysis using relations of executions,
etc.). Even with these assumptions, the problem is highly non-
trivial and large and important classes of workflows can be captured
even under these assumption. However, it would be immensely im-
portant to have models and solutions that can be used in scientific
experiments in practice. We have also mentioned the shortcomings
of the Γ-privacy and the difficulty in using stronger privacy notions
like differential privacy. It will be interesting to see if the possible
world model thoroughly studied in this paper can be used to facili-
tate the use of other privacy models under provenance queries.
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