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ABSTRACT
The annotation of the results of database queries with prove-
nance information has many applications. This paper stud-
ies provenance for datalog queries. We start by consider-
ing provenance representation by (positive) Boolean expres-
sions, as pioneered in the theories of incomplete and prob-
abilistic databases. We show that even for linear datalog
programs the representation of provenance using Boolean
expressions incurs a super-polynomial size blowup in data
complexity. We address this with an approach that is novel
in provenance studies, showing that we can construct in
PTIME poly-size (data complexity) provenance represen-
tations as Boolean circuits. Then we present optimization
techniques that embed the construction of circuits into semi-
naive datalog evaluation, and further reduce the size of the
circuits. We also illustrate the usefulness of our approach
in multiple application domains such as query evaluation in
probabilistic databases, and in deletion propagation. Next,
we study the possibility of extending the circuit approach to
the more general framework of semiring annotations intro-
duced in earlier work. We show that for a large and useful
class of provenance semirings, we can construct in PTIME
poly-size circuits that capture the provenance.

Categories and Subject Descriptors
H.2.3 [Database Management]: Languages—Query lan-
guages; H.2.4 [Database Management]: Systems—Rela-
tional databases; H.2.m [Database Management]: Mis-
cellaneous

General Terms
Algorithms, Theory

Keywords
Datalog, Provenance, Circuit, Semiring, Time complexity,
Lower bounds
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1. INTRODUCTION
Recording provenance information for query results, that

explains the computational process leading to their gener-
ation, is now a common technique [22, 9, 32, 13, 37] with
applications such as view maintenance, trust assessment, or
query answering in probabilistic databases (see, e.g., [26, 36,
38]). This paper focuses on provenance for datalog queries
[2] and proposes a novel, circuit-based provenance represen-
tation, as well as an efficient way to compute provenance,
whenever possible, using this representation. Datalog has re-
cently re-gained popularity in the Web-context and is used
in diverse applications, from data extraction in Web pages
to communication routing [6, 7], and in commercial systems
[25, 17, 3]. Finding suitable provenance mechanism for dat-
alog is thus of both theoretical and practical importance. As
was explained in [27], the presence of recursion creates new
challenges in modeling provenance for datalog: in general an
answer tuple can be derived in infinitely many different ways.
Fortunately, previous work has identified provenance models
whose elements are intrinsically finite and that nonetheless
are appropriate for datalog, albeit by necessity providing
only a summary of the full provenance. As we show in this
paper, even tracking such a finite summary must be done
with care to avoid super-polynomial blow-ups in size.

To deal with such blow-ups, we propose a provenance
model for datalog that is based on circuits. Circuits are
extensively studied, but to our knowledge this is the first
work that proposes to use circuits for database provenance.
Besides the space efficiency of this representation (proved
in the sequel), it further has the potential of allowing data
provenance to benefit from developments such as circuit op-
timizations and the use of circuits for parallel computing.
Further comparisons to other approaches for provenance are
given in the Related Work section. The work presented in
this paper is organized as follows.

Circuits for Positive Boolean Provenance (Section 3).
We start by considering a particular, yet important, case
where provenance information is in fact positive Boolean
formulas over some finite domain of variables, used to anno-
tate tuples. For reasons that will become apparent when we
generalize beyond Boolean provenance, we refer to relations
whose tuples are associated with positive Boolean annota-
tions, as PosBool(X)-relations. We note that PosBool(X)-
relations form a particular class of c-tables [29], which was
proven useful in the context of incomplete and probabilis-
tic databases [36]. In these contexts one commonly uses
PosBool(X)-relations as representation systems by consid-



ering the set of possible worlds they define via valuations
to the underlying variables. Then, given such a database D
with PosBool(X)-relations and a query, the goal is to com-
pute a PosBool(X)-relation R that is a representation of all
results of the query when applied to possible worlds of D. In
provenance terminology, we propagate Boolean provenance
annotations from D to R.

Importantly, we show that for Datalog (unlike e.g. posi-
tive relational algebra), such propagation of Boolean formu-
las that is faithful (i.e. the output encodes correct possible
worlds) may lead to an inevitable super-polynomial blow-up
of the size of output representation with respect to that of
the input representation. Specifically for input of size n, the
output size may be nΩ(logn).

This blowup stems from the use of formulas as annota-
tions. So instead, we propose to capture annotations with
(positive) Boolean circuits. Simply put, a positive Boolean
circuit on a set of variables X is a DAG whose“sinks”are as-
sociated with elements of X and other nodes are associated
with the connectives ∧ and ∨. It is well-known that Boolean
circuits may capture the same Boolean functions as formu-
las, while leading in some cases to an asymptotically smaller
size. Indeed, we show that by using circuits as annotations,
and propagating them instead of formulas, we can guarantee
a polynomial size representation of the output. Moreover,
circuits allow sharing of sub-expressions so instead of com-
puting a separate circuit for every output tuple, we show
that we can generate a single circuit with multiple “entry”
points, and use it for annotation of all output tuples. We
analyze the worst case complexity of generating the circuit
and demonstrate applications of the construction for dele-
tion propagation and probability computation.

Efficient Provenance Generation (Section 4). The pre-
viously described construction is geared towards studying
the worst-case complexity incurred by the circuit-based ap-
proach. As such, it may not be very efficient to implement
directly, for the following reason. It is common practice
in provenance propagation to compute the output prove-
nance along side with computing the output relation it-
self. This allows provenance generation algorithms to benefit
from query optimizations 1, and in principle to be executed
by a provenance-aware query engine. However, the construc-
tion in Section 3 generates provenance separately from query
evaluation.

To this end, we show how to generate provenance along
side with a particularly efficient evaluation algorithm for
Datalog queries, namely semi-naive evaluation. We show
that the performance of the circuit generation algorithm and
the obtained circuits size are effected by the same factors
that dictate the performance of semi-naive evaluation; this
means that provenance tracking can benefit from the semi-
naive optimizations.

Semiring-based Provenance (Section 5). Finally, we go
beyond Boolean annotations, and we consider semiring an-
notations. We note that PosBool(X) relations considered
thus far are particular case of the more general notion of
K-relations, i.e. relations for which tuple provenance is an
element of a commutative semiring K. Building on and

1Indeed, we show that equivalent provenance circuits are
obtained for equivalent queries.

extending our development for the Boolean case, we con-
sider K-circuits that compute values in an arbitrary com-
mutative semiring K. We extend the desideratum of faith-
ful representation to the case where the annotations come
from such K. We then show that it is impossible to apply
the circuit approach for arbitrary commutative semirings,
even when restricting the attention to ω-continuous semir-
ings. Intuitively, these are semirings that support infinite
sums, required to capture the infinitely many derivations
possible in the context of Datalog. However, we show that
for a specific important class of semirings, namely absorp-
tive ones, K-circuits can be used to efficiently capture their
provenance. In fact we show a stronger result: we intro-
duce a new provenance semiring called Sorp(X), which is
the “most general absorptive semiring”. Then we show that
one can generate datalog provenance in the form of Sorp(X)-
circuits and then specialize them in a correct way (to be de-
fined) in any absorptive semiring. Such ability to compute
a general representation and later specialize it was proven
crucial in a variety of applications [27]. To conclude, we con-
sider further provenance semirings beyond absorptive ones.
There is a particular semiring that is ω-continuous but not
absorptive. This is Why(X) (capturing exactly the why-
provenance [12]). We show that while a general construction
fails at specializing to Why(X), there is a direct construction
that is specific to Why(X) that allows to capture datalog
provenance in this semiring. Finally, we briefly consider the
case of arbitrary commutative semirings, not necessarily ω-
continuous, where full datalog provenance may not be cap-
tured. We propose for such semiring a practical approach,
based on capturing only finitely many derivations. We con-
clude with a discussion on related work in Section 6.

2. BACKGROUND
First we review some background on datalog and prove-

nance, focusing on PosBool(X)-databases.

2.1 Datalog
We assume that the reader is familiar with standard dat-

alog concepts [2]. Here we review the terminology and we
illustrate it with an example. A datalog program P consists
of rules over a relational schema. The schema is partitioned
into extensional (or edb) and intensional (or idb) relation
names (viewed as predicates). Each rule has a head (one
idb predicate) and a body (0 or more edb or idb predicates).
We do not find it useful to distinguish an “output” relation
among the idb ones. Instead, we think of a datalog program
as computing all its idb relations, therefore its usual set se-
mantics is a mapping from edb instances to idb instances.
Given a database D, we thus use P (D) to denote the idb
instances computed as the result of evaluating P on the edb
instances of D.

Example 1. We will use the following datalog program
as our running example. Intuitively, it computes the transi-
tive closure in a directed graph, then selects nodes on a path
leading to b:

T (x, y) : − R(x, y) (1)

T (x, y) : − R(x, z), T (z, y) (2)

S(x) : − T (x, b) (3)

Here Σe consists of the single edb relation R and Σi con-
sists of the two idb relations T and S. For example, given



A B Ann

a a p

a b q

(a) R

X Ann

a q ∨ (p ∧ q) ∨ ((p ∧ p) ∧ q) ∨ ...
(b) S (recursive query)

A B Ann

a a p ∨ (p ∧ p)
a b q ∨ (p ∧ q)

(c) T (non-recursive query)

X Ann

a q ∨ (p ∧ q)

(d) S (non-recursive query)

Figure 1: Running example: edb relation R and idb relations
S, T , the annotations have not been simplified.

the edb instance R = {(a, a), (a, b)} the program computes
the idb instance T = {(a, a), (a, b)}, S = {a}.

Any tuple in the edb instances in D is called an edb tuple
or edb fact (e.g., R(a, a) and R(a, b)), and any tuple in the
idb instances generated by executing P on D is called an idb
tuple or idb fact (e.g., T (a, a), T (a, b), and S(a)).

2.2 PosBool(X)-Databases
We next introduce the concept of provenance through a

simple yet important restricted case, namely the one of pos-
itive Boolean annotations. The basic idea is that tuples are
annotated with elements of some mathematical structure, in
this case the equivalence class of all positive Boolean expres-
sions over some set of Boolean indeterminate (“variables”) X
(as usual, two Boolean expressions are equivalent if they give
the same truth value for any assignment). The set of all such
equivalence classes is denoted PosBool(X), and a relation
whose tuples are annotated with elements of PosBool(X) is
called a PosBool(X)-relation. PosBool(X) captures enough
provenance to serve in the intensional semantics of queries
on incomplete [29] and probabilistic data [36].

The possible truth assignments to Boolean variables cor-
respond to possible sub-instances (“possible worlds”) of the
relation, consisting exactly of tuples whose annotating for-
mula is satisfied by the assignment.

Definition 1. A PosBool(X)-relation is a pair (R, Ann)
where R is a (finite) relation and Ann is an annotation func-
tion, mapping the tuples of R to elements of PosBool(X).
Given a truth assignment α for variables in X we define
Rα = {t ∈ R : α ` Ann(t)}. The set of possible worlds of
(R, Ann) is defined as

⋃
αRα.

We will denote (R, Ann) simply by R where the annotation
Ann is clear from the context. A PosBool(X)-database is
then a collection of PosBool(X)-relations, and the notion of
possible worlds extends naturally.

Example 2. Figure 1a depicts a PosBool(X)-relation R,
with X = {p, q}. It admits four possible worlds correspond-
ing to the assignments of true and false to p and q; for in-
stance if α maps p to true and q to false then Rα consists
of the single tuple (a, a).

Intuitively, the annotation for a tuple in a PosBool(X)-
relation corresponds to its provenance. We are then inter-
ested in the way provenance propagates through query eval-
uation. For positive relational algebra, the approach taken

in [27] defines provenance propagation in a way that closely
follows the propagation of data itself 2. Intuitively, when
two tuples are joined, then their Boolean annotation are
combined with a conjunction, since intuitively the worlds in
which the joined tuple is present are exactly those in which
the two tuples are present. Similarly, projected tuples are
associated with annotations that are the disjunction of all
tuples that could alternatively be used to derive the pro-
jected tuples.

Provenance and data propagation is defined similarly for
all positive relational algebra (RA+) operators, and so given
a RA+ query Q and a PosBool(X)-database D, Q(D) denot-
ing the output PosBool(X)-relation is well-defined. We term
this a semantics of positive relational algebra for PosBool(X)-
databases. A fundamental property that such semantics
should have is that Q(D) is a faithful representation:

• (Faithful representation) For every PosBool(X)-data-
base D, RA+ query Q, and truth assignment α to
Boolean variables in X, Q(Dα) = [Q(D)]α.

Note that this implies that annotations in Q(D) capture
exactly the same possible worlds, but even more than that,
these worlds correspond to the same truth assignments, as
those obtained by first applying the assignment to all rela-
tions in D and then evaluating Q on the obtained relations
3.

Naturally, maintaining provenance requires some overhead
in size. Another favorable property of the approach for RA+

queries is that the size of obtained provenance is only poly-
nomial in the size of the input instance:

• (Poly-size overhead) For every PosBool(X)-database
D and RA+ query Q, the size of Q(D), including an-
notations, is polynomial in that of D.

Example 3. To illustrate these concepts for a RA+ query,
replace T (z, y) by R(z, y) in the body of rule (2) of Example
1 to avoid recursion (which now computes all pairs reach-
able in either one or two steps). The tuple T (a, a) can be
obtained either directly from R(a, a) (by rule (1)), or by join-
ing R(a, a) with R(a, a) (by rule (2)). R(a, a) is annotated
with p. Thus the annotation of T (a, a) has the form p∨(p∧p)
4, intuitively meaning that either using p by itself, or using
p twice can generate T (a, a) (see Figure 1c). Annotation
of tuple S(a), obtained by projection of the tuple T (a, b), is
shown in Figure 1d.

2.3 Datalog on PosBool(X)-databases
In the same spirit of extending positive relational alge-

bra semantics to annotated relations, for every PosBool(X)-
database D and a datalog program P , a datalog semantics
on PosBool(X)-databases defines one or more PosBool(X)-
relations collectively denoted by P (D) (depending on the
number of idb relations in P ). This is done in [27] where

2The propagation for the particular Boolean case actually
follows already from [29]
3The latter is a favorable property for applications such as
deletion propagation and probabilistic databases
4Throughout this section, we deliberately avoid “simplifica-
tions” of Boolean expressions to emphasize the way in which
they are generated. Simplifications are discussed in the fol-
lowing section. The non-simplified expressions will also be
useful when we consider general semirings in Section 5.



the authors generalize datalog (proof-theoretic) semantics
to annotated relations. We review this briefly. A derivation
tree τ for an idb fact t represents one particular way to ob-
tain t (at the root) from all the edb facts at the leaves of τ ;
three derivation trees for idb fact t = S(a) in the recursive
program in Example 1 are shown below.

S(a) S(a) S(a)

| | |

T(a,b) T(a,b) T(a,b)

| / \ / \

R(a,b) R(a,a) T(a,b) R(a,a) T(a,b)

| / \

R(a,b) R(a,a) T(a,b)

|

R(a,b)

This leads to a definition for the annotation Ann(t) of an
idb fact t:

Ann(t) =
∨

τ : τyields t

∧
t′: t′ is a leaf

edb fact of τ

Ann(t′) (4)

In this formula, the conjunctions are over the (finitely many)
annotations of the leaves of each derivation tree. However,
the disjunction in this formula can be infinite (but count-
able), which raises additional problems. Obviously, every in-
finite Boolean formula is equivalent to a finite one (by idem-
potence and absorption). It follows from [27] that using this
definition leads to a faithful representation for PosBool(X)-
databases.

Example 4. We have shown three derivation trees of idb
fact S(a) in our running example above. It is easy to see that
in fact there are infinitely many derivation trees for S(a),
each of them repeat the leaf R(a, a) zero or more times and
then have the leaf R(a, b). Thus

Ann(S(a)) = q
∨

(p ∧ q)
∨

(p ∧ p ∧ q)
∨
· · ·

Naturally, simplifications of the Boolean annotations Ann(t)
are possible to yield finite equivalent Boolean formulas (which
is straightforward in the above example yielding Ann(S(a)) =
q). However, an important question is whether this finite
formula has a poly-size representation in the size of the
database instance D (which was the case for RA+ queries);
we address this question in the next section.

3. BOOLEAN PROVENANCE REPRESEN-
TATION

The previous section introduces a formal definition for
Boolean provenance for datalog programs on PosBool(X)-
databases (by Equation (4)). This definition leads to a
faithful representation, but the definition by itself is non-
constructive since it may involve infinitely many derivation
trees. The obvious choice for a finite representation of prove-
nance is the equivalent Boolean formula of the (possibly in-
finite) expression in (4). However, our goal is to obtain a
faithful representation which is not only finite, but also is
of size polynomial in the size of the input database D. It
turns out that for datalog, representation via (arbitrary)
boolean formulas may fail to satisfy the desiderata. Recall
that a datalog semantics for PosBool(X)-databases maps a
PosBool(X)-database D and a datalog program P to one or
more PosBool(X)-relations (see Section 2.3).

Theorem 1. For any faithful datalog semantics, there ex-
ist datalog program P and PosBool(X)-database D such that
provenance of the tuples in PosBool(X)-relations in P (D)
cannot be represented using Boolean formulas of size poly-
nomial in |D|.

Proof. We will use the result by Karchmer and Wigder-
son [31]: any monotone formula to test st-connectivity in

a graph with n nodes has size nΩ(logn) (lower bound holds
even for undirected graphs). Consider the datalog program
P for transitive closure in Example 1, the database D cor-
responds to a complete graph n having a single edb relation
R (the edge relation).

Assume by contradiction the existence of a datalog se-
mantics that annotates each tuple in the idb PosBool(X)-
relation T with poly-size Boolean formulas on the edb vari-
ables for edges R(u, v); further, the annotation is faithful.
Consider the annotation (provenance) of the tuple T (s, t)
for two fixed nodes s and t in the graph.

Since P (D) is faithful, for all assignments α to the edb
variables, P (Dα) = [P (D)]α. Therefore, the poly-size Boolean
formula annotating T (s, t) restricted to α, Ann(T (s, t))α, is
true iff t is reachable from s in the graph defined by the edges
inRα, i.e., the edgesR(u, v) for whichR(u, v)α = true. This
contradicts the lower bound in [31].

The above theorem motivates us to explore an alternative
approach based on circuit representation.

3.1 Boolean Provenance Circuits
We review (monotone) Boolean circuits (see e.g. [5]):

Definition 2. A Boolean circuit over PosBool(X)is a la-
beled Directed Acyclic Graph (DAG). The sinks are labeled
by Boolean true, false, or elements of X, and the internal
nodes are labeled by either ∧ or ∨ (called ∧-node and ∨-node
respectively). The size of a circuit is the number of nodes in
the circuit.

In our context, a ∧-node (resp. a ∨-node) will have chil-
dren that are either ∨-nodes (resp. ∧-nodes) or the sinks.
Further, each ∨-node will be associated with a unique idb
variable, and the label X of a non-Boolean sink node will be
a unique edb variable5. There will be one or more sources
that are ∨-nodes.

A circuit can be much more compact than an equivalent
Boolean formula since it can reuse sub-expressions by its
DAG structure. Indeed, when we allow the annotations of
the tuples in P (D) to be Boolean circuits, we get a poly-size
faithful representation:

Theorem 2. There exists a datalog semantics for
PosBool(X)-databases such that given any datalog program
P and PosBool(X)-database D,

• it represents provenance of the tuples in the PosBool(X)-
relations in P (D) as monotone Boolean circuits, i.e.,
each idb tuple is annotated with a circuit,

• P (D) is a faithful representation, and

• the size of P (D) (including annotations) is polynomial
in that of D.

5For simplicity, we assume that each edb tuple in the input
PosBool(X)-database is annotated with a single variable,
general annotations can be easily handled by substitution.



We give a constructive proof of the theorem by giving an al-
gorithm (Algorithm 1) to construct the circuits. However, to
have an overall compact representation of the annotations,
we will use a shared circuit for all the idb tuples in P (D).
The shared circuit will have multiple source nodes and each
idb tuple t in P (D) will have a unique source in the circuit;
we will simply annotate t by the corresponding source node
in the circuit.

Note. While Algorithm 1 presented below proves Theo-
rem 2, it (unnecessarily) goes, for simplicity, through con-
struction of a system of equations, and therefore is inefficient
from a practical point of view. A much more efficient con-
struction (Algorithm 2) is given in Section 4.

Description of Algorithm 1. Algorithm 1 is based on
two prior work: The first is [27] that shows a construction
of a system of equations (Boolean formulas) whose fixpoint
is equivalent to the infinite expression defined above; and
the second is [18] (also related here is [35]) that shows that
computation of this fixpoint can be achieved through an it-
erative solution with a small, bounded number of iterations.
The high-level construction is given in Algorithm 1, detailed
next.

Procedure GenerateEquations (Line 1). We start by gen-
erating a system of equations EQS, defined as follows. We
first generate all possible candidate idb tuples, by all possi-
ble assignments of the attributes of all idb predicates from
the active domain6. Note that a candidate idb tuple may
or may not be an actual idb tuple or idb fact in P (D) (an
idb fact has at least one valid derivation tree from the edb
tuples in D). In the next section we give a more efficient
algorithm that only considers idb tuples that are idb facts.

For each edb or candidate idb tuple t, we define an edb
or idb variable Xt respectively. For edb tuples t, we will
assume that Xt = the annotation of t in D which play the
role of constants in the system of equations; the idb variables
act as variables. Let τ be an assignment of tuples tτ1 , · · · , tτqτ
to the atoms in the body of a rule, such that the head of
the rule under this assignment is t. The equation for t is the
disjunction over all such assignments Xt =

∨
τ Xtτ1 ∧ · · · ∧

Xtτqτ It follows from [27] that the fixpoint of this system of
equations is equivalent to the semantics using the derivation
trees in Section 2.1.

Example 5. In our running example, the candidate idb
tuples are T (a, a), T (a, b), T (b, a), T (b, b), S(a), S(b). The sys-
tem of equations is

XT (a,a) = p ∨ p ∧XT (a,a) XS(a) = XT (a,b)

XT (a,b) = q ∨ p ∧XT (a,b) XS(b) = XT (b,b)

For edb facts R(a, a) and R(a, b), the corresponding annota-
tions p, q are used as constants.

Generating the circuit (Lines 2-7). Now we have obtained
a recursive system of equations, and we are looking for a fix-
point solution. It was shown in [18] that such solution can
be achieved, using an iterative algorithm with N + 1 itera-
tions where N is the number of variables in the system (in

6The active domain contains values of all the attributes that
actually appear in the database instance

Input: A datalog Program P ; a
PosBool(X)-annotated database D

Output: Circuit as annotation for each idb facts in
P (D)

1 EQS := GenerateEquations(P,D) ;
2 /*Create circuit*/ ;
3 Let N be the number of idb variables in EQS. For

each idb variable Xt, create a Boolean false sink
node associated with Xt,0. ;

4 For every edb variable Xt, create a sink node
labeled with Xt. ;

5 for j = 1 to N + 1 do
6 AddCircuitLayer(j, j − 1) ;
7 end
8 return For every idb fact t in P (D), annotate t

with the circuit rooted at node Xt,N+1

Algorithm 1: Generate PosBool(X) Circuit

our case, the number of idb variables appearing in EQS).
The 0-th iteration sets all variables to 0 (in our case false)
with constants unchanged, and then in the j-th iteration we
set the value of variables based on the equations and the
values of the variables in iteration j − 1.

There is a easy translation of the above procedural ap-
proach to a compact circuit. In Line 3 and 4 we create two
types of sinks of the circuits: (i) Xt,0 = false nodes for a
candidate idb tuple t, which corresponds to the false as-
signments of the variables in iteration 0; and (ii) sink nodes
Xt for edb tuples t.

Procedure AddCircuitLayer. Then we add N + 1 layers
to the circuit by the AddCircuitLayer(j, j − 1) procedure
which simulates assignments in the j-th iteration using as-
signments in the j−1-th iteration for iteratively solving the
system of equations. In the j-th iteration, we create a ∨-
node associated with Xt,j , where t is a candidate idb tuple
in EQS. If the equation for t in EQS has k terms, we add
k ∧-nodes as children of this ∨-node (called ∧-children). If
Xt1 · · ·Xt` is one of those k terms, the corresponding ∧-
node has ` children. The i-th child points to Xti,j−1 if ti
is a candidate idb tuple, and to the sink Xti if ti is an edb
tuple.

Output of the algorithm. The source nodes in the DAG at
the top-most level Xt,N+1 correspond to the final circuit for
Xt (equivalent to the final solution of the system of equations
after N + 1 iterations), which we return for each actual idb
fact t in P (D).

Example 6. In our running example, the number of vari-
ables in EQS is N = 5 and so the obtained circuit will have
6 “layers”. We show the connections in the first two layers
in Figure 2.

It is easy to see that Algorithm 1 runs in polynomial time
and outputs circuits with size polynomial in the size of the
database D (for a fixed datalog program P ); a detailed proof
will appear in the full version of the paper.

We further note that equivalent datalog programs gener-
ate equivalent provenance.

Proposition 1. Two datalog programs P1 and P2 are
set-equivalent if and only if for every PosBool(X)-annotated
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Figure 2: The first two layers of a circuit generated by Al-
gorithm 1 (see Example 6)

database D it holds that P1(D) ≡ P2(D).

The proof of the above proposition uses the faithfulness
of representation: P1(D) ≡ P2(D) holds if and only if there
is equivalence of the positive Boolean formulas annotating
results. To observe that this is correct, note that equiva-
lence of the Boolean formulas holds if and only if they give
the same truth value for every valuation, i.e. the result is
equivalent under any truth assignment to PosBool(X). By
the faithful representation property, this holds if and only if
the queries are set-equivalent.

3.2 Applications
We next exemplify applications of provenance represented

as Boolean circuits in deletion propagation and probability
computation in probabilistic databases.

Deletion propagation. LetD′ be a standard database (i.e.,
not necessarily a PosBool(X)-database), τ is a subset of tu-
ples in D′, and P be a datalog program. Given P,D′, and
τ , the deletion propagation problem is to evaluate P on the
database D′′ obtained by deleting tuples in τ from D′.

Proposition 2. If we construct a PosBool(X)-database
D from D′ by annotating tuples in D′ with distinct vari-
ables in X, and compute the (shared) Boolean circuit for the
idb tuples in P (D), then deletion propagation can be imple-
mented in time linear in the size of the circuit through a
bottom-up evaluation.

Example 7. Given the circuit in Figure 2, suppose we
want to delete (only) the tuple R(a, b). As explained in [27]
this corresponds to assigning q to false and assigning p to
true. Now we propagate the assignments of true/false from
the sinks (p = true, q = false and sinks for idb variables
set to false) up to the sources. An idb tuple t exists after
deleting R(a, b) if and only if it is evaluated to true.

Probabilistic databases. PosBool(X)-relations can be ex-
tended to capture probabilistic databases [36] in a natural

way, by associating independent probabilities 7 with ele-
ments of X. This in turn defines a probability distribution
on possible worlds (the probability of a world is the sum
of probabilities of truth assignments yielding it); see [36].
Query evaluation amounts to computing the probability of
observing an idb tuple t in evaluation of a query on a pos-
sible world. The complexity of exact query evaluation is
known to be hard even for very restricted cases, but we next
show how the constructed circuits can be used as a tool for
approximation for datalog. Such approximation has been
considered in different contexts [16, 1], but the assumption
in these work is that the input database is available. In
practice, in many common scenarios one may only have the
query result, and cannot access the database itself. For in-
stance when it defines a view over the original database and
a full database access is impossible due to access restric-
tions, lack of storage space, etc. [15]. We show here that
given only the provenance circuit, one may still obtain an
(absolute) approximation of the probability of result tuples.
If the correct probability of a tuple is p then a randomized
absolute approximation algorithm A computes given ε, δ, a
probability p′ such that Pr(| p′ − p |< ε) > 1 − δ. Such
randomized absolute approximation algorithm for datalog
on probabilistic databases was presented in [16] when the
database is available. In the full version of the paper, we
show that such approximation is possible in the presence of
only query result including provenance information. Note
that a poly-time relative approximation is inacheivable (un-
less P = BPP ) for datalog even in presence of the input
database [16].

Proposition 3. Let D be a PosBool(X)-database, P a
datalog program, Π : X 7→ [0, 1] a probability distribution on
X, and t an idb tuple in P (D). Given only the circuit repre-
senting the provenance of t and probabilities of the edb tuples
(sink-nodes of the circuit) according to Π, one can compute
in time polynomial in the size of the circuit a randomized
absolute approximation of the probability of t to appear in
P (D′), where D′ is a possible world of D distributed accord-
ing to Π.

4. EFFICIENT CIRCUIT GENERATION
FOR BOOLEAN PROVENANCE

Algorithm 1 in the previous section that generates prove-
nance in circuit form has two shortcomings: (1) it may not
be efficient, since it creates and iteratively considers all pos-
sible candidate idb tuples that are not necessarily idb facts,
(2) unlike previously proposed approaches for propagating
provenance through query evaluation (like positive relational
algebra for K-relations), Algorithm 1 is somewhat detached
from datalog evaluation. Namely, the computation of prove-
nance of idb facts is not closely coupled with the computa-
tion of the facts. In this section we present a more efficient
algorithm (Algorithm 2) that directly generates a circuit-
based provenance while evaluating the datalog program by
semi-naive evaluation and considers a candidate idb tuple if
and only if it is an idb fact. In addition, we describe some
other optimization techniques to improve both the time com-
plexity to generate the circuit and space complexity to store
the circuit.
7Since arbitrary formulas over X can be used to annotate
facts, this will not necessarily entail independence between
tuple probabilities.



Input: A Datalog Program P ; a PosBool(X)-annotated database D
Output: Two levels (top and bottom) of the PosBool(X)-circuits for all idb facts w.r.t. P and D

1 For each edb fact t, create a sink-node labeled with the edb variable Xt. ;
2 while semi-naive evaluation continues do
3 Let i be the current iteration of semi-naive evaluation ;
4 while semi-naive evaluation considers generating an idb fact t in iteration i using existing edb and idb facts

t1, · · · , tq such that at least one of t1, · · · , tq has been generated in iteration i− 1 do
5 if t is a new idb fact then
6 Create a new ∨-node for Xt,up at the top level, and a sink node for Xt,bottom at the bottom.

7 end
8 if the derivation is a new derivation then
9 Add a ∧-child to the ∨-node annotated by Xt,up ;

10 for every t′ ∈ {t1, · · · , tq} do
11 If t′ is an edb (resp. idb) fact, connect the ∧-child to sink node for Xt′ (resp. Xt′,down) ;
12 end

13 end

14 end

15 end
Algorithm 2: Provenance circuits by semi-naive evaluation

4.1 Improving Space Complexity of Circuits
One of the major limitations of Algorithm 1 is the Ω(N2)

space complexity to store the circuit, where N is the number
of candidate idb tuples (the circuit stores at least N ∨-nodes
for the candidate idb tuples in N + 1 layers) However, the
connections from nodes in level ` to level `− 1 are identical
to the connections from level `+ 1 to level ` (see Figure 2).
Therefore, we do not need to explicitly store all the N + 1
levels; instead, it suffices to store only one set of connections
between two levels called the top and bottom levels. For in-
stance, in Figure 2, it would suffice to store nodes in level 1
(Xt,1), the sinks (Xt,0 and p, q), and the connection between
them. Copy of the (candidate) idb tuple t at the top and
bottom levels will be denoted by Xt,top and Xt,bottom respec-
tively, whereas the edb facts t as sinks will be denoted by
Xt. Initially, all variables Xt,bottom are set to false. Then the
assignments of the Xt,top variables are evaluated for N + 1
steps, setting the assignments of Xt,up in step i to be the
assignments of Xt,bottom in step i + 1. This improves the
space complexity by a factor of Ω(N) and also improves the
circuit generation time (proof will appear in the full version
of the paper). We will output the circuit in this compact
representation in Algorithm 2 presented below.

4.2 Direct Circuit Generation By Semi-Naive
Evaluation

In any iteration i of semi-naive Datalog evaluation [2],
edb facts and existing idb facts are used to generate new idb
facts such that at least one idb fact used in the derivation
is generated in the i − 1-th iteration. If the standard semi-
naive evaluation finds that an idb fact t has already been
generated, it will simply ignore t if it is regenerated again
later. Algorithm 2 presented in this section will run semi-
naive evaluation, but in addition to storing new idb facts, it
will store new derivations of (both new and old) idb facts.

Description of Algorithm 2. The circuit is stored in
the compact representation described in Section 4.1. Line
1 creates sink-nodes annotated by Xt for edb facts t in D
(denoted by p, q in Figure 2 or 3). If a new idb fact t is gener-
ated, two nodes Xt,top and Xt,bottom are created (Lines 5-7).
But whenever a new derivation is found (for new or existing

 XT(a,a),bottom 
XT(a,b),bottom 

 
XS(a),bottom 

 

Ʌ Ʌ 

p q 

 XT(a,a),top XT(a,b),top 
 XS(a),top  Top Level  

Bottom Level  

 XT(a,a),bottom 
XT(a,b),bottom 

 
XS(a),bottom 

 p q 

 XT(a,a),top XT(a,b),top 
 XS(a),top  Top Level  

Bottom Level  

(a) 

(b) 

Figure 3: Improved circuits (a) by Algorithm 2, (b) after
removing self-dependency

fact t), it is added (Lines 9-12) as a new ∧-child of Xt,up.

Example 8. Both XS(b), XT (b,b) are not idb facts in our
running example, and the nodes (and edges) corresponding
to these candidate idb tuples would not appear in the circuit
(see Figure 3 (a)), and the time to evaluate the final assign-
ment will also be smaller. The improvement can be much
more significant for larger programs and inputs.

Algorithm 2 gives improvements over Algorithm 1 by con-
sidering the actual idb facts which can be much fewer than
candidate idb tuples, and by storing a single layer instead of
all the layers explicitly (apart from the fact that now the cir-
cuit generation is embedded within semi-naive evaluation):
The space and time complexity analysis of Algorithm 2 will
appear in the full version of the paper.

4.3 Optimization: Removing Self-Dependency
An optimization for simplifying the circuit for PosBool(X)

is to ignore self-dependency of variables. If a minterm (con-
junction of edb or idb variables) in the equation for idb vari-
able Xt contains Xt itself, then that minterm can be safely



ignored while keeping the solution of the system of equations
unchanged:

Example 9. Removing self-dependency in Figure 3 (a)
leads to further simplified circuit in Figure 3 (b).

The correctness of this optimization will be shown in the full
version of the paper. More optimizations may be employed,
such as no further evaluation of a ∨-node (resp. ∧-node) if
one child evaluates to true (resp. false). Another optimiza-
tion based on tuple-dependency graphs, similar to precedence
graphs used for improving the efficiency of the basic semi-
naive algorithm [2], will be discussed in the full version of
the paper.

5. BEYOND BOOLEAN ANNOTATIONS
So far we have focused on a particular, simple yet impor-

tant, provenance model, namely the case where provenance
is captured by positive Boolean expressions. The work on
provenance semirings [27] goes far beyond Boolean annota-
tions, to arbitrary commutative semirings. Various prove-
nance semirings have been proven useful in a variety of ap-
plications, including access control and computing cost as-
sociated with tuples. We first review the basic definitions,
then we consider datalog evaluation on annotated databases
beyond the Boolean case, charting the extent to which the
results extend.

5.1 Semirings and K-relations
We briefly recall semirings and their use in provenance,

and refer the reader to [27, 28] for further details. An alge-
braic structure (K,+K , ·K , 0K , 1K ) is a commutative semir-
ing if each of (K,+K , 0K ) and (K, ·K , 1K ) is a commutative
monoid (i.e., both +K and ·K are associative and commuta-
tive, and 0K , 1K are their respective neutral elements), ·K is
distributive over +K , and a ·K 0K = 0 ·K a = 0K . A semir-
ing homomorphism is a mapping h : K → K′ where K,K′

are semirings, and h(0K ) = 0
K′ , h(1K ) = 1

K′ , h(a +K b) =
h(a) +

K′ h(b), h(a ·K b) = h(a) ·
K′ h(b). We will omit the

subscripts from +K , ·K when they are clear from the context.
The two operations of a semiring capture abstractly in-

formation usage: · corresponds to joint usage while + cor-
responds to alternative usage. Annotating a tuple with
0K signifies that the tuple is absent. Given a tuple t (in
some relation) we use Ann(t) to denote the annotation of
t. A K-relation is then a finite relation whose tuples are
all K-annotated, i.e., annotated with elements of a semiring
K. A K-database is a schema-indexed set of K-relations;
these generalize the concepts introduced in 2 where K =
PosBool(X).

Semiring annotation propagation algorithms have been
devised for various query languages [27, 20, 28, 4, 21]. Given
an input K-database and a query, these algorithms annotate
the result of the query by producing an output K-relation.
Therefore, these propagation algorithms define a semantics
(we will call it K-semantics) for various query languages
over the K-relation data model.

This framework has a good deal of generality. Two basic
semirings, the Boolean semiring (B,∨,∧, false, true) and the
natural numbers semiring (N,+, ·, 0, 1) give us B-relations
as the usual set semantics relations and, respectively, N-
relations as the bag semantics relations (here the annota-
tion of a tuple t is its multiplicity, i.e., the number of times

t occurs). We have also already seen the commutative semir-
ing (PosBool(X),∨,∧, false, true). This semiring, as well as,
e.g., N[X], Why(X), Lin(X) and Trio(X) (all discussed be-
low) are examples of what we call provenance semirings,
captured by the generic notation Prov(X). The elements
of such a Prov(X) are expressions built using + and · from
variables in a set X. The variables in X are used to anno-
tate the tuples of an input database (hence a finite X suf-
fices). Therefore the Prov(X)-semantics for a query on such
a Prov(X)-database produces an output Prov(X)-relation,
and provenance of a tuple t in the output is the Prov(X)-
annotation Ann(t) of the tuple.

N[X] (introduced in [27]) is the commutative semiring of
multivariate polynomials in variables from X with coeffi-
cients from N. It occupies a special position since it is
the commutative semiring freely generated by X, that is,
for any commutative semiring K, any function X→K ex-
tends uniquely to a homomorphism N[X] → K. The ele-
ments of (Why(X),∪,d, ∅, {∅}) semiring are finite sets of
finite subsets of X where x ∈ X corresponds to {{x}}; ∪
is the standard set union, whereas for W,Z ∈ Why(X),
W d Z = {A ∪ B|A ∈ W,B ∈ Z}. Why(X) captures
the (witness) why-provenance of [12]. The minimal witness
provenance of [12] is captured by PosBool(X) discussed
in previous sections (see [28]). Due to space restrictions,
we refer to [28] for the definitions of the provenance semir-
ing Lin(X) (which captures the “contributing tuples” model
from [14]) and Trio(X) (which captures the model in [9]).

The papers [27, 26] also introduced a technique for using
provenance in applications such as deletion propagation and
trust assessment. The semiring framework supports this,
as long as applications are captured by annotating tuples
with elements of a commutative semiring K such that the
following property holds:

Provenance specialization We say that Prov(X) special-
izes correctly to K, if any valuation v : X → K extends
uniquely to a homomorphism hv : Prov(X)→ K.

For example, N[X] specializes correctly to any commuta-
tive semiring while PosBool(X) specializes correctly only to
distributive lattices. If a semiring K is used to specialize
provenance we will refer to it as a meta-domain. Now, given
a query and an input database, suppose that we have an-
notated the input tuples with distinct variables in X, and
we have computed the Prov(X)-semantics so that each out-
put tuple has a Prov(X)-annotation. Suppose that sub-
sequently we wish to do an application that requires the
computation of a K-semantics. The K-annotation of the
input database corresponds to a valuation v : X → K. If
Prov(X) specializes correctly to K, we can use the resulting
homomorphism hv : Prov(X) → K by applying it to the
Prov(X)-annotations of the output tuples. We obtain the
K-annotations of the K-semantics provided the following
property holds:

Commutation with homomorphisms We say that a
query language and its semiring semantics satisfies com-
mutation with homomorphisms if for any query Q in
the language, for any commutative semirings K1,K2,
and any homomorphism
h : K1 → K2, we have h(Q(D)) = Q(h(D)) for any
K1-database D.



N[X] 

Trio(X) 

Why(X) 

Lin(X) PosBool(X) 

Sorp(X) 

T 

B 

N 

S 

Figure 4: Provenance semiring hierarchy and specialization

This non-trivial property was proved for quite a few query
languages and semiring semantics [27, 20, 4].

We already mentioned two meta-domain semirings: B can
be used in deletion propagation and N can be used in mul-
tiplicity maintenance. Then we have the tropical semiring
T = (N ∪ {∞},min,+,∞, 0) which can be used for captur-
ing cost; multiplication (joint use) corresponds to adding
the cost of tuples used, while addition (alternative use) cor-
responds to taking the smallest cost among the alternatives.
Cost can also be used to assess trust when interpreted as
“cost of trusting”. Finally we have semirings for capturing
access control/security clearances; a simple one (introduced
in [20] and refined in [4]) is (S,min,max, absent, public) where
S = {public < confidential < secret < topsecret < absent}.

The provenance semirings and their ability to support
provenance specialization is captured by the diagram in Fig-
ure 4 based on the hierarchy described in [28] (Sorp(X) will
be described in Section 5.3). A solid arrow from Prov1(X)
to Prov2(X) indicates that the first one is more informa-
tive than the second (formally, there exists a surjective ho-
momorphism that is the identity on X). A dotted arrow
from a Prov(X) to K indicates that Prov(X) specializes cor-
rectly to K. Clearly if Prov1(X) is more informative than
Prov2(X) and Prov2(X) specializes correctly to K, then so
does Prov1(X). Note also that we can use the provenance
semirings themselves as meta-domains and that any prove-
nance semiring specializes correctly to a less informative one
(it can be useful, e.g., to specialize N[X] or Why(X) to
Lin(X) and thus compute the set of contributing tuples).

5.2 Extended Datalog Semantics
It is natural to similarly extend the datalog semantics to

K-relations (Section 2.3), to obtain (see [27]):

Ann(t) =
∑

τ : τ yields t

∏
t′: t′ is a leaf

edb fact of τ

Ann(t′)

where
∑

and
∏

respectively denote the + and · opera-
tions on the semiring K. However, this definition involves
possibly infinite sums, and unlike PosBool(X), these sums
may not be well-defined in arbitrary commutative semir-
ings. An important subclass in which such infinite sums are
well-defined is that of ω-continuous commutative semirings,
defined as follows.

Definition 3. (ω-continuous) Given a semiring K, de-
fine the binary relation v such that a v b if and only if ∃c ∈
K such that a+c = b. We say that K is ω-continuous if (1)

v is a partial order, (2) every (infinite) ω-chain a0 v a1...
has a least upper bound sup ai, and (3) ∀a a + sup ai =
sup(a+ ai) and a · sup ai = sup(a · ai).

A homomorphism h between ω-continuous semirings is
said to be ω-continuous if it preserves least upper bounds
of ω-chains: h(sup ai) = suph(ai).

Going back to the provenance semirings of Section 5.1, we
note that for finite X, PosBool(X), Why(X), and Lin(X)
are ω-continuous because they are also finite, while N[X]
and Trio(X) are not, even for finite X. Among the meta-
domains, B, S, and T are ω-continuous, while N is not. N
is easy to embed in an ω-continuous semiring by adding ∞,
N∞ = N∪{∞} while N[X] can be embedded in N∞[[X]], the
semiring of formal power series (infinite polynomials) with
variables from X and coefficients from N∞.

As shown in [27], the discussion in Section 5.1 is also valid
for datalog queries, provided we consider only ω-continuous
semirings and ω-continuous homomorphisms. Furthermore,
N∞[[X]] is the free ω-continuous commutative semiring gen-
erated by X (all valuations extend uniquely to ω-continuous
homomorphisms), just as N[X] played this role for all com-
mutative semirings.

Naturally, we ask how appropriate is N∞[[X]] as the prove-
nance semiring for datalog. As we have observed, it cor-
rectly specializes provenance to the meta-domains B (this
is the generalization of the faithfulness requirement that we
stated for PosBool(X)-semantics), and also S, T, and N∞.
Poly-size overhead however does not even make sense since
the elements of N∞[[X]] are infinite formal sums 8.

Still, one might expect that we would be able to compute
for each output tuple a finite provenance expression (i.e.,
an expression built from variables using ·K and +K ) that is
“general” enough to at least specialize correctly in semirings
where all elements are finite (such as Why(X)). If that were
so, then, as in the case of PosBool(X), we could try to find
poly-size circuits for such expressions. Interestingly, this is
not the case

Theorem 3. It is not possible to annotate with finite prove-
nance expressions the output of datalog programs such that
they specialize to the semiring Why(X) with the same re-
sults as the (correct) specialization of the provenance given
by N∞[[X]].

Intuitively, this means that one can not construct prove-
nance circuits for Datalog in a “general” semiring, so that
correct results may be “read” in Why(X). (We will later
show what can still be done for Why(X). See Theorem 5.)
So instead, we will look for a new provenance semiring, that
(1) specializes correctly to many“interesting” semirings (but
not to Why(X)), and (2) admit poly-size circuit represen-
tation for datalog provenance, that yields correct results for
the semirings it specializes to. The new provenance semir-
ing that we will construct is called Sorp(X), and as can be
observed in Fig. 4 it specializes correctly to “interesting”
semirings such as T, B and S (actually to any distributive
lattice). We will show in Section 5.3 that Sorp(X) admits
poly-size circuit representations with the desired properties.

Intuitively, in Sorp(X) we will keep track of how many
times a tuple was used (i.e. every derivation is represented

8We will discuss other possible representations in the related
work section



as a bag of the tuples it have used) but we do not keep track
of “redundant” derivations; these are derivations whose bag
of tuples is bag-included in a different derivation. This is
similar to the passage from witness (why) provenance to
minimal witness provenance [12]. In a sense, only the “most
economical” derivations are kept.

Example 10. Consider an idb fact with two derivations,
one that uses an edb fact p twice and an edb fact q three
times, and one that uses both p and q once. The correspond-
ing provenance expression is p2q3 + pq The bag of facts used
in the second derivation is bag-included in that used in the
first. Thus the first will not be recorded in Sorp(X) (i.e., the
above provenance expression will be equivalent to pq.

Towards a definition of Sorp(X), we say that a commuta-
tive semiring (K,+, ·, 0, 1) is absorptive if the following iden-
tity holds: a+a·b = a. Notice that an absorptive semiring is
also idempotent, i.e., + operation is idempotent (take b = 1).
Now, consider the semiring of polynomials N[X] and let ∼
be the smallest congruence relation on N[X] that identifies
polynomials according to absorption. We define

Sorp(X) = N[X]/ ∼

i.e., semiring of congruence classes modulo ∼. Based on the
universality property of N[X], it follows that Sorp(X) is the
free commutative absorptive semiring generated by X (i.e.
the “most general” such semiring). Because PosBool(X) and
T are absorptive, it follows that Sorp(X) is more informative
than PosBool(X) and specializes correctly to T.

The congruence relation leads to a quite natural charac-
terization of the elements of Sorp(X) as follows. By idem-
potence every monomial with a coefficient > 1 is congruent
with a monomial with coefficient 1. Therefore, in what fol-
lows, by “monomial” we mean just a product of powers of
variables, at least one of which has exponent > 0. We say
that the monomial m1 absorbs monomial m2 if m2 = m1 ·m
for some other monomial m (since then m1 + m2 ∼ m1).
Clearly, this is a strict partial order on monomials. We say
that a polynomial is an antichain if it is a sum of monomials
such that none of them absorbs another.

Example 11. The polynomial pq2 + p3q is an antichain
since neither of the monomials absorbs the other. Note that
it cannot be further simplified using the congruence axioms.
In contrast, p2q3+pq is not an antichain, and indeed we have
p2q3 + pq = pq · (pq2 + 1) = pq · (1 + 1 · pq2) ∼ pq · 1 = pq.

In general we have:

Proposition 4. Let γ ∈ Sorp(X) be a ∼-congruence class
of polynomials from N[X]. Exactly one of the following holds:

(i) All the polynomials in γ are ∼-congruent to 0.

(ii) All the polynomials in γ are ∼-congruent to 1.

(iii) All the polynomials in γ are ∼-congruent to exactly
one antichain polynomial.

Therefore, we have the following nice representation for
the elements of Sorp(X): they are the antichain polynomials
together with 0 and 1. Finally we have the following essential
property:

Proposition 5. If X is finite, then Sorp(X) is ω-
continuous and the Sorp(X)-semantics for datalog special-
izes correctly to any commutative absorptive ω-continuous
semiring.

The proof is omitted, but the basic idea is that an ascend-
ing ω-chain of antichain polynomials must become “station-
ary” after finitely many steps otherwise we get an infinite
strictly descending sequence of natural numbers (that ap-
pear as exponents in the monomials).

5.3 Extended Circuit-Based Semantics
We next extend the circuit-based construction to semir-

ings beyond PosBool(X), starting with Sorp(X). For that,
we first note that the notion of Boolean circuit can be gener-
alized to circuits over an arbitrary semiring (K,+, ·, 0, 1) in
a straightforward manner. Leaves are associated with basic
elements of K, and internal nodes are +K-node or ·K-node
(generalizing ∨- and ∧-nodes for PosBool(X)); we call these
K-circuits. A top-down reading of the circuit now yields
a semiring element as an expression involving the + and ·
operations.

In addition to being quite natural and general, the semir-
ing Sorp(X) can indeed serve as a provenance semiring in
our context. Intuitively, the following result means that we
can compute provenance circuits for datalog in Sorp(X), and
then specialize it correctly in every absorptive semiring, in-
cluding every semiring that is “below” Sorp(X) in Figure
4.

In the construction we will use the absorption property,
favorable for circuit generation.

Theorem 4. We can compute a circuit-based representa-
tion with poly-size overhead for the Sorp(X)-semantics for
datalog.

Proof. (sketch) The algorithm to produce a K-circuit
follows exactly the structure of Algorithm 1, replacing every
occurrence of ∨ with +K and of ∧ with ·K . The algorithm
itself guarantees a result with polynomial-size overhead. The
fact that the result of the algorithm computes indeed the
Sorp(X)-semantics for datalog follows from the fact that
Sorp(X) is absorptive and therefore satisfies the conditions
in [18].

Optimizations. The optimizations employed in Section 4
to embed computation of provenance as part of the semi-
naive evaluation, go through to the settings of Sorp(X)-
provenance, and we can also employ optimizations that uti-
lize the congruence axioms that we have enforced, to further
simplify the circuit.

Example 12. Reconsider the circuit in Fig. 2, and ob-
serve that by replacing ∧ by · and ∨ by +, we obtain a
provenance circuit in Sorp(X). Observe that according to the
equivalence axioms in Sorp(X), the circuit rooted at XS(a),2

can be simplified to once including a single node labeled q.
This corresponds to the intuition that the “simplest” deriva-
tion of S(a) involves only a single use of the tuple T (a, b).
Now, consider a homomorphism to the tropical semiring. In-
tuitively, such homomorphism corresponds to associating nu-
meric values (costs) with base facts; then the provenance of
derived facts is the minimal cost of a derivation. For our



example, the cost for S(a) will be the total cost of the short-
est path from a to b. In our simple example, this is exactly
the cost c assigned to q (i.e. the cost of the edge (a, b)).

Further, the self-dependency can be ignored for some semir-
ings like distributive lattices and tropical semirings. To con-
clude this section, we revisit Figure 4, and briefly consider
Datalog provenance semirings that do not appear “below”
Sorp(X) in the semiring hierarchy. We first revisit the non-
absorptive semiring Why(X).

Beyond absorptive semirings. We note that theWhy(X)-
semiring is non-absorptive and so does not fit the framework.
Further observe that the proof of Theorem 3 indicates that
this can not be remedied by choosing a different provenance
semiring. We may, however, compute provenance directly
for Why(X), through a dedicated construction.

Theorem 5. There is a Why(X)-semantics for datalog
that satisfies poly-size overhead, faithfulness of representa-
tion, and commutation with homomorphisms.

Proof Sketch. Our algorithm for constructing the
Why(X) circuit follows lines similar to that of Algorithm
1, except that the fixpoint computation (and hence the lay-
ering in the construction of the circuit) is repeated here
((|E| × |W | + 1)) × |E|) + 1 times, where E is the set of
the equations generated in Algorithm 1 and W is the size of
theWhy(X)-database provenance. (Recall that, in contrast,
for Sorp(X), the iterations depend only on the number of
variables; the size of the provenance need not be accounted
for).

To prove the correctness of this construction we consider
the set of equations E constructed in Algorithm 1. It has
been shown in [18] that one can construct from E a corre-
sponding context free grammar G whose derivation trees
capture the sequence of fix-point iterations of E, in the
sense that, when viewed as semiring expressions, their sum
evaluates to the same value as the corresponding fixpoint
computation. We show that, when considering this sum,
it suffices to look at derivation trees of of depth at most
((|E| × |W | + 1)) × |W |) + 1. And hence one needs to re-
peat the fixpoint computation for E at most that number
of times. The proof is based on the observation that deeper
trees can be pruned to form a smaller tree that evaluates
to the same provenance value, and thus do not contribute
to the sum (In Why(X) only distinct elements may add
value).

We have now considered all semirings in Figure 4: we have
shown that there is no “good” circuit-based semantics for
N∞[[X]]. This motivated the introduction of a novel semir-
ing Sorp(X) and we have shown that the circuit construction
for PosBool(X) extends naturally to Sorp(X) and all “less
general” semirings. Finally we have noted that Why(X) is
not “less general” than Sorp(X) and have proposed a dedi-
cated construction for it. Throughout the section we have
assumed that the semiring of interest is ω-continuous. To
conclude we briefly consider semirings beyond this class.

Beyond ω-continuous semirings. For commutative semir-
ings that are not ω-continuous (notable examples are N[X]
and Trio(X)), provenance is in general not even well-defined.
Still, for tuples with finitely many derivations, the prove-

nance expression is in fact a finite sum (which may nev-
ertheless be of super-polynomial size, if computed directly
as a sum). To obtain provenance semantics that satisfies
the desiderata when restricted to tuples with finitely many
derivations, we may apply the following procedure: (1) De-
tect which tuples have infinitely many derivations, (2) Gen-
erate circuits for tuples with finitely many derivations. Step
(1) can be done using the algorithm of [33]. As for step (2),
observe that for tuples with finitely many derivations we
may obtain a non-recursive equation system. From that we
can obtain a poly-size circuit, using our general algorithm.
Note that ω-continuity is required in the construction only
to handle recursion, and so is not required for finitely many
derivations.

6. RELATED WORK AND CONCLUSIONS
We have proposed in this paper to base the foundations

of provenance for Datalog on the notion of circuits. We
have shown that circuits are effective in capturing prove-
nance even in cases where the traditional use of provenance
polynomials incurs super-polynomial provenance size. We
have presented algorithms and optimization techniques for
propagating provenance based on the approach, and we have
shown its usefulness of the approach in different application
domains such as probabilistic databases and access-control.

As mentioned earlier, provenance has been studied in var-
ious lines of work, using different formalisms (see e.g. [19,
11, 37, 14, 12, 9, 10]). For capturing provenance of Data-
log queries, three other approaches have been proposed. We
have already mentioned the representation of provenance as
an infinite sum [27] and its shortcomings. An alternative [27,
24] is to use a system of equations (such as the one generated
as an intermediate step in our circuit generation algorithm)
as the final provenance representation. Our approach has
two advantages with respect to that one: (1) circuits, and
in particular circuit complexity in terms of circuit size and
its use in the context of parallel evaluation have been exten-
sively studied for decades as a fundamental problem in com-
plexity theory (e.g. see [5, 8]). Basing our provenance model
on circuits allows us to benefit from these foundations; (2)
when using (for applications such as deletion propagation)
the equation system as the provenance representation, one
needs to iteratively “solve” the system. Some computation
done in these iterations is in fact done as part of provenance
circuit generation, i.e. “offline”. Similar accounts apply to
the comparison with the possible use of provenance graphs
[30]. Finally, we note that while our work is the first to
consider circuits in the context of datalog provenance, par-
ticular kinds of circuits have been previously used to trace
provenance in different contexts such as data mining tasks
[34, 23].

We have performed some preliminary experiments that
indicate the superiority of using circuits for deletion propa-
gation, with respect to the alternative solutions of iteratively
solving the system of equations, or simply re-evaluating the
datalog program. A full-scale experimental study is left as
future work, as well as further circuit-specific optimizations.

Last, we mention that Boolean c-tables in the context of
datalog (in fact, datalog in presence of contradictions) were
studied in [1]. However, conditions in c-tables may involve
negation; this is unlike our Boolean provenance case. The
restriction to positive formulas imposed in our case allows to
extend the framework to general provenance semirings. On



the other hand, the use of negation in [1] does not generalize
to semirings, but yields a poly-size c-table based on Boolean
formulas, for datalog with contradictions.
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