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A Business Process consists of multiple business activities, which, when combined in a flow,
achieve some particular goal. These processes usually operate in a distributed environment
and the software implementing them is fairly complex. Thus, effective tools for analysis
of the possible executions of such processes are extremely important for companies (Beeri
et al., 2006, 2007 [4,5]); (Deutch and Milo, 2008 [13]); these tools can allow to debug and
optimize the processes, and to make an optimal use of them. The goal of the present paper
is to consider a formal model underlying Business Processes and study query languages
over such processes. We study in details the relationship of the proposed model with
previously suggested formalisms for processes modeling and querying. In particular we
propose a query evaluation algorithm of polynomial data complexity that can be applied
uniformly to two kind of common queries over processes, namely queries on the structure
of the process specification as well as temporal queries on the potential behavior of
the defined process. We show that unless P = NP the efficiency of our algorithm is
asymptotically optimal.

© 2011 Published by Elsevier Inc.

1. Introduction

A Business Process (BP for short) consists of a group of business activities undertaken by one or more organizations in
pursuit of some particular goal. It usually depends upon various business functions for support (e.g. personnel, accounting,
inventory), and interacts with other BPs/activities carried out by the same or other organizations. Consequently, the imple-
mentations of such BPs typically operate in a cross-organization, distributed environment. It is a common practice to use
XML for data exchange between BPs, and Web Services for interaction with remote processes. Complementarily, the BPEL
standard (Business Process Execution Language [7]) allows description not only of the interface between the participants
in a process, but also of the full operational logic of the process and its execution flow. Since BPEL has a fairly complex
syntax, commercial vendors offer systems that allow design of BPEL specifications via a visual interface. These systems
use a conceptual, intuitive representation of the process, as a graph of activity nodes, connected by control and data flow
edges. The designs are automatically converted to BPEL specifications, which in turn can be automatically compiled into
executable code implementing the BP [29]. The declarative, yet complex, nature of BPEL specifications call for the design
of a query language, that will allow to effectively analyze the possible executions of a given process. To answer this need,
we have developed BPQL [3,4], a query language for querying business process specifications. We have then continued to
extend the query language [12–14] to account for various analysis needs that rise in the context of Business Processes, and
studied query evaluation in each context. However, what is missing from these previous works is the formal, fundamental
positioning of the model and query evaluation algorithm within the context of other common formalisms for modeling
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Fig. 1. A BPQL specification.

and querying processes. This positioning is the goal of the present paper. We note that some of the results presented here
appeared also in [12], but only in a high-level form and without detailed proofs. Specifically, we show here that many data
models are in fact equivalent (see Section 3 for a formal definition of model equivalence, and proofs that such equivalences
hold) to our BP model. In particular, this means that our query evaluation results apply to these models as well. Among
these commonly used models one can find restricted versions of Rewriting Systems (e.g. [32]), Recursive State Machines
(RSMs) [1,6], Context Free Graph Grammars [10], and others. Each of these works relates to some query language which is
evaluated over the data model. We identify two main branches of query languages, as follows. In the Databases area, the
query languages are structural. Namely, they allow users to ask questions about the structure of a specification (graph). In
contrast, in the verification area, the query languages are temporal [19]. Namely, the queries relate to the possible runs of
the process defined by specification, and are used to identify invariants, execution patterns, etc. We provide here a unified
environment for querying structural as well as temporal properties of business processes. We study the expressive power of
our query language with respect to common languages, and explain how analysis tasks that cannot be expressed using tem-
poral logic, are easily and intuitively formed using our query language. We then study the complexity of query evaluation
over Business Processes, and provide query evaluation algorithms that may be applied uniformly with either the temporal
or structural semantics. We show that these algorithms are practically feasible: they incur a worst case complexity that is
polynomial in the size of the process specification, with the exponent dependent on the query size. We further show that
the exponential dependency over the query size is unavoidable, unless P = NP.

Note. To guarantee a complexity that is polynomial in the size of the data, BPQL ignores the run-time semantics of certain
BPEL constructs such as conditional execution and variable values, and focuses on the given specification flow. We believe
that this approach offers a reasonable balance between expressibility and complexity. Clearly, the general problem is more
complex, and further work is needed. The paper is organized as follows. Section 2 describes the BPQL data model and query
language and its semantics. Section 3 compares BPQL to related models. Section 4 describes the query evaluation algorithm
and Section 5 studies its complexity. We conclude in Section 6. Appendix A provides additional formal details on the query
evaluation algorithm.

2. Preliminaries

In this section we present the formal model underlying BPQL. We start with the motivation for our work, and then
proceed to the formal definitions.

2.1. Motivation

The following questions may rise from the introduction: Why are structural queries over nested graphs interesting? What
are the advantages of a generic framework for multiple query semantics? Why is it important to have a graphical query
language, similar to the specification? We give here intuitive answers to these questions, using some examples.

Fig. 1 depicts a partial specification of a travel agency system. The rectangle-shaped nodes represent function calls. BP1
is the root BP and contains a single node, AlphaTours, that serves as an entry point for the travel agency. BP2 describes
the implementation of the AlphaTours function, where a user can choose between searching for a trip and reserving one.
BP3 is the implementation of the SearchTrip function used in BP2. A user can request for a specific search (for flights, cars,
etc.) or can go back to the AlphaTours trip reservation process. Note that this definition establishes recursive dependencies
between the processes, as BP2 may call BP3, which in turn, if the user decides to reset (implemented in the BP as a call to
AlphaTours), calls BP2.

An example query is depicted in Fig. 2. It is formulated graphically in a manner very similar to the specification. This
is an important feature of the query language, as (a) it allows faster learning curve of the language and (b) it allows
simultaneous formulation, by the specification designer, of a specification and verification queries over it.

To answer a query, we seek for occurrences of the described patterns within the specification. Intuitively, the query
in Fig. 2 searches the AlphaTours BP, and the processes that it uses, for execution paths leading to/from a SearchFlights
operation. Q2 here describes an implementation pattern for the AlphaTours function. The double-headed arrows indicate
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Fig. 2. A BPQL query.

Fig. 3. Explanatory query answer.

Fig. 4. Structural vs. behavioral.

that we are looking for execution paths of arbitrary length. The double bounding of the AlphaTours rectangle denotes an
unbounded zoom-in; we search for the Q2 pattern inside the implementation of AlphaTours and (recursively) the functions
that it invokes. In general, when matching a (double-bounded) function node n of the query to a function node n′ in the
specification, we require that the implementation pattern of n, as given in the query, is matched to (a refinement of) the
implementation of n′ in the specification. An occurrence of the query pattern in the specification is called an embedding.

Some variants of the answer to a query are suggested. The first distinction is between boolean and explanatory answers.
The former answers whether or not some embedding exists, while the latter is a new BP, consisting of the specification
parts that contributed to some possible embedding. To continue with our example, the explanatory answer for the query in
Fig. 2 when applied on the system in Fig. 1 is depicted in Fig. 3. The answer here is a ‘projection’ of the travel agency system
over the parts relevant to the query, and so it contains the SearchTrip function in BP2 and the path in its implementation,
BP3, that leads to SearchFlights. It also contains the AlphaTours function call node in BP3, as this call allows to invoke BP2
and recursively reach (by calling SearchTrip) BP3 and SearchFlights, via another execution path (in fact, an infinite number
of such recursive calls, hence paths, are possible). In general, a user may wish to focus on a particular part of the query
and view only those system components that are relevant to this specific part. All the results presented in the paper can be
easily generalized to this context. We omit this here.

Another distinction concerns the type of embedding (of the query in the specification) sought for. We look at two
common approaches for such embeddings, referred to as structural and behavioral. Consider the simple query (BP pattern)
depicted in Fig. 4. Interpreted as a query over the structure of a process specification, this query searches for BPs whose
“code” contains a loop of the shape depicted by the query. BP1 in Fig. 4 is an example for such BP. The same query,
interpreted as a query over the behavior of the BPs, will look for processes containing execution paths of form similar to the
one specified in the query, namely an unbounded sequence of A, B’s. This is satisfied by both BP1 and BP2. The key point is
that here, unlike the structural interpretation, the use of distinct occurrences of A and B is allowed.

In previous query languages for querying process specifications, typically only the behavioral approach was taken, with
modal (and specifically temporal) logics being used as the basis for the query language. The dichotomy between the
two approaches is established by the simple fact that subgraph isomorphism/homomorphism cannot be expressed by any
bisimulation-invariant language [9], and thus, in particular, by any temporal logic (as these are bisimulation-invariant [9]).
Thus, structural queries cannot be formulated using the previous works. However, structural queries are of great interest, as
explained next. Continuing with the example above, code reuse is a common programming policy. This policy would prob-
ably impose loops of the structure depicted in BP1 rather than the structure in BP2. The query in Fig. 4, when interpreted
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as structural query, enforces this policy, in a manner not possible using behavioral queries. In general, structural queries are
of high importance for any purpose that is interested also in the code itself, and not only in its executions. Such purposes
may include: imposing coding conventions, debugging, profiling, code optimizations, etc.

To conclude, we re-state that our framework is uniform and generic, allowing behavioral queries as well as structural
queries. This forms a unification of important fragments of the common query languages over a simple common abstraction
of BPs, using a simple, intuitive and graphical query language.

2.2. Definitions

We now give the formal definitions of the specification and query languages. To simplify the presentation we first
consider a basic data model and query language, and then enrich them to obtain the full fledged model.

BPs and BP systems. We assume the existence of two infinite domains: a domain N of nodes and a domain L of node
labels, containing a sub-domain F of function names. We model a BP as a directed labeled graph. Formally,

Definition 2.1. A business process (BP) is a quadruple p = (G, λ,start,end), where G = (N, E) is a connected directed
graph in which N ⊂ N is a finite set of nodes, E is a set of edges with endpoints in N; λ : N → L is a labeling function
for the nodes; start,end are two distinguished nodes in G and every node in G resides on a path from start to end.
Nodes labeled by function names from F are called function calls.

A system is a collection of BPs, along with a mapping of function names to their implementations.

Definition 2.2. A system s of BPs is a triple (S, s0, τ ), where S is a finite set of BPs, s0 ∈ S is a distinguished BP, called the
root process, and τ : F → 2S is a (possibly partial) function, called the implementation function, mapping function names in
S to sets of BPs in S .

W.l.o.g. we assume that the nodes in the graphs have distinct identifiers. This will be utilized below in the construction
of the explanatory answer to a query. A function name can be mapped, through the implementation function, to a set of
BPs. These represent alternative possible implementations for the function (one of which will be chosen at run time as the
actual implementation). The implementation function is partial if the internal implementation structure of some functions
is unknown (e.g. since their providers do not wish to expose their specification).

Given a BP p and a function call n in p, a more detailed description of p can be obtained by replacing n by one of the
function’s possible implementations. A result of such replacements is called a refinement.

Definition 2.3. Given a system s = (S, s0, τ ), a BP p, and a node n in p labeled by a label l for which τ is defined, we say
that p n−→ p′ (w.r.t. τ ) if p′ is obtained from p by replacing n in p by one of its possible implementations g ∈ τ (l). [Namely,
n is deleted from p, and a copy of g is plugged in its place, with the incoming/outgoing edges of n now connected to the
start/end node of g , resp.]

If p
n1−−→ p1

n2−−→ p2
n3−−→ · · · nk−−→ pk , we say that pk is a refinement of p, and name the sequence of node replacements a

refinement sequence.
We say that a node v ∈ pk depends on a node ni in the sequence if v ∈ pi but v /∈ pi−1. v depends transitively on ni if it

either depends on ni or depends on some node n j transitively depending on ni .

Queries. We now consider queries and their answers. For simplicity we consider first simple positive queries without
negation and joins. These, and other extensions, are considered later. Queries are modeled using BP patterns. These generalize
BPs similarly to the way tree patterns generalize XML trees. Formally,

Definition 2.4. A BP pattern is a tuple p̂ = (p, Ie, I f ), where p is a BP and Ie , I f are distinguished sets of edges and function
names in p, resp. These are the indirect edges and functions of p̂.

A query q is a system of BP patterns (Q ,q0, τ ), where Q is a set of BP patterns, q0 is the root BP pattern, and τ is an
implementation function.

Embeddings. To evaluate a query, its patterns are embedded into the system BPs. Generally speaking, every type of relation
over (finite) flat graphs may be generalized to an embedding type. We suggest here the usage of three main types of
graph relations – homomorphism, isomorphism, and bisimulation. These are generalized to homomorphic- and isomorphic-
embeddings (which capture the structural query interpretation) and bisimilar-embedding (capturing behavioral interpretation).
We define these next. We consider first the embedding of a single BP pattern, then of full queries.

Definition 2.5. Let p̂ be a BP pattern and let p be a BP. An homomorphic (resp. isomorphic)-embedding of p̂ into p is a
homomorphism (isomorphism) ψ from the nodes of p̂ to the nodes of p s.t.
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1. (nodes) each node of p̂ is mapped to a node of p having the same label; the start (resp. end) node of p̂ is mapped to
the start (resp. end) node of p.

2. (edges) for each (indirect) edge of p̂ from a node m to a node n there is an edge (path) in p from ψ(m) to ψ(n).

Definition 2.6. Let p̂ be a BP pattern and let p be a BP. A bisimilar-embedding of p̂ into p is a binary relation R between the
nodes of p̂ and the nodes of some subgraph p′ of the transitive closure1 of p s.t.

1. (nodes′) for each node n ∈ p̂ [resp. each n′ ∈ p′] there exists some node n′ ∈ p′ [n ∈ p̂] s.t. R(n,n′) holds; whenever
R(n,n′) holds, n and n′ have the same label and if one is a start/end node then so is the other.

2. (edges′) for each (indirect) edge from a node n to a node m in p̂, [resp. from n′ to m′ in p′] there exists a (indirect)
edge from some node n′ to some m′ in p′ [resp. from some n to some m in p̂] s.t. R(m,m′) and R(n,n′) hold.

In the sequel, when some definition/result applies to all homomorphic, isomorphic, and bisimilar embeddings we will
use the notation X-embedding to denote all.

We now consider the embedding of a query consisting of a set of such BP patterns into a specification.

Definition 2.7. Let q = (Q ,q0, τq) be a query and let s = (S, s0, τs) be a system of BPs. An X-embedding of q into s consists
of

1. A homomorphism h from the BP patterns in Q to the BPs in S and their refinements that (i) maps the root pattern q0
of q to the root BP s0 of s, and (ii) maps, for each (indirect) function name c in q, the BPs in τq(c) to (refinements of)
the BPs in τs(c).

2. An X-embedding for each 〈BP pattern,BP〉 pair in the homomorphism.

To conclude, we need to define the query semantics. We distinguish between boolean and explanatory answers for a
query. The boolean X-answer to a query q on a system s is positive if such X-embedding exists and is negative otherwise.
The explanatory X-answer consists of s’s components participating in such X-embeddings, as defined formally below.

Definition 2.8. The nodes and edges of a system s that are relevant to a given X-embedding include

1. the nodes of s in the ranges of the mappings (ψ or R , depending on the embedding type),
2. the edges and nodes of s appearing on paths between these nodes and which could be used to verify requirement

(edges) (resp. (edges)’) for the embedding,
3. the nodes on which any of the above depend on, transitively (see Definition 2.3).

The explanatory X-answer of a query q on a system s, denoted by qX (s), is a restriction of s to those nodes and edges that
are relevant to some X-embedding of q in s. (Empty BPs are removed and the domain of τ is restricted to the relevant
functions.)

In the sequel, we will refer to BPQL, under isomorphic, homomorphic, and bisimilar embeddings, as isoBPQL, homBPQL,
and bisBPQL, resp. One may also consider combinations, allowing the user to specify different interpretations for various BP
patterns in the query. As this does not affect the results presented in the paper we ignore it in the sequel.

Extensions. To simplify the presentation, we used above a very simple model and query language. The full BPQL model
includes several useful extensions that enhance the expressive power, and facilitate the querying of real life business pro-
cesses, without affecting the complexity of query evaluation. We discuss them below.

Regular path expressions. Indirect edges in the query may be annotated by regular expressions. The annotation of a regular
expression T restricts the search to paths where the sequence of labels of the nodes on the path form a word in the regular
language defined by T . The notions of the various X-embeddings extend naturally to this setting, with conditions (edges)
and (edges′) of Definitions 2.5 and 2.6, resp., being refined. It now matches an edge in the BP pattern, that is annotated
by a regular path expression T , to paths whose node labels form words in T .

As the term ‘Path’ may be slightly ambiguous, we start with an explicit definition of its intended meaning, as follows.

Definition 2.9. Given a graph G = (V , E) and two unique nodes start, end ∈ V , a path from start to end is a sequence of
nodes P = (V 0, V 1, . . . , Vk) such that ∀i = 0, . . . ,k − 1. V i → V i+1 ∈ E , ∀i, j, i 
= j. (V i, V i+1) 
= (V j, V j+1) (distinct edges),
V 0 = start, Vk = end.

1 The transitive closure of a graph is obtained by adding edges (specially marked as ‘indirect’) between any two nodes n,m such that m is reachable
from n.



588 D. Deutch, T. Milo / Journal of Computer and System Sciences 78 (2012) 583–609
A finite traversal over P is a sequence T = (U0, U1, . . . , Ut) such that U0 = start, Ut = end, and ∀i, i = 0, . . . , t − 1, ∃k
(Ui = Vk ∧ Ui+1 = Vk+1).

Note that between any two nodes in a graph G there exists a finite number of paths (as the number of sequences of
distinct edges in G is finite). A traversal over the path can only use the same nodes and edges as the path, but may repeat
edges in case of cycles. For each path P there thus may be an infinite number of traversals over P (as we can traverse over
each cycle any number of times).

Definition 2.10. For a path P with its nodes annotated with labels belonging to some alphabet Σ , we associate with P a
regular expression Reg(P ) with every string S ∈ Reg(P ) constructed out of the sequence of labels obtained by some finite
traversal over P .

Reg(P ) can be though of as the regular expression that represents the same language as the finite state automaton
represented by the path.

Definition 2.11. A path P conforms to a regular expression T over Σ if Reg(P ) ∩ L(T ) 
= φ where L(T ) is the language of all
strings generated by T .

We are now ready to refine the definition of X-embeddings to patterns with regular path expressions. We start by
homomorphic- and isomorphic-embeddings, then consider bisimilar-embeddings.

Definition 2.12. Let p̂ be a BP pattern and let p be a BP. An homomorphic (resp. isomorphic-) embedding of p̂ into p is a
homomorphism (isomorphism) ψ from the nodes in p̂ to the nodes of some subgraph p′ of p s.t.

1. (nodes) each node in p̂ is mapped to a node of p′ with the same label; the start (resp. end) node in p̂ is mapped to
the start (resp. end) node of p′ .

2. (edges) for each (indirect) edge from a node m to a node n (marked by a regular expression T ) in p̂ there is an edge
(path) P in p′ from ψ(m) to ψ(n) (such that P conforms to T ).

In order to adapt the definition of bisimilar-embedding to handle regular expressions, we define the annotated transitive
closure of a graph G to be the transitive closure of G, where each indirect edge e that was placed as replacement for a
(finite) set of paths P = {P1, . . . Pk} being marked with Reg(P ) = Reg(P1) ∪ Reg(P2) ∪ · · · ∪ Reg(Pk). The annotation of an
edge e is denoted Reg(e).

Definition 2.13. Let p̂ be a BP pattern and let p be a BP. A bisimilar-embedding of p̂ into p is binary relation R between the
nodes of p̂ and the nodes of some subgraph p′ of the annotated transitive closure p s.t.

1. (nodes′) for each node n ∈ p̂ [resp. each n′ ∈ p′] there exists some node n′ ∈ p′ [n ∈ p̂] s.t. R(n,n′) holds; whenever
R(n,n′) holds, n and n′ have the same label and if one is a start/end node then so is the other.

2. (edges′) for each (indirect) edge from a node n to a node m in p̂, marked by T [resp. from n′ to m′ in p′] there exists
an (indirect) edge e′ from some node n′ to some m′ in p′ [resp. from some n to some m in p̂] s.t. R(m,m′) and R(n,n′)
hold (and Reg(e′) ∩ T 
= φ).

Negation. In a query with negation, the patterns include some nodes and edges that are distinguished as negative. The
intuitive interpretation is that the query searches for occurrences of the positive portions of the patterns, for which none
of the negative parts co-occur. More formally, to define the semantics of queries with negation we extend the notion of
X-embedding: Given a BP pattern p̂ with negation, the positive part of p̂, denoted by positive(p̂), is the pattern obtained from
p̂ by deleting all the negative edges and nodes, and all the edges incident on these nodes. An X-embedding of p̂ into a BP
p is an X-embedding of positive(p̂) which cannot be extended, by adding nodes corresponding to the negative part, to an
embedding of p̂. Now, the X-embedding of a query q is defined as before, with this refined embedding being used for the
BP patterns in q that contain negation.

Label predicates, variables and joins. Nodes in query patterns may be annotated with predicates that can be satisfied by more
than one label. This is useful when users are interested in a set of nodes whose name share some common property (e.g.
contains the string “search”), rather than a specific node. To support this, when looking for an X-embedding, a query node
annotated with a predicate P can be mapped to any node whose label satisfies P .

Together with label predicates, one can also attach label variables to nodes and test for (in)equality of the assigned la-
bels. Label variables, and joins based on (in)equality of such variables, are incorporated within our framework in a natural
fashion. Note however that the complexity of the query evaluation algorithm becomes O (|s||q| × O (X-match(|s|, |q|))) (com-
pared to O (|s|2 × c|q| × O (X-match(|s|, |q|))) in the simpler model, see Section 5). On the other hand, Beeri et al. [4] have
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introduced path variables, namely the expressive power to require that paths occurring in different parts of the pattern will
bear the same sequence of node labels. It was shown in [4] that this added expressive power renders the problem of testing
emptiness of a query answer undecidable (or PSPACE-hard, for non-recursive systems). Joins on path variables are therefore
not supported by BPQL.

Data elements and process properties. Nodes in the BP graph may represent process properties such as its provider, capa-
bilities, etc. They can also represent data elements that serve as input/output to BPs. Similarly, BPQL queries may restrict
the search to processes having certain properties (e.g. provided by a given provider) or inquire about the flow of data (e.g.
which data elements serve as input, possibly transitively, to a certain BP). Note, however, that BPQL queries cannot inquire
about the potential run time value of the data.

Distributed systems. In a distributed setting, each peer holds a set of BPs and may provide (use) processes to (of) remote
peers. To support this in the BPQL model, we associate a peer id with each BP and node. For queries, we allow annotation of
BP patterns and nodes with a peer id (or a predicate on the peer identifiers), having the semantics of restricting the search
to BPs supplied by the specified peers. The BPQL query engine [4,5] supports distributed query evaluation.

3. Related models and languages

Before presenting our query evaluation algorithm, let us first set the background by looking at some closely related
models and languages. We will thus obtain a comparison point for the expressivity of BPQL and for the complexity of
our evaluation algorithm and its properties. In the discussion we shall address two angles of BPQL: (1) the model used to
describe the business processes, and (2) the query language used to specify the properties of interest. These two angles are
denoted below, resp., by BPQLspec and BPQLquery.

In principle, one could derive a query evaluation algorithm for BPQL by adapting an existing evaluation algorithm for
some language equivalent or more powerful than BPQLlang on a model equivalent or more powerful than BPQLspec . We will
see that while such languages and models do exist, the adaptation of existing algorithms does not prove to be practical. We
will focus on models that we believe are most relevant for our work. We first consider data models, then query languages,
and finally existing evaluation algorithms for the queries in these models. For both categories (data/query languages) we
start by defining notions of languages relations (i.e. inclusion and equivalence). These notions will be utilized when com-
paring different models.

3.1. Specification models

On comparing the expressive power of specification languages. As mentioned in the introduction, specifications can be inter-
preted in two different ways – structural or run-time. A choice of either of the approaches implicate on the comparison
between models, as we explain next. The models we are concerned with, generate an infinite set of finite state machines
(i.e. finite directed labeled graphs) which corresponds to the set of all expansions (re-writings), obtained by replacing a
node with a label l by some graph G ′ which depends only on l. These models are categorized as context free processes. Two
approaches exist, when tackling these models. The structural approach considers all possible structures of the specification
graph expansions (re-writings), and states that L1 ⊆ L2 if for each S1 ∈ L1, S2 ∈ L2, and for each finite state machine graph
G1 generated by S1 there exists an isomorphic finite state machine graph G2 generated by S2. The runtime approach con-
cerns all possible executions over these structures, and thus the structures need not be ‘the same’ (i.e. isomorphic) but
rather representing the same set of runs (i.e. bisimilar). As two isomorphic graphs are also bisimilar, but the converse is not
necessarily true, the structural requirement is stronger. We consider structural queries as well as executional queries, and
thus we use the stronger notion of structural inclusion (and induced by it, the notion of equivalence: L1 ∼ L2 iff L1 ⊆ L2
and L2 ⊆ L1) of specification languages. As always in reduction, the question of the result size rises. In all of our specifica-
tion reductions, the size of the resultant model is linear in the size of the original model. We typically give a syntactical
translation and show that the semantics remains intact.

Common models. Common models used in the literature to describe business processes, and software specifications in
general, include finite state machines, recursive state machine, graph grammars (in various flavors), and equational sets. We
describe them below.

Finite and recursive state machines. A finite state machine (FSM) [33] is an edge-labeled directed graph, where the nodes
represent states, and the edges represent transitions. The labeling of the edges may represent conditions for the transition
to occur, actions to execute upon transitions, or both. FSMs can be used to describe simple “flat” processes. A recursive state
machine (RSM) [6,1] is an extension of FSM, introducing a definition of a node implementation. In a way very similar to
BPQLspec , an implementation of a label of an RSM node is itself an RSM. An expansion of the state machine is defined as
replacing a node with an implementation of its label, and connecting the implementation as a subgraph into the original
graph. Some variants exist on the connection pattern, where the simplest version requires each implementation RSM to have
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a single entry and a single exit nodes. This restriction of the model is called Single Entry Single Exit RSM (SRSM). BPQLspec is
equivalent to SRSM, as we shall prove. We start by giving the formal definitions of RSM and SRSM.

Definition 3.1. A recursive state machine (RSM) A over a finite alphabet Σ is a set M = {M1, . . . , Mk} where each Mi =
(Ni, Bi, Eni, Exi, Xi, δi) is called a component structure, and contains:

1. A set Ni of nodes and a set Bi of boxes (corresponds to regular and composite nodes in BPs).
2. An indexing Y : {B1, . . . , Bm} �→ {1, . . . ,k} that assigns for every box an index of one component structure.
3. A set of entry nodes Eni and a set of exit nodes Exi .
4. A labeling function Xi : Ni �→ Σ .
5. A transition relation δi with transitions of the form (u, σ , v) where u is either a node in Ni or a pair (b, x) with b being

a box in Bi and x being an exit node in Ex j for j = Yi(b), the label σ is in Σ ∪ {ε}, and v is either a node in Ni or a
pair (b, x) with b being a box in Bi and x being an entry node in En j for j = Yi(b).

An RSM is single-entry if ∀i |Eni | = 1, and it is single-exit if ∀i |Exi | = 1. We denote a single-entry single-exit RSM by
SRSM.

The semantics of SRSM is given through the following definition of Kripke structures.

Definition 3.2. A (infinite) Kripke structure over a set of atomic propositions P is a tuple (S, R, L) where S is a possibly
infinite set of states, R partial to S × S is the transition relation, and L : S → 2P is the labeling function, associating with
each state the set of atomic propositions that is true in this state.

Kripke structures are used to formalize expansions of the SRSM, in a similar manner to the manner refinements relate
to BPs. Specifically, when considering an expansion of SRSM, it corresponds exactly to a Kripke structure. The nodes of the
expansion are interpreted as the states, its edges as the transition relation, and the labels of the expansions are interpreted
as the labels of the Kripke structure. Usually the term ‘Kripke structure’ relates to finite state machines. Here, following [6],
the number of states may be infinite.

Each of the above-mentioned terms (BP refinements and SRSM expansions) represents the semantics of the evolving
processes, in the corresponding model. We next show that the model of SRSMs is equivalent to the model of BPs. As part
of the proof, we show that the terms of expansion and refinement are indeed equivalent.

Theorem 3.3. Single Entry Single Exit Recursive State Machines (SRSM) and Business Processes model are of the same expressive power.

Proof. We start with a syntactical translation between SRSM and BP. The names of the ingredients are different but their
semantics is the same. The technical details follow.

Recall that an RSM is a set of component structures M = {M1, . . . , Mn}. M is equivalent to the set of BPs S . M1 is called
the top-level structure of M and is equivalent to the root system process S0 by the terminology of BPs. We next show that
a component structure is equivalent to a BP.

A BP can be represented by a tuple (G, L, u, v), where: G is a graph, L is a labeling function, labeling each node with
one label out of a set of concrete labels, or assigning it an external function label, which means that it is a composite node.
u and v are the start and end nodes.

On the other hand, a component structure consists of:

• A finite set of nodes Ni . This set corresponds to the set of nodes of the BP graph.
• A finite set of boxes Bi . A box corresponds to a composite node.
• A non-empty subset of the nodes Ni , called the entry nodes and denoted by Ii . If the RSM is a single-entry one, then

each set Ii is a singleton, and thus corresponds to the start node of the BP.
• A non-empty subset of the nodes Ni , called the exit nodes O i . If the RSM is a single-exit one, then each set O i is a

singleton, and thus corresponds to the end node of the BP.
• A labeling function Xi : Ni → 2P , that labels each node with a subset of P . This corresponds to the labeling function

of BP.

So far we’ve showed the equivalence of the static structures of the two models. We also need to consider expansions
(re-writings) of SRSMs (resp. BPs), and to show that these two concepts are indeed equivalent. We do this by showing a syn-
tactical translation between the primitives that concern expansions and re-writings, as we continue listing the components
of SRSMs and comparing them to the components of BPs.

• An Indexing function Yi : Bi → {1, . . . ,n} that maps each box to the index j of some structure M j . This corresponds to
the implementation function for composite nodes.
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• A set Ci (call nodes) of pairs of the form (b, e) where b is a box in Bi , and e is an entry-node of M j . This attaches a
box to a start point of the callee.

• A set Ri (return nodes) of pairs of the form (b, x) where b is a box in Bi , and x is an exit-node of M j , j = Yi(b). This
attaches a box to an end point of the caller.

Note that the two definitions above are redundant in case of single-entry single-exit model as Yi(b) determines Ci =
(b, S(Mi)), and Ri = (b, E(Mi)) and thus it can be neglected.

• An edge relation Ei , with every edge being a pair (u, v) s.t.
1. u is either a node in Ni or a return node in Ri .
2. v is either a node in Ni or a call node in Ci .
When considering the single-entry single-exit model, this corresponds exactly to the terms of re-writings in BPs, as for
any edge in a (rewriting of) BP one of the following is true:
1. Connecting two nodes in the original graph or
2. The target of the edge can be a start node of an expansion (if the edge’s target was rewritten) or
3. The origin of the edge can be an end node of an expansion (if the edge’s target was rewritten) or
4. Both ends can be the result of such re-writings.
These cases correspond exactly to the 4 combinations of (1) and (2) above.

• Substitution of a box b is done by inserting the structure M j s.t. j = Yi(b) and connecting it to the nodes in Mi
according to the edge relation E . This is equivalent to re-writings. In the single-entry single-exit model E is enforced to
connect any node that is connected to an expansion of B , to the only entry (or exit in the opposite case of the edge)
of B . This completes the equivalence to BP, where composite nodes ∼ boxes.

• The expansion (which of course can be infinite) K (M) of an RSM M is the Kripke structure (S, R, L) defined as follows:
A state of the structure is defined by a node, and a description of how it was created, namely a finite sequence of boxes.
This sequence is called the node’s context.
R is the set of transitions ((v, w), (v ′, w ′)) that satisfy any of the following:
– (v, v ′) ∈ Ei , v, v ′ ∈ Ni , w = w ′ (same context, original edges),
– (v, (b′, e′)) ∈ Ei , v ∈ Ei , v ′ = e′ , and w ′ = wb′ (applying rewriting on b′),
– ((b, x), v) ∈ Ei , v = x, v ′ ∈ Ni , w = w ′b (again, applying rewriting, but on the other side of the edge),
– ((b, x), (b′, e′)) ∈ Ei , v = x, v ′ = e′ , and w ′ = w ′′b′ with w = w ′′b (applying one rewriting on one side, another on the

other).
This is just a formal definition of the expansion process, which complies with rewriting in BPs, along with keeping track
of contexts.

• Finally, the labeling function L : S → 2P is defined by L((v, w)) = Xi(v), for i s.t. v ∈ Mi . This just means that every
node keeps its original label, as in BPs. �

Context free graph grammars. The notion of context free graph grammars was introduced in early works such as [31].
The idea is that similar to the notion of string grammars where non-terminals appear in strings and are associated with
derivation rules that allow to replace them with sub-strings. With graph grammars, the non-terminals may be associated
with some objects in the graph (nodes, edges, paths, k-size cliques, etc.) and rewriting rules specify for each non-terminal,
the subgraphs that it can be replaced with. A difficulty that is new here (with respect to string grammars) lies in how
the newly derived subgraphs are connected to the original graph (where the non-terminal appeared). Thus, the rules are
accompanied by connection instructions on how to connect these new graphs to the original graph. These instructions
are called the Connection Relation. The literature (e.g. [24,11]) considers mainly two particular cases of context free graph
grammars: Hyperedge Replacement (HR) grammars, where the non-terminals in the graph are hypergraphs, and Vertex
Replacement (VR) grammars, where the non-terminals are graph nodes. For the former, the connection relation is implied
by the nodes residing on the hyperedge. These nodes are connected, upon replacement, to the corresponding nodes of the
inserted graph. The latter allows any connection relation to be defined, hence its expressive power is stronger [11].

There is a tight connection between context free grammars and equational sets, to be defined next. An equational set [27]
is the set of least solutions to an equations system 〈U1 = p1, . . . , Un = pn〉 with the Ui ’s being variables and each pi , called
polynomial, is of the form t1 + · · · + tk , each ti being either a variable (one of the Ui -s) or a constant. There are different
interpretations of the Ui variables in the above definition that affect their meaning. When the variables are interpreted over
graph vertices (hyperedges), the defined set of graphs is named VR-equational (respectively HR-equational).

The tight relationship between equational sets and context free graph grammars was established in [10], as follows.

Proposition 3.4. (See [10].) A set of graphs is VR-equational (HR-equational) if and only if it is generated by some VR (HR) graph
grammar.

Consequently the set of process refinements defined by a BPQLspec system is VR-equational (and thus also HR-equational)
as well. From now on we shall refer to the more general notion of VR-equational simply as equational. From the above
discussion it follows that,
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Proposition 3.5. BPQLspec ∼ SRSM ⊂ HR ⊂ VR ∼ Equational.

The proposition above constitutes that BPQLspec ⊂ HR, through the equivalence of BPQLspec and SRSM. We can also show
a direct and constructive reduction from BPQLspec to HR grammars. This reduction will be used in our algorithm given in
Section 4, where we use some results on HR grammars. Hence the importance of a direct construction, given as the proof
of the following lemma.

Lemma 3.6. Every BP system can be translated into an equivalent HR graph grammar with a size linear in the size of the original BP.

Proof. The simple transformation transforms the labeled nodes into labeled edges, and thus obtain a particular case of
HR graph grammar where the hyper-edges are actually just plain edges. More formally, for each vertex v labeled by l we
generate a directed edge e(v) labeled l. For every edge pointing to v in the original graph, we generate a new edge pointing
to the origin of e(v). For every edge with origin v , we create an edge whose origin is the target of e(v). The replacement
rules now apply to the edge e(v) rather than to the node v . �
3.2. Query languages

On comparing the expressive power of query languages. When we compare the expressive power of two query languages we
must set some ground rules for reductions, otherwise one can always conduct the trivial reduction of solving the query,
encoding the solution within the structure, and then reduce the query to any logic. For all of the following definitions,
denote Graphs as the (infinite) domain of all graphs.

Definition 3.7. A reduction R is a function Graphs × L1 → Graphs × L2 where L1, L2 are two different logics over graphs.

Definition 3.8. R is defined as a structure-independent reduction if it can be decomposed into two reductions R1 : Graphs →
Graphs, R2 : L1 → L2 such that for all graphs g and formulas f , R(g, f ) = (R1(g), R2( f )). If there exists such decomposition
where R1 = I (the identity function), then the reduction is structure-preserving.

Definition 3.9. If a logic L1 can be reduced using a structure preserving reduction to a logic L2, we say that L1 is partial
to L2, or equivalently that L1 is expressible by L2.

A simple example of a reduction that is structure-independent but not structure-preserving can be seen when handling
the concept of transitive edges. Receiving as an input to the reduction both the query and the specification, one can generate
a ‘transitive closure’ of the specification, namely for every two nodes (u, v), if a path from u to v exists, then a specially
labeled edge is generated, connecting u to v . We can then replace the transitive edges in the query by an ordinary edge,
labeled by the new special label. Similar construction can handle regular expressions over the edges. However, we shall
not use such reductions; all of our query languages reductions are structure-preserving. I.e., we show expressibility relations
between languages.

Common models. When considering query languages, there exist two main groups, categorized by their invariance to bisim-
ulation. All modal logics, and specifically the temporal logics commonly used for program verification, such as LTL and CTL∗ ,
are bisimulation invariant, whereas other languages such as First and Second Order logics are not. We consider them in turn
below.

As a basis for comparison, we will consider in this subsection Boolean BPQL queries over flat BPs (graphs) and compare
them to several common query languages/logics over finite graphs. So, whenever we use here the term “BPQL query” we
mean it in the above sense. This will prove useful in the following section, when considering general BPQL queries over
nested BPs.

CTL∗ and μ-calculus. As mentioned above, the temporal logics commonly used for program verification are invariant to
bisimulation. They thus fail to capture isoBPQL and homBPQL, but are natural candidates to express bisBPQL. All temporal
logic formalisms [19] contain, in addition to the regular connectives, modalities that refer to time. The formalisms differ in
their concept of time (either linear or branching), and in the specific modalities. LTL (Linear Temporal Logic) regards time
as a straight line, and contains modalities such as N (next), F (Finally), U (Until), etc. CTL∗ extends LTL, considering time as
branching, where there is more than one possibility for the future. Thus it contains the additional modalities of E (exists a
path), and A (for all paths). μ-calculus is a temporal logic with extended expressive power. It contains the N , E , A operators
along with the least fix point and the greatest fix-point operators (denoted by ν and μ respectively), which allow recursion.
By applying the fix-point operators over the basic ones, the implementation of F , U , as well as additional operators not
expressible in CTL∗ , can be obtained.

Proposition 3.10. bisBPQL queries are expressible in μ-calculus, with the formula size linear in the size of the query graph.
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First and Second Order logics. The temporal logics considered above fail to capture isoBPQL and homBPQL (see Lemma 3.13
below). The BP patterns used in homBPQL queries test for the (in)existence of certain nodes in the graph, and require
the nodes to be (or not) connected by paths whose shape confirm to some regular languages. The isoBPQL variant further
requires the nodes to be distinct. As in the case of XML query languages (and the tree pattern used in them), such patterns
can be naturally expressed by FO(TC)2 or MSO,3 but not in FO. Indeed we will see in the next section that hom/isoBPQL
patterns can be expressed by a fairly simple conjunctive subclass of FO(TC), with the size of the FO(TC) formula being linear
in the size of the given BP pattern.

The following lemma establishes the connection between modal and non-modal logics.

Lemma 3.11. (See [23].) μ-calculus is equivalent to the bisimulation-invariant part of MSO.

From this and Proposition 3.10 above it naturally follows that MSO can also express bisBPQL. However the converse is
incorrect, as follows.

Definition 3.12. A query language L over graph structures is defined to be bisimulation-invariant if for every formula f ∈ L
and for every two bisimilar graphs G , G ′ , G |� f ⇔ G ′ |� f .

All temporal logics, and specifically μ-calculus and CTL∗ are bisimulation-invariant.

Lemma 3.13. homBPQL and isoBPQL cannot be expressed by any bisimulation-invariant language.

Proof. The example in Fig. 4 above shows that (sub)graph isomorphism queries distinct between two bisimilar graphs. I.e.,
there is a query graph Q (the query in the figure) and two bisimilar graphs G , G ′ (BP1, BP2 in the figure), such that
G is isomorphic to Q (and thus the answer for the query “Does a subgraph of G isomorphic to Q exist?” is true), and
on the other hand G ′ is not isomorphic to Q (and thus for G ′ , the query result is false). Naturally, the same holds for
homomorphism. Consequently, any query language that allow expressing a subgraph homomorphism/isomorphism query is
not bisimulation invariant and cannot be expressed by any bisimulation-invariant logic. �
Recognizable sets. Another formalism that captures hom-, iso-, and bisBPQL patterns is Recognizable Sets [27]. Recognizable
Sets are an extension of the notion of regular languages, which are defined for strings, for general structures (domains). It
is defined as a mapping from the general domain D into some finite domain S (intuitively the states), including a domain
F ⊆ S (intuitively representing the accepting states) such that the recognizable set R ⊆ D is mapped into F . (For a formal
definition see [27].)

The relationship between Recognizable Sets and the logics discussed above follows from the following lemma from [10].

Lemma 3.14. (See [10].) For every graph property expressible by MSO, the set of graphs satisfying the property is a Recognizable Set.

Note that recognizable does not necessarily mean computable. For instance, interpreted over the set of all graphs there
exists a recognizable set that it is uncomputable, as implied by the lemma above and the undecidability results of [34].
However, for graphs generated by a context free graph grammar, it is indeed decidable and computable [10]. A consequent
of Lemma 3.14 and the expressibility of BPQL queries by MSO:

Proposition 3.15. For a BPQL system s, the set of process refinements for which a given Boolean homBPQL/isoBPQL/bisBPQL query
returns a positive answer is a Recognizable Set.

3.3. Query evaluation

To conclude this section, let us consider query evaluation. Ideally, one could derive a query evaluation algorithm for BPQL
by adapting an evaluation algorithm for some equivalent or more powerful language on an equivalent or more powerful
model. The two most relevant algorithms that we had found in the literature differ in their invariance to bisimulation and
their complexity: The first is bisimulation invariant, hence can be used only to evaluate bisBPQL queries. The second can be
used to evaluate all types of queries but its complexity is extremely high (non-elementary in the size of the query).

Algorithm 1. We have shown above that BPQLspec can be expressed by SRSMs. We have also shown that BPQLquery patterns
can be expressed as CTL∗ formulas. Research on RSMs [1,6] suggests model checking techniques to evaluate CTL∗ formula
over SRSMs, with complexity O (r∗2 f ), where r and f are the size of the SRSM and the formula, resp. Due to the exponential

2 First Order Logic augmented with a Transitive Closure operator.
3 Monadic Second Order Logic.
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increase in the formula size, upon translation from BPQLquery to CTL∗ , this yields, for a BPQL system s and a query q, a query

evaluation algorithm with complexity O (|s| ∗ 2(2|q|)).

Algorithm 2. An alternative approach is to rely on the following lemma showed by Courcelle in [10]:

Lemma 3.16. (See [10].) The intersection of a Recognizable Set with an Equational Set is an Equational Set.

The intersection algorithm described in [10], coupled with Propositions 3.5 and 3.15 above, and the fact that emptiness is
decidable for Equational sets [10], provides an algorithm for evaluating Boolean BPQL queries. This result, however, although
of theoretical interest, does not suggest a practical evaluation algorithm for BPQL: The complexity of the construction in [10],

though FPT (see Section 5), is non-elementary in the size of the query (i.e. 22···22

with the size of the exponent tower being
O (|Q |)).

Clearly, a more direct (and more efficient) approach is required here. As our query language is weaker than the full MSO,
such algorithm is possible, and we propose it next. In particular, our algorithm is applicable in a uniform manner to all the
iso/hom/bisBPQL variants, as well as to both Boolean and explanatory queries.

4. Query evaluation for BPQL

To evaluate a query q on a system s, we need to embed the BP patterns in q within (refinements) of the BPs in s. We
assume first the existence of some oracle, denoted by X-match, that given a single BP pattern p̂ and some BP p, computes
the X-embeddings of p̂ into p. (We will consider the implementation of such an oracle later.) We start by showing how to
use this oracle to find X-embeddings of p̂ into refinements of p. Later, we use this to derive an evaluation algorithm for the
full query.

Our algorithm is inspired by the original BPQL query evaluation algorithm presented in [4]. However, unlike that algo-
rithm, which is applicable only to structural queries, the present algorithm is designed in a modular manner that can be
parameterized by the required type of embedding. This is achieved by modeling the queries as logic formulas – FO(TC)
formulas for structural queries and μ-calculus formulas for behavioral ones – and using a similar formula decomposition
method for both, as described below. For better readability, we explain the algorithm gradually. We start with an infor-
mal presentation – First, we sketch here informally the boolean version of our algorithm, then explain how to obtain its
explanatory version. We later proceed to the formal specifics of the algorithm.

Embedding a single pattern. We start by explaining how to find, given a system s, a BP p and a BP pattern p̂ (possibly
including regular path expressions and negation), X-embeddings of p̂ into refinements of p. Our algorithm first constructs
(1) a graph grammar G p that describes the possible refinements of p (w.r.t. s), and (2) an FO(TC) or μ-calculus formula,
depending on the embedding type, F p̂ that represents the pattern p̂. It then uses the two to compute a new graph grammar
that encodes the X-embeddings of p̂ into refinements of p. The boolean query answer will be positive iff the constructed
grammar is not empty. We explain each of this steps below.

Grammar We first construct a graph grammar for the system s, as explained in the previous section. We use the result of
[26] stating that an HR graph grammar can be translated into a normal form, where each graph includes only two
non-terminals. We assign to the normal-formed grammar a new root non-terminal R that derives the BP p, and
denote the resulting grammar by G p . It is easy to see that the set of graphs derived from R in G p correspond
precisely to the possible refinements of p w.r.t. s.

Formula The formula for p̂ uses two types of predicates: L A(n) holds iff the given BP contains a node n having a label A.
PathR(n,m) holds iff there is a path from node n to node m where the sequence of labels on the path forms a
word in the regular language R . In general, each pattern p̂ can be expressed as a conjunction of three formulas
F p̂ = f1 ∧ f2 ∧ f3 where f1 is a conjunction of label predicates, f2 is a conjunction of path predicates, and f3 is a
universally quantified formula containing conjunction of negated node, edge, and path predicates. Thus f1 and f2
handle the positive part of the query, where f3 represents its negative part.

The distinction between the different embeddings sought for is expressed in the formula construction: For
homBPQL and isoBPQL, variables are interpreted over individual nodes, while for bisBPQL they are interpreted
over sets of nodes. Also, isoBPQL formulas contain additional clauses representing inequalities between the node
variables.

Algorithm We use the graph grammar G p and the formula F p̂ described above to construct a new graph grammar that en-
codes the embeddings of p̂ in refinements of p. The basic idea is similar to the one used in verification algorithms,
e.g. [2]. We try all splits of the formula F p̂ up into 3 parts, each of which is ‘not larger’ then the original formula.
Each part is then handled separately, as follows. The first part is embedded directly within p, where the other two
parts are embedded recursively within the implementations of p’s function call nodes. To capture this recursive
embedding, we replace within (the grammar representation of) p its two non-terminals N1, N2, that represent the
function calls, by (N1, F N1 ) and (N2, F N2 ) (where F N1 , F N2 are the above mentioned parts of F p̂) and we continue



D. Deutch, T. Milo / Journal of Computer and System Sciences 78 (2012) 583–609 595
recursively to finding embeddings of F N1 (F N2 ) within the implementation of N1 (N2). Intuitively, we find the
fix-point of the set of constraints generated.

To complete the algorithm description, we only need to describe the split of a formula F . For a BP g with two function
call nodes (grammar non-terminals) N1, N2, we split F into three formulas denoted by F g , F N1 and F N2 . This is done by
considering all possible splitting of the node predicates of F into three sets4 f g , f N1 , f N2 (representing the nodes to be
embedded in g , N1, and N2, resp.) and then splitting the remainder of F based on this nodes split. The node predicates in
F g, F N1 , F N2 are trivially f g , f N1 , f N2 , respectively. We further need to consider the paths connecting the nodes. The splitting
of the path formulas depends upon the nodes split – path predicates with both end-nodes in f N1 (resp. f N2 ) are added5

to F N1 (resp. F N2 ). The treatment of path predicates with one end-node in f N1 and the other in f N2 is more tricky: their
associated regular expressions are split into all possible three parts s.t. one describes the sub-path to be embedded in N1
(the corresponding path predicate is added to F N1 ), the second describes the sub-path, to be embedded in g , connecting N1
to N2 (added to F g ), and the third describes the sub-path to be embedded in N2 (added to F N2 ). The details can be found
in Appendix A. Finally, the universally quantified formulas in F are split in a similar manner.

Evaluating a full query. The algorithm above constructs a graph grammar that encodes the embedding of a single BP pattern.
Extending it to handle a full BPQL query is fairly straightforward. For each indirect function call node in the query, we use
the algorithm above to compute the graph grammar rules representing the embeddings of the function’s implementation
into refinements of the corresponding call node in the system. If any of the computed grammars happens to be empty, we
stop and return an empty graph grammar. For the direct call nodes in the query, as well as for the query root BP pattern, we
use directly the X-match oracle to obtain grammar rules describing their possible (direct) embedding into the corresponding
system BPs. Here again, if any of these embeddings fail, we stop and return an empty grammar.

The correctness of the algorithm appears in Appendix A, following its formal description. The explanatory query answer
can also be easily obtained from the above algorithm, as it maintains the unique identifiers of all nodes and edges being
used. These can be extracted from the constructed graph grammar and used to generate the explanatory answer.

5. Complexity

The complexity of the algorithm presented in the previous section depends on the complexity of the X-match oracles.
We first examine the complexity of such oracles for isomorphic, homomorphic and bisimilar embeddings. Next we analyze
the complexity of the full algorithm, parameterized by the oracle’s complexity.

X-match oracles. Given a BP pattern p̂ and some BP p, X-match computes the X-embeddings of p̂ into p. For the three
types of embedding, the problem of testing for the existence of an embedding is NP-complete w.r.t. the size of the
query pattern, but polynomial in the data size. (The proof follows immediately from the NP-completeness of subgraph
isomorphism/homomorphism/bisimulation [16,21].) A worst case complexity for the oracles is thus O (pp̂). However, using
Database and Verification optimization techniques, this is typically much lower in practice [25].

The overall algorithm. For a given X-match oracle, we use O (X-match(n,m)) to denote the worst case time complexity of
the oracle when embedding a query pattern of size m into a BP of size n.

The following theorem gives an analysis of the algorithm’s complexity.

Theorem 5.1. Given a BP system s and a query q, the time complexity of (the Boolean and Explanatory versions of ) the query evaluation
algorithm presented in the previous section is O (|s|2 × c|q| × O (X-match(|s|, |q|))), where c is a constant.

Proof. The complexity of the algorithm is computed by counting the number of possible query (formula) decompositions
being generated. Note that all decompositions are applied to formulas that represent some sub-patterns of the original
query, and in each stage the decomposition is into a constant (denote c1) number of parts. Thus we have at most O (c|q|

1 )

decompositions to consider at each stage. The number of stages is bounded by the number of the constructed non-terminals.
Those are pairs (N, F ) where N is a non-terminal in the grammar representing the system s and F is one of the conjunctive
sub-formulas. The number of non-terminals N in the grammar of s is at most |s|2 (the power of 2 is caused by the
“normalization” of the grammar done to obtain graphs with at most two non-terminals). The number of formulas F is,
hence, bounded by O (c|q|

2 ) for some constant c2. Finally, at each step, for pair (N, F ), we apply the X-match oracle. This
yields overall O (|s|2 × c|q| × O (X-match(|s|, |q|))). �

Thus, the algorithm is polynomial in the size of the system s and in the complexity of the X-match oracle, but is
exponential in the size of the query. Since testing for the existence of isomorphic-, homomorphic-, and bisimilar-embeddings

4 For structural queries the sets are required to be disjoint.
5 Note that all formulas are conjunctive, so whenever we refer to ‘adding’ a formula f1 into a formula f2 we mean generating the conjunction f1 ∧ f2.
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is NP-hard in the size of the query, is it evident that testing if the answer to an iso-, hom-, and bisBPQL is empty is also
NP-hard in the query size. Interestingly, we can expose an additional type of hardness that comes from the nested shapes
of the system and query graphs, as follows.

Theorem 5.2.

1. Boolean hom-, iso-, and bisBPQL are NP-hard in the size of the query even when the system BPs and the query patterns belong to
a restricted class of graphs for which the X-match can be computed in polynomial time.

2. The above holds even if the query does not use negation and regular path expressions.
3. For homBPQL and bisBPQL, the above holds even if, furthermore, all the call nodes in the system and the query have only one

possible implementation.6

It is open if (3) holds also for isoBPQL.

Proof. We start by giving the proof for parts (1) and (2) of the theorem, obtained through a simple reduction, and then
proceed to proving part (3), using a more complicated reduction.

Parts (1) and (2). To prove parts (1) and (2) of the theorem, we define a simple class of graphs, namely graphs that are
‘tree-like’. Essentially, these graphs are ‘almost’ directed trees, but with their leaves all connected to a single node, which in
turn may be connected to another single node. The formal definition follows.

Definition 5.3. A directed graph G = (V , E) is ‘tree-like’ if one of the following holds.

1. There exists a unique node end(G) ∈ V , such that (a) T = (V − end(G), E − ⋃
w∈V ,e=(w,end(G))(e)) is a directed tree, and

(b) for every leaf v of T , (v, end(G)) ∈ E .
2. There exists end2(G) ∈ V such that (a) G ′ = (V − end2(G), E −⋃

w∈V ,e=(w,end2(G))(e)) satisfies (1), and (b) the only edge
in G having end2(G) as target is (end(G), end2(G)).

For the finite case of trees, sub-tree homomorphism (along with transitive edges) is decided in polynomial time, as the
algorithm of [22] for querying Core XPath over XML trees is of complexity O (|S| ∗ |Q |). This algorithm can be easily adapted
to tree-like graphs and patterns, as the ‘body’ of the pattern (all nodes except the end nodes) can be embedded within the
body of the graph. To find an extension of these embeddings that also include the end nodes, we only need to make sure
that all nodes in the pattern that participate in the embedding are indeed connected to the nodes that relate (through the
embedding) to the ‘end’ node. The node that relate to the ‘end’ node should be verified to be connected to the node that
relate to the ‘end2’ node. We shall now consider BP and BP patterns that are all tree-like. Thus, we can use the finite-case
oracle within our algorithm to obtain an O (|S|2 ∗ 2Q ) algorithm. The next lemma shows that the problem is NP-hard, even
in this restricted case.

Lemma 5.4. BPQL is NP-hard even when all BP graphs are restricted to be tree-like.

Proof. We prove the NP-hardness using a reduction from 3-SAT, as follows.

Reduction. Given a Conjunctive Normal Form formula F , with variables {X1, . . . Xn} we generate an instance of specification
and query (S, Q ) as shown in Figs. 5, 6, 7. The idea is to create a non-terminal associated with each variable of the
formula (Fig. 5). This non-terminal can derive two different trees, which are the two BPs depicted in Fig. 6. I.e., for all i, the
implementations of Xi are BPiTrue and BPiFalse. The former contains all clauses that Xi satisfies, and the latter contains all
clauses that ¬Xi satisfies. The query, depicted in Fig. 7, requires all clauses of the formula F to appear. An embedding thus
corresponds to a ‘correct’ choice of either a variable or its negation, i.e. a satisfying assignment to the variables.

To formally prove that the reduction is valid, we give the following lemma.

Lemma 5.5. There exists a non-empty embedding of the query within the specification if and only if the formula is satisfiable.

Proof. Let E be an embedding of the query within the specification. So there must be a refinement Ri where all nodes of
the query appear. This refinement was generated by choosing a subset of non-terminal generating their ‘true’ graphs, and
another subset generating the ‘false’ graph. This choices corresponds exactly to a satisfying assignment – for every variable

6 Recall that, in general, the implementation function allows to map each function name to a set of BPs which represent alternative possible implemen-
tations for the function.
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Fig. 5. Specification upper level.

Fig. 6. Specification derivation rules.

Fig. 7. Query.

Fig. 8. Specification.

whose non-terminal generated the ‘false’ (‘true’) graph, assign ‘false’ (‘true’). This is indeed an assignment, as every non-
terminal can only generate exactly one of the ‘true’ or ‘false’ graphs, and it is satisfying as every clause node appears in the
refinement, i.e. for every clause there was at least one non-terminals deriving it. The truth value assigned to the variable
corresponding to this non-terminal thus satisfies this clause.

Conversely, let A be a satisfying assignment. The refinement obtained by deriving each non-terminal through its true
graph if A assigns ‘true’ to it, and through its false graph if A assigns ‘false’ to it. This is indeed a well-defined refinement,
since A is an assignment and thus determines a unique derivation rule for each non-terminal (true or false). There exists
a homomorphism from Q to this refinement as every node clause appears at least once. This is due to the fact that the
assignment A is satisfying, thus for each clause, there is at least one variable whose truth value causes the clause to be
true, and its corresponding non-terminal thus derives the clause node. �

Hence the reduction is valid. As the reduction uses only trees, and no negations or regular path expressions as part of
the query, parts (1) and (2) of the theorem are proved. �
Part (3). Note that in the specification used in the reduction above, each label Xi which is marking a function call node
may have multiple implementations. A question rises, whether this is essential. Part (3) of the theorem states that, at least
for homomorphism and bisimulation, the answer is no. To prove this part we propose another reduction which is a bit
more complicated, but where each non-terminal of the specification appears as the left-hand side of a single derivation
rule. However, this reduction is not valid for isoBPQL.

The specification graph, depicted in Fig. 8 is interpreted with τ (A) = BP1, i.e. the implementation of A is BP1. BP0 is
constructed as follows. The level directly below the root contains a set of m nodes, all labeled a, where m is the number
of variables. Intuitively, each such node corresponds to a single variable. To each such node, two nodes labeled ‘A’ are
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Fig. 9. Query.

connected. These correspond to truth values of the variable – one of which corresponds to the value of ‘true’ (positive ‘A’),
and the other one to the value of ‘false’ (negative ‘A’). On the next level, the nodes are labeled by the names of the formula
clauses – if a variable Xi satisfies the clause C j , then a node labeled C j will appear as a child node of the positive child of
the node marked Xi . if ¬Xi satisfies C j then it will appear as a child node of the negative child of the node marked Xi .

The query graph, depicted in Fig. 9 intuitively requires that every clause is satisfied by some variable or by its negation.
(The one whose node will be assigned by the embedding to the ‘A’ node connected to the node marked by the name of the
clause.)

The following lemma shows the correctness of this reduction.

Lemma 5.6. There exists a non-empty embedding of the query within the specification if and only if the formula is satisfiable.

Proof. Assume E is an embedding. Observe that for the nodes in the lower level (labeled C1, . . . , Cn) of the query as well
as in the specification, correspond to the clauses of the formula. The part of an embedding that takes care of C1, . . . , Cn

intuitively assigns each of the clauses to the variables that are responsible for satisfying it. The list of nodes labeled ‘a’
corresponds to the list of all variables. Each node labeled ‘a’ in the query graph is assigned a node (some nodes) labeled ‘a’
in the specification graph. This part of an embedding corresponds to a choice of variable. To determine whether the variable
or its negation satisfies the clause, we distinct between the two nodes marked ‘A’ connected to each ‘a’. One of which
corresponds to the positive variable (i.e. assigning ‘true’ to the variable), and the other one corresponds to the negative
variable. i.e. the assignment AE is constructed as follows.

For each node n labeled ‘a’ in the query Q denote by Varn the set of nodes in the specification affiliated with it in E .
Now for the neighbor of n in Q , marked ‘A’ (and denoted p), and for each node m ∈ Varn , p is mapped to exactly one
neighbor of m (out of the two) marked by ‘A’. (Because the node marked ‘b’ in Q should be mapped to a refinement of the
other ‘A’.) I.e. it is either mapped into the positive ‘A’ or to the negative one. Accordingly, the truth value of the variable
corresponding to m is set to be true or false. We next claim that the assignment AE constructed is indeed a satisfying
assignment.

Lemma 5.7. AE is a satisfying assignment.

Proof. The fact that AE is an assignment is a direct consequence of the construction – exactly one out of ‘true’ or ‘false’
truth values is chosen for each variable. It satisfies the formula, since for each clause Ci of the formula, a node m in Q
marked by Ci is assigned to some node s in the specification marked by the same Ci . Thus, its ‘father’ in Q , marked by A, is
assigned to some node p marked by A in the specification. In turn, p is connected to s, which means that the corresponding
variable (or its negation, depending on whether this is a positive or a negative ‘a’), satisfies Ci . �

So far we’ve shown how to construct a satisfying assignment for the logic formula, given an embedding. Conversely, if
A is a satisfying assignment then one can construct an embedding by relating with each node marked ‘A’ in the query
and attached to a node labeled Ci , the node in the specification that correspond to the variable (or its negation) that was
set by the assignment to true (resp. false), and (resp. their negation) appear in Ci . (If more than one such variable exists,
choose one arbitrarily.) The nodes marked C j are assigned nodes marked C j that are connected to the nodes that their
father (‘A’) was connected to, and similarly for those marked ‘a’. Each node marked by ‘b’ is assigned to the node derived
by the corresponding ‘A’ node (the one not assigned to the query ‘A’ node). Denote this embedding by E A . We next show
that E A is a valid embedding for homBPQL.

Lemma 5.8. E A is a homBPQL embedding.

Proof. Since A is a satisfying assignment, for each clause Ci there exists at least one variable whose assignment satisfies Ci .
We can assume there exists exactly one such variable (in case there is more than one, the construction above arbitrarily
selects one). Thus each node marked ‘A’ in the query is assigned a node in the specification that represents a variable, in
the form that it appears in Ci , and thus the node is connected to the appropriate node in the specification marked with Ci .
Note that since it is possible for the same variable to satisfy several clauses, the relation obtained is not an isomorphism.
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The nodes marked ‘b’ are trivially connected as appropriate, and so are the ‘start’ and ‘end’ nodes. We obtain a homBPQL
embedding. �

That concludes the correctness of Lemma 5.6. �
Thus we have obtained the correctness of Theorem 5.2. The embedding found is not only a homBPQL embedding, but is

additionally a bisBPQL embedding, with each node of the query assigned a set of nodes of order 1. However, as stated above,
this is not an isoBPQL embedding. It remains an open question whether similar construction (i.e. baring the restrictions
described in part (3) of the theorem above) is possible for isoBPQL. �

To give a lower bound we can show that

Theorem 5.9. The Boolean versions of homBPQL and isoBPQL are in NP (combined complexity).

Proof. The main lemma required in order to supply an NP algorithm is the following.

Lemma 5.10. For every BPQL system s and homBPQL (isoBPQL) query q, exactly one of the following holds:

1. There is no homomorphic (isomorphic) embedding of q into s.
2. There is at least one homomorphic (isomorphic) embedding that maps nodes of q only to nodes of refinements obtained by a

polynomial number of refinement steps.

Note that an analogous lemma exists for context free string grammars [33]. Similarly to the case of strings, the idea of
the proof below is, given a (possibly too long) refinement sequence D ′ , one can remove all refinement steps that are applied
in D ′ but are not essential to the embedding of the query subgraph, and obtain a sufficiently short refinement sequence D .
We then show that the resultant refinement sequence is of polynomial size in terms of both the specification and the query.
This is also done in a manner analogous to [33].

Proof of Lemma 5.10. For simplicity, the proof consists of several stages, as follows.

1. Looking for graph homomorphism (isomorphism) rather than the subgraph counterpart. Assuming no transitive nodes
or edges.
A graph (generated by the specification) G such that there exists homomorphism (isomorphism) to it from the query
graph q, must satisfy |nodes(G)| � |nodes(q)| (|nodes(G)| = |nodes(q)|, respectively). I.e., the size of a solution is less or
equal to the size of the query. Note that this claim does not hold for bisimulation.
Let R be the shortest refinement sequence creating a graph G such that q is homomorphic (isomorphic) to G . We
aim at bounding the number of refinements in R . We distinct between two types of refinement steps – extending
(replacing a node by a graph containing two or more nodes), and singleton (replacing a node by a single node). Note
that these are the only possible steps. We count the number of steps of both types. The number of extending steps is
obviously bounded by the size of G , and thus also by the size of q. Between each two extending steps there can be
only |s| singleton steps, in the shortest refinement sequence. This is due to the fact that, if the same replacement step
is used twice, than we have a cycle of singleton replacement steps which is redundant, and thus there exists a shorter
refinement sequence – the one that does not contain this cycle. Thus, the number of rules applications in the shortest
refinement sequence is bounded by |s| ∗ |q|.

2. Looking for subgraph homomorphism (isomorphism), still without transitive nodes or edges.
Let R ′ = {R1, R2, . . . , Rn} be a (perhaps long) refinement sequence of s resulting in G whose subgraph is homomorphic
(isomorphic) to the query q. We make the following changes to R ′:
(a) Remove every refinement step that does not contribute to the query. Namely, if l → H is used and no node of H

appears in q nor a partial refinement sequence starting from any of the nodes of H appears in R ′ , remove l → H .
(b) If l → H is used and some nodes of H do not contribute to Q , remove these nodes.7

We can now apply case (1), as we’ve removed all irrelevant rules, and we look for graph homomorphism (isomorphism).
3. Introducing transitive edges. The same principle as in (2) holds, as follows.

Again, let R ′ be a refinement sequence as in (2). For each transitive edge A ⇒ B in Q , there exist two cases. On the
first case, there exist nodes N1, N2 in the root specification S0 such that a (maybe indirect) refinement of N1 contains
A, a (maybe indirect) refinement of N2 contains B and there is a path in S0 from N1 to N2. In this case the number of
the (contributing) refinement steps for both parts are bounded as above. In the other case, there exists a single node N

7 This changes the refinement sequence this way, and it is now not necessarily a refinement sequence of the original specification. However, these nodes
can be inserted back in the end of the sequence and all arguments hold.



600 D. Deutch, T. Milo / Journal of Computer and System Sciences 78 (2012) 583–609
in S0 that contributes to both A, B . Such refinements correspond to the ‘singleton’ refinements of part (2) as they do
not contribute directly to the creation of query but rather through some sequence of non-terminal replacements. Thus,
similarly to part (2), there can be only as much such replacements as |S|.

4. Introducing transitive nodes. Transitive nodes are a restriction on possible refinement sequences. It just means that
some refinement steps must take place, but all the arguments above stay intact. Again, between any two ‘contributing’
replacement steps, a cycle of so-called ‘singleton’ replacement steps may occur. This time, this cycle may be necessary
because of the transitive node constraint. However, its size is bounded by the size of the specification. �

Using this lemma, the NP algorithm is simple – for each transitive compound activity in the query guess a refinement
sequence for the corresponding activity in the system. Then guess a mapping from the query BP patterns to (the obtained
refinements of) the system BPs and verify that it satisfies that embedding requirements. �

It is open if the same holds for bisBPQL.

Parameterized complexity. We now concern the parameterized complexity of the problem of BPQL, with the embeddings of
homomorphism or bisimulation. We start with a short introduction to the area and its relevance in our case. For a survey
of this field, in context of query languages, refer to [30].

The conventional approach to computational complexity refers to the size of the input as one parameter, with respect
to which the complexity of the algorithm is analyzed. However, it is not always reasonable to do so. Say that a problem
has two inputs, A and B , such that a, the size of A, is typically much smaller then b, the size of B . Thus, an algorithm
exponential in a but polynomial in b is much better then an algorithm exponential in b and polynomial in a. In fact, an
algorithm that is linear in b, though exponential in a, might be even better than an algorithm quadratic in a + b.

A recurring instance of this scenario often appears in databases. The database itself is typically large and may consist
of hundreds of thousands of records, where a query over can typically be expressed in such succinctness, that its size can
almost be considered as a constant. Thus database researchers analyze separately the complexity in terms of the data and
of the query sizes.

In the BPQL setting, the size of the pattern we are looking for is typically small with respect to the entire specification.
Thus parameterized complexity is relevant for BPQL. We shall see that parameterized complexity analysis produces results
that are on the one hand analogous to the results obtained above using ‘conventional’ complexity, but on the other hand
are somewhat different.

The basic idea of parameterized complexity is to consider the size of the typically small input as a parameter t , where
the size of the more significant input is marked as n. Before presenting our results, we present the basics of the field of
parameterized complexity, through the following definitions.

Definition 5.11 (FPT). An algorithm is Fixed Parameter Tractable (FPT) if its complexity can be expressed in the form
P (n) ∗ f (t), where P is a polynomial, f is any function, n is the size of the input and t is a parameter.

Note that this definition of tractability is rather lenient. There are no restrictions on the nature of f . Thus, some algo-

rithms are considered FPT though non-elementary in the size of t (222···2
where the size of the tower of exponent is t) and

clearly unfeasible.
The parameterized complexity parallel to polynomial time reduction is Fixed Parameter Reduction, defined as follows.

Definition 5.12. A fixed-parameter reduction is a Turing reduction with time complexity which is at most f (k) ∗ p(|X |),
where f is an arbitrary function, p is a polynomial, |X | is the size of the input and k is a parameter.

A class of problems that is often considered as the parameterized-complexity equivalent of the NP class is W [1]. Its
definition uses the definition of the Weighted 3SAT problem, as follows.

Definition 5.13 (Weighted 3SAT). Given a 3SAT formula, does it have a satisfying assignment of Hamming weight that is
exactly k (i.e. assigning true to k variables).

Definition 5.14 (W [1]). W [1] [17] is defined as the class of decision problems with input of the form (X,k) (X being the
input, k being a parameter), that is fixed-parameter reducible to Weighted 3SAT.

The following lemmas establish the connection between FPT and W [1].

Lemma 5.15. (See [18].) FPT ⊆ W [1].

Lemma 5.16. (See [18].) If FPT = W [1] then NP ⊆ DTIME(2o(n)).
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Hence the following conjecture,

Conjecture 5.17. FPT 
= W [1].

And its immediate corollary,

Corollary 5.18. W [1]-hard problems are not FPT.

In a sense, W[1]-hardness relates to FPT as NP-hardness relates to polynomial time complexity. In a manner similar
to the complexity analysis above, the parameterized hardness of BPQL is determined by the embedding chosen, and the
hardness of computing this embedding over finite graphs. Below we formalize this dependency.

Lemma 5.19. For each finite graph embedding class X such that finding if an embedding belonging to E exists, for the finite graph case,
is W [1]-hard, then so is the corresponding X-BPQL algorithm is W [1]-hard as well.

Proof. The lemma is trivially correct, as a pair of (BP specification, query) both consisting only of a single root graph with
no implementations constitutes a restricted case of BPQL, and corresponds exactly to the finite case of embeddings. �
Lemma 5.20. homBPQL, isoBPQL are W [1]-hard.

Proof. In [20] it is shown that subgraph homomorphism for finite graphs is W [1]-hard. For subgraph isomorphism, clique is
W [1]-hard by [20]. The simple reduction of creating a query graph of the form of a clique proves the hardness of Subgraph
Isomorphism. Using Lemma 5.19, we obtain that homBPQL and isoBPQL are W [1]-hard. �

More interestingly, a similar result holds for the converse situation – if the finite problem is FPT then so is the corre-
sponding problem for BPQL. This result is proved below, in Lemma 5.21. Note that this is a case where the parameterized
complexity analysis differ from its ‘conventional’ complexity counterpart, as we have shown above that BPQL is NP-hard
even for restricted cases where the finite problem of the corresponding embedding is polynomial.

Lemma 5.21. For each finite graph embedding E such that E has an FPT algorithm O solving the finite graph case, BPQL algorithm
used with O as oracle is FPT as well.

Proof. In Theorem 5.1 above we’ve shown that the BPQL algorithm requires only O (2|Q |) multiplicative factor with respect
to the algorithm for the finite case. Thus, a computation of an embedding that is FPT for finite graphs remains FPT for BPs
as well. �

Following is an interesting corollary of Lemma 5.21.

Corollary 5.22. bisBPQL is FPT.

Proof. In [20] the finite version of subgraph bisimulation is shown to be FPT. Thus, following Lemma 5.21, bisBPQL is
FPT. �
6. Conclusion

This paper studied the formal model underlying BPQL, a novel query language for BP specifications. We investigated its
properties as well as the complexity of query evaluation, showed how queries on the structure and behavior of BPs can be
processed in a uniform manner, and analyzed the relationship to previously suggested formalisms for processes modeling
and querying.

To guarantee a complexity that is polynomial in the size of the data, BPQL ignores the run-time semantics of certain
BPEL constructs such as conditional execution and variable values. Identifying semantic constructs that can nevertheless
be incorporated without increasing the complexity is a challenging future research task. It would be interesting, following
e.g. [15], to consider the data manipulated by BPs and the messages passed from one process to another. One may also
consider a setting where calls are possibly asynchronous, or where the knowledge of the implementation of some (re-
mote) processes may be partial [8]. It would also be interesting to combine our algorithm with some existing verification
techniques, e.g. [25].
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Appendix A. Formal algorithm

We present the full and formal description of our algorithm, along with its correctness proof, and complexity analysis. We
start by defining formally the representation of BP patterns using formal logic (namely FO(TC) for structural interpretation
and μ-calculus for behavioral interpretation). We then proceed to giving the formal and full specifics of the algorithm itself.
We conclude by proving the correctness of the algorithm.

Logic representation. We use a slight variation of the common (see e.g. [10]) semantics and interpretation, as follows. The
logic includes, as usual, atoms, variables, predicates, connectives and quantifiers, and is interpreted over some model. Fol-
lowing, we present each of these components.

Atoms. The set of nodes, V = {V 1, . . . , Vk}, and paths constructed out of these nodes, P = {P1, . . . , Pm}.

Variables. NodeVars = {X1, . . . , Xk}, PathVars = {Z1, . . . , Zm} denote variables which correspond to nodes and paths (respec-
tively) in the graphs.

Atomic predicates. We define the following atomic predicates.

1. Lc(Xi), where c is a constant and Xi is a node variable. Intuitively, this predicate is satisfied if the label of the node
assigned to Xi is c.

2. PathR(Xi, X j, Zt), where R is a regular expression, Xi and X j are node variables, and Zt is a path variable. Intuitively,
this predicate is satisfied if Zt is assigned a path from the node assigned to Xi to the node assigned to X j . The formal
semantics are given below.

Connectives. AND, OR, NOT, with their usual meaning.
Using these components, various logics can be defined. The logics vary in two aspects – (a) their interpretation of

variables and (b) their quantifiers, as follows.

1. First Order Logic contains the quantifiers ∀x (for all x) and ∃x (for some x), for variables that represent single nodes, and
interpreted as usual. The assignment A assigns atoms (nodes) to the free variables. FO(TC) denotes First Order Logic,
augmented with a Transitive Closure operator.

2. μ-calculus includes the least fix point (ν) and greatest fix point (μ) quantifiers, with variables varying over sets of
nodes. All concepts are thus interpreted over sets, with the common concept of set inclusion used as a basis for deter-
mining the ‘least’ and ‘greatest’ fix points with respect to some formula.

In each of these logics, we shall only regard a special kind of formulas, namely conjunctive formulas, which are defined
as follows.

Definition A.1. A finite formula f that is written in a logic L over the domain of finite graphs, and has a set of free variables
{X1, X2, . . . , Xn} which range over graph nodes and a set of free variables {Z1, . . . , Zk} ranging over paths8 in the graph, is
conjunctive if it can be written as the conjunction of basic formulas f1, . . . , fm, g1, . . . , gs,h1, . . . ,hl as follows.

Basic formulas. We next list the structure of the basic formulas.

1. Each f i has one free variable and is of the form Lc(x). These formulas are called node formulas.
2. Each gk is of the form PathR(Xi, X j, Zk), R being a path regular expression over the labels alphabet. These formulas

have three free variables. The first two (Xi, X j) are node variables. Zk ranges over the range of regular expressions over
the nodes and will intuitively contain the path from Xi to X j . We call these formulas edge formulas.

3. Each hi has no free variables. It can be any atomic formula or its negation. Thus these formulas are the closed formulas.
4. A formula that has a free variable may have no quantifiers.
5. A formula with no free variables can either contain only quantifiers of type ∀, or contain only quantifiers of type ∃, but

not both in a single formula. A conjunction of closed formulas may be preceded by a negation.

Notations. We use the following notations for the different components of the formula.

1. Denote { f i} as Nodes(f)
2. Denote {gi} as Edges(f)
3. Denote {hi} as Closed(f)

8 Single edges are also considered as paths.



D. Deutch, T. Milo / Journal of Computer and System Sciences 78 (2012) 583–609 603
Fig. 10. Query graph.

4. Denote the set { f1, . . . , fm, g1, . . . , gs,h1, . . . ,hl}, the set of basic formulas, as Basic( f )
5. Denote the node variables that appear in f as NodeVars( f ), and the path variables as PathVars( f )

Where formulas are interpreted over graphs, we define an assignment of the components (nodes, edges, paths) of a
graph to the variables of a formula, as follows.

Definition A.2. An assignment is an object A( f , G), constructed out of two mappings. An : NodeVars( f ) �→ N(G),
AE : EdgeVars( f ) �→ Reg(N(G)), where N(G) is the set of G ’s nodes, and Reg(N(G)) is the set of all path regular expres-
sions over the nodes of G .

Specifically, we are interested in assignments that satisfy the formula. An assignment A is satisfying for a conjunctive
formula f and a finite graph G if it satisfies every clause of f , according to the following semantics.

Formulas semantics. In the following, string(p) denotes the string that is obtained by replacing each node in the path p in
G by its label. Nodes(p) denotes the set of all nodes along p. We use here the intuitive concept of path. Its exact definition
is given later on.

A node formula Lc(X) is satisfied if the label of the node An(X) is c. An edge formula PathR(X, Y , Z) is satisfied by A if,

1. AE(Z) is a path in G from the node An(X) to the node An(Y ).
2. string(AE (Z)) ∈ R .

Example. The query depicted in Fig. 10 contains a positive part and a negative part. The latter is required not to appear,
and is marked by dashed lines. The Xi-s near nodes mark their corresponding node variables, where edges are marked by
Zi -s variables. With this allocation of variables in mind, the query translates into the following formula:

L A(X1) ∧ LB(X2) ∧ E BM(X1, X2, Z1) ∧ LE (X3) ∧ L F (X4) ∧ EC N(X1, X3) ∧ E(X2, X4, Z3) ∧ E(X3, X4, Z4)

∧ ¬(∃X5∃X6∃Z6∃Z7∃Z8.E(X5, X6, Z8) ∧ E(X6, X3, Z6) ∧ E(X5, X4, Z7) ∧ Lk(X5) ∧ LL(X6)
)

The replacement of a variable x with an atom a in a formula f is denoted by f [X |a]. Every free occurrence of x in f is
replaced by a. Where the order of variables in f (x1, . . . , xn) is well defined, we use the notation f [a1,a2, . . . ,an] with the
meaning of f [x1|a1, . . . , xn|an].

Given an assignment of a partial set of the components of a graph G to the variables of a formula f , we are interested
in the subgraph of G that contains only the ‘relevant’ components. This is formalized using the following definition, which
is the logic equivalent of the definition of relevance given in Section 2.

Definition A.3. For a graph G , a formula f and an assignment A( f , G). The subgraph of G induced on A is denoted by
G|A , and is the subgraph of G obtained by G ′ = (V ′, E ′) where V ′ = (

⋃
x∈NodeVars( f ) An(x)) ∪ (

⋃
Z∈PathVars( f ) Nodes(AE(Z))),

E ′ = ⋃
Z∈PathVars( f ) Edges(AE(Z)).

Example. Consider the graph G depicted in Fig. 11. Evaluating the formula f corresponding to the query in Fig. 10 over G ,
we obtain the following assignment: A(X1) = N1, A(X2) = N6, A(X3) = N7, A(X4) = N8, A(Z1) = (E1, E2, E5), A(Z2) =
(E3, E4, E6), A(Z3) = (E8), A(Z4) = (E7).

The induced subgraph G|A is depicted in Fig. 12.

Algorithm. In the algorithm below we shall consider decomposition of formulas. For that cause, we need to define first some
notions that relate to decomposition of regular expressions. The first definition defines the notion of string concatenation.

Definition A.4. Given two strings S1, S2 their concatenation S1 ◦ S2 is the string constructed out of the character sequence
of S1 followed by the character sequence of S2.

We next define the possible operations over regular expressions. For a regular expression R the language it recognizes
(i.e. the set of all strings conforming to it) is denoted by L(R).
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Fig. 11. Graph.

Fig. 12. Induced subgraph.

Definition A.5. Given two regular expressions R1, R2,

1. R1 ◦ R2 is a regular expression R such that L(R) = {v ◦ u | v ∈ L(R1), u ∈ L(R2)}.
2. R1 + R2 is a regular expression R such that L(R) = L(R1) ∪ L(R2).
3. R∗

1 is a regular expression R such that L(R) = ⋃
i=1,...,∞ L(Ri) where Ri = R1 ◦ R1 ◦ · · · ◦ R1 (i times). R is called a

starred expression.

We can now define the 3-decomposition of a regular expression R into a set of triplets of regular expressions
{(Ri

1, Ri
2, Ri

3)} where the concatenation of these triplets, in a sense, ‘covers’ L(R). This is formalized as follows.

Definition A.6. A 3-decomposition of a regular expression R is a set of triplets of regular expressions {(Ri
1, Ri

2, Ri
3)}, such

that,

1. ∀i. ∀w ∈ L(Ri
1) ∀u ∈ L(Ri

2) ∀v ∈ L(Ri
3). (w ◦ u ◦ v) ∈ L(R).

2. ∀r ∈ L(R), w, u, v.(w ◦ u ◦ v = r) �⇒ (∃i.w ∈ L(Ri
1) ∧ u ∈ L(Ri

2) ∧ v ∈ L(Ri
3)).

Lemma A.7. For every regular expression R over alphabet Σ , there exists a 3-decomposition of R that is a finite set. Such decomposition
can be computed in Poly(|R|) time.

Proof. The regular expression decomposition algorithm is given in Algorithm 1, named RegDecomp. It uses an algorithm
Reg, that given an automaton9 A generates the regular expression Reg(A) such that L(Reg(A)) = L(A). I.e., A and Reg(A)

recognize the same language. RegDecomp generates the 3-decomposition of a regular expression R using the automaton
A(R) = (S, start, δ, end) that corresponds to R . It assumes that A(R) has unique start and end states.10 RegDecomp chooses
two states S1, S2 out of S , and generates the following automata:

1. A(start,S1)(R) = (S, start, δ, S1)

2. A(S1,S2)(R) = (S, S1, δ, S2)

3. A(S2,end)(R) = (S, S2, δ, end)

We claim that the set of regular expressions triplets corresponding to these triplets of automata forms a 3-decomposition.
For each triplets of words u, v, w s.t. u ∈ L(A(start,S1)(R)), v ∈ L(A(S1,S2)(R)), w ∈ L(A(S2,end)(R)), it is clear that the execution
of A(R) over u ends in S1, an execution of A(R), starting with S1, over v , ends in S2 and an execution of A(R) over w
starting in S2 ends in end. Thus the execution of A(R) over u ◦ v ◦ w starting in start ends in end, i.e. u ◦ v ◦ w ∈ L(R).

9 When using the term ‘automaton’ we mean Non-deterministic Finite Automaton, unless stated otherwise.
10 In case it has more than one end state, a unique end state can be generated, with the old end states being connected to it through ε transitions.
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Algorithm 1: Regular expression decomposition.

D := φ;1
Generate the finite state automaton A(R) = (S, start, δ, end) s.t. L(A(R)) = L(R);2
/* We generate 3 automata, all with the same states and transition relation as the original one but with different start and end states */3
foreach (S1, S2) ∈ S × S do4

/* The start state of the first automaton is the original start state, and its end state is S1 */5
A(start,S1)(R) := (S, start, δ, S1);6
R(start,S1) := Reg(A(start,S1)(R));7
/* The start state of the second automaton is S1, and its end state is S2 */8
A(S1,S2)(R) := (S, S1, δ, S2);9
R(S1,S2) := Reg(A(S1,S2)(R));10
/* The start state of the third automaton is S2, and its end state is the original end state */11
A(S2,end)(R) := (S, S2, δ, end);12
R(S2,end) := Reg(A(S2,end)(R));13
if L(R(start,S1)) 
= φ and L(R(S1,S2)) 
= φ and L(R(S2,end)) 
= φ then14

D := D ∪ (R(start,S1), R(S1,S2), R(S2,end));15
end16

end17

Conversely, for each r ∈ L(R) and its decomposition into u, v, w , the execution of A(R) over u, starting in start results in
some S ′

1, its execution over v starting in S ′
1 results in some S ′

2, and its execution over w starting in S ′
2 results in end (as

the execution over u ◦ v ◦ w starting in start ends in end). Thus, the regular expressions that were generated by choosing S ′
1

as its S1 and S ′
2 as its S2 satisfy u, v and w .

The time complexity of the construction is quadratic in the size of the automaton A(R) and thus in the size of R (A(R)

is generated in linear time). The quadratic factor is due to the choice of all pairs of states for (S1, S2). �
Algorithm. We can now give the formal description of the grammar, formula and the result construction.

Notation. For two conjunctive formulas f and g we denote the formula h which includes all clauses of f and g (h is the
conjunction of both) by f + g .

Grammar. The construction of the grammar out of the input BP specification is done in two stages, as follows.

1. For each label A of a function call node, add a unique label L A and a rule A → L A .
2. Transform the BP into a VR grammar in a normal form, where each derivation rule contains at most two non-terminals

in the right-hand side graph. This transformation is done in 3 stages:
2.1. Transform the BP into an HR grammar.
2.2. Transform the HR grammar into a normal form, using the algorithm of [26].
2.3. Transform the normal form HR grammar into a normal form VR grammar, by replacing each edge with a node and

vice versa.
The size of the resultant grammar is quadratic w.r.t. the size of the original BP, where the transformation to normal
form is the cause of this increase of size (the other transformations are clearly linear).

Formula. Given the definitions above, the translation of a BP pattern into a conjunctive formula is straightforward. We
generate one basic formula at a time, and the resultant formula is the conjunction of all those basic formulas. For each node
of the pattern, a distinct variable is generated. If the node is labeled by c and assigned a variable x, then Lc(x) is generated.
For a regular edge between a node labeled x and a node labeled y, we generate a new variable z and the formula E(x, y, z).
If the edge is indirect and labeled with a regular expression R , the formula PathR(x, y, z) is generated. Note that we do
not consider composite nodes here, as extension of the algorithm to consider full queries rather than a single BP pattern is
discussed separately below.

Algorithm signature. We now present the signature of the algorithm given below. The algorithm uses an X-match oracle,
which is an all-SAT(G, f ) algorithm solving the ‘finite version’, i.e. taking as input a finite graph G and a conjunctive formula
f as input and producing all satisfying assignments for f over G .

Input. G p , a graph grammar, f , a conjunctive formula, and an X-match oracle, as described above.

Output. We give two versions of the algorithm. The first version solves the boolean version of the BPQL problem – i.e.,
whether an embedding exists. The second version is the projection version, where the result encodes the embeddings of
the query in refinements of the specification.

Result construction algorithm. Next, we present the formal algorithm for constructing the result grammar.
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Algorithm 2: Generating decompositions.

foreach DISTINCT nodes decomposition f N1 , f g , f N2 s.t. Nodes( f N1 ) ∪ Nodes( f g ) ∪ Nodes( f N2 ) = Nodes(F j) do1
foreach e ∈ Edges(F j) s.t. R is the regular expression of e do2

Denote Xe , Ye , Ze as the free variables of e;3
SubDivisions(R) := RegDecomp(R);4
foreach (R0, R1, R2) ∈ SubDivisions(R) do5

if Xe and Ye both appear as free variables in Nodes(k) for some unique k ∈ { f N1 , f g , f N2 } then6
k := k + e;7

end8
if Xe appears in f N1 and Ye appears in f N2 then9

f g := f g + eR1 [Xe |N1, Ye |N2, Ze];10
f N1 := f N1 + eR0 [Xe,EndN1 , Z ′

e];11
f N2 := f N2 + eR2 [StartN2 , Ye, Z ′′

e ];12

end13
if Xe appears in f g and Ye appears in f N1 then14

f g := f g + eR0◦R1 [Ye |N1];15
f N1 := f N1 + eR2 [StartN1 , Ye, Z ′

e];16

end17

end18

end19
ClosedExistentialSet = Φ;20
foreach u in Closed( f j ) do21

if u is universal then22
Add u to all formulas;23

end24
if u is existential then25

Add u to ClosedExistentialSet;26
end27

end28
Find all formulas from ClosedExistentialSet that are satisfied on Gi , remove those from the set;29
Try all divisions of the remaining set into sets SN1 , S N2 , and for each division30
f N1 := f N1 + S N1 ;31
f N2 := f N2 + S N2 ;32
Apply the oracle to find the set of satisfying assignments for f g on g . These are denoted {S1, . . . , Sk};33
if none found then34

move on to the next triplet;35
else generate for each l, a new rule, (Ni , F j) → Gl , s.t. Gl is obtained from g|Sl by replacing non-terminal Ni with (N1, F N1 )36

end37

end38

Non-terminals. Let N = {R, N1, . . . , Nn} be the non-terminals of G p , R marking the initial non-terminal, and let P (F p̂) =
{F1, . . . , Fm} be the set of conjunctive sub-formulas of F p̂ , defined as follows. Each Fi in P (F p̂) is the conjunctive formula
generated by picking a set from P (Basic(F p̂)) (the power set of the set of basic formulas of f ) and creating the formula
which is the conjunction of all formulas within the set. The non-terminals set of Gr is

⋃
Ni∈N,F j∈P (F p̂){(Ni, F j)}. Its initial

(root) non-terminal is (R, F p̂).

Derivation rules. For each non-terminal (Ni, F j), assume Ni → Gi is a rule of G p . Gi is a graph that may:

1. Consist only of terminals or,
2. Consist of both terminals and non-terminals.

Case 1. In this case, Gi is just a node-labeled finite graph. Thus, apply the oracle to find all satisfying assignments of F j
on Gi . The new rules are (Ni, F j) → Gi |Al for each satisfying assignment Al .

If no satisfying assignment exists then in this case no rules are generated that derive the non-terminal (Ni, F j). We mark
(Ni, F j) by F (failure), to be removed in the clean-up stage (described below).

Case 2. In this case Gi contains two non-terminals N1, N2 (as the grammar is in normal form). We thus need to consider
decompositions of the query, so that each part of it is assigned for each non-terminal.

The algorithm that generates these decompositions is given in Algorithm 2, which will be referred to as decomp. ‘Start’
and ‘End’ refer to the Start and End nodes of a BP, respectively.

The cleanup stage of the algorithm removes non-terminals that do not contribute to the generation of any refinements
(i.e. lead to dead-end). This stage is given in Algorithm 3.



D. Deutch, T. Milo / Journal of Computer and System Sciences 78 (2012) 583–609 607
Algorithm 3: CleanUp.

/* Remove failed non-terminals */1
while A 
= φ do2

A := the set of all non-terminals marked with F or deriving a graph that includes a non-terminal that was removed;3
Remove A;4

end5
Remove all non-terminals inaccessible from the root non-terminal;6

Fig. 13. Specification.

The last part of the algorithm depends upon the type of result we are interested in. For the boolean variant of the
algorithm we only check if the resultant grammar is empty. To obtain the set of all results as defined above we use a
variation of the decomposition algorithm. We omit the pre-processing part, and conduct the decomposition of the formula
to n + 1 parts in each stage, where n is the number of non-terminals in the right-hand side of a derivation rule handled.

Example. We consider the BP in Fig. 13 (interpreted with BP2 being the implementation of N1 and BP3 being the imple-
mentation of N2 ) and the formula that represents the query in Fig. 10. The algorithm tries all decomposition of nodes into
3 sets. It fails to find an assignment until it chooses the ‘correct’ decomposition – the nodes marked A and F in one set, the
node marked D in the second set, and the node marked E in the third set. In this case we generate two new non-terminals,
and turn to find a satisfying assignment within the implementations of N1, N2. In this simple example, we find an assign-
ment for the node marked D and the indirect edge marked BM in the implementation of N1, and for the node marked E
and the indirect edge marked CN in the implementation of N2.

Note. Where a BPQL query is viewed as a logic formula, our algorithm can be related to as a (very specific) theorem-
prover [28]. In the area of automatic theorem proving, it is common to prove theorems that range over several theories (for
exact definitions refer to [28]). In such case the formula need to be decomposed into its sub-formulas, each sub-formula
holding only terms of its own theory. Every sub-formula can then be ‘fed’ into a theory-specific theorem prover, and the
‘connecting parts’, which are sub-formulas that connect formulas of different theories, are proven separately. This method is
known as the Nelson–Oppen method [28]. Essentially, our algorithm operates very much in the spirit of the Nelson–Oppen
method. The query (without call nodes; these are considered later on), ranges over the domain of finite graphs, where the
specification is a graph grammar. Thus the formula is decomposed into parts (in this case each part is over the same domain
– finite graphs), and each part is matched separately. The connecting parts of the formula here are the edges referred to in
the algorithm as the ‘connecting edges’.

Correctness. We now show the correctness of the algorithm presented above.

Theorem A.8. Let G p be the original grammar, let f be the formula, and let Gr be the grammar generated by the algorithm.
A finite graph G2 is generated by Gr if and only if G2 = G ′|Si , for some finite graph G ′ generated by G p and some satisfying

assignment Si of f on G ′ . I.e., G2 consists of the nodes and edges of G ′ that are relevant.

Proof. We give a lemma that is sufficient in order to show the algorithm correctness. Informally, we show that when
decomposing a formula F into three formulas F N1 , F g , F N2 as done in Algorithm 2, decomposing a graph g into its con-
junctive decomposition of size 3 (defined below), and finding a satisfying assignment for each of the three formulas within
a subgraph, their combination constitutes a satisfying assignment for F with respect to g . Moreover, the combination of the
relevant parts of the subgraphs, with respect to the satisfying assignments, constitutes the relevant part of g with respect
to its satisfying assignment. The derivation sequence that generates graphs in the new grammar corresponds exactly to such
inductive decomposition. Thus, and as the invariant proved in the lemma holds throughout the grammar construction, the
theorem holds. It remains to formally give and prove the lemma described above. We start with the following definition of
graph decomposition that will be used in Lemma A.10 below.

Definition A.9. Let G p be a VR normalized graph grammar as above. Let K be a graph containing two non-terminals N1
and N2, and g be a graph generated by K through a single replacement of N1 and a single replacement of N2 (using rules
of G p). The conjunctive decomposition of g (with respect to K , G p) is a triplet of graphs (G N1 , G g , G N2 ), defined as follows.



608 D. Deutch, T. Milo / Journal of Computer and System Sciences 78 (2012) 583–609
G N1 is defined as all nodes and edges of g that did not appear in K and were added through N1.
G g is defined as all nodes and edges of g that also appeared in K .
G N2 is defined as all nodes and edges of g that did not appear in K and were added through N2.

Lemma A.10. For every conjunctive formula f and every finite and connected graph G, that is derived directly from some graph K
with respect to a VR graph grammar G p , if f is decomposed into conjunctive formulas f N1 , f g , f N2 as in Algorithm 2 and there exists a
corresponding conjunctive decomposition of G (G N1 , G g , G N2 ) such that each graph Gi satisfies its corresponding fi , then G satisfies f .

Conversely, every such decomposition is found.
Moreover, the nodes and edges of G that are relevant to satisfying assignments for f are exactly the nodes and edges of the Gi -s

that are relevant to satisfying assignments for the fi -s.

Proof. Denote the satisfying assignment of Gi over f i by Ai . We construct an assignment A as follows. For every node
predicate Lc(x) of f that appears in f i , A(x) = Ai(x).

For every edge predicate PathR(x, y, z) of f such that Lc1 (x) appears in f i and Lc2 (y) appears in f j , the algorithm
decomposed R into 3 regular expressions R0, R1, R2. By Lemma A.7, for every u ∈ R0, v ∈ R1, w ∈ R2, (u ◦ v ◦ w) ∈ R .

We define A(z) = Ai(zi) ◦ A j(z j) ◦ Ak(zk), where ◦ denotes concatenation. This holds for the ‘appropriate’ ordering of
0,1,2 into i, j, k, according to the location of x and y in f g , f N1 or f N2 .

A is clearly an assignment, as for node variables, each node predicate appears in exactly one formula, thus A assigns to
it a single value. For path variables, the construction chooses a single set of terms and thus assign a unique value to each
variable.

A is a satisfying assignment for f . For node predicates, each predicate appears in one of the f i ’s, thus satisfied by Ai
and thus by A. For edge predicates PathR(x, y, z), those are satisfied by construction (using Lemma A.7, as explained above).
z is assigned a path from A(x) to A(y), as Ai(zi) is a path from Ai(si) = A(si) to Ai(ti) = A(ti), s0 = x, t0 = y, and ti = si+1
(up to identification of start an exit nodes of a graph derived by Ni , with the node Ni itself).11

A(z) satisfies the regular expression R , as A(z) = Ai(zi)◦ A j(z j)◦ Ak(zk), each Al(zl) satisfies the appropriate Ri according
to its location, and R = R0 ◦ R1 ◦ R2.

Conversely, it is clear that the algorithm generates all decompositions of the node predicates set, and test all possibilities.
As for the edges predicates, we showed in Lemma A.7 that all decompositions of the regular expression into 3 parts are
generated. Thus every decomposition of a path (if the path corresponds to the regular expression) into 3 sub-paths is tested.

The ‘moreover’ part of the lemma is obtained through the construction. Denote the set of Ai assignments by S A . When
constructing the assignment A we chose, for every node variable, the node in Gi assigned to it by Ai (for some Ai in S A ). For
every path variable z, the construction of A(z) is composed out of components that are all assigned by some assignments
in S A . Thus all edges that appear in the path A(z) are edges that appear in the assignments in S A , and thus these are all
edges that are relevant to some Gi w.r.t. Ai . �

This completes the proof of the algorithm correctness, as the invariant holds at each stage. �
Evaluating a full query Algorithm 2 considered the embedding of a single BP pattern. Its extension to an algorithm that
evaluates a full BPQL query is given in Algorithm 4.

Theorem A.11. Given a BP system s and an X-BPQL query q, the BP system s′ generated by Algorithm 4 is empty if and only if there is
no X-embedding of q in s.

Proof. We show that R ′
i is a refinement of s′ if and only if there exists a refinement Ri of s and an embedding E such that

R ′
i is isomorphic to the subgraph of Ri which is relevant to the embedding.

To show this, we use Theorem A.8, namely the correctness of the decomposition algorithm. We use a simple induction
on t , the number of replacements needed to take place, starting from the root process of s′ , to obtain a refinement R ′

i .
For t = 0, the algorithm just uses the X-match oracle and so its correctness follows immediately from the correctness of
the oracle. Assume correctness for t = k. I.e., every refinement R ′ of s′ , which is of replacement depth k, is isomorphic
to the subgraph of R which is relevant to some embedding E1, such that R is a refinement of s. We now look at another
refinement step. For each call node c in R ′ and a node n of the query associated with it (according to E1), if n is direct, then
the construction of the BP s′ adds to the implementations set of c in s′ an X-match oracle embedding of τ (n) within the
implementation of c in s. By the correctness of the X-match oracle, this embedding is an X-embedding. If n is indirect, then
the implementation that is generated is an embedding obtained by the decomposition algorithm applied on the specification
rooted in c and the implementation of n in q. Following the correctness of the decomposition algorithm, this is indeed an
X-embedding. Thus, any implementation chosen to continue the refinement process maintains the invariant. This completes
the correctness proof for Algorithm 4. �
11 Since the grammar is a single-entry single-exit, edges whose target is Ni will become, upon replacement, edges whose target is Start(Ni), and similarly

for End(Ni).
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Algorithm 4: Handling multiple BP patterns.

HandledPairs := φ;1
/* This will hold all pairs of (BP, BP pattern) that were already handled, along with the new root of the embedding BP */2
WorkSet := {(S0, Q 0, transitive, location)};3
/* The work set contains pairs of (BP, BP pattern) that are to be matched, along with a boolean determining if the match is to be done transitively4
(in case of indirect calls) or not, and the location where the result of the embedding should be put (replacing a node within a higher-level
specification) */
while WorkSet 
= φ do5

Pick a pair (s,q, transitive, location) out of WorkSet;6
if (s,q) ∈ HandledPairs then7

S ′ := EmbeddingRoot((s,q));8
else9

if transitive then10
Apply decomp(s,q) to obtain a specification rooted at S ′;11
else12

Apply X-match-Oracle(s,q) to obtain a specification rooted at S ′;13
end14

end15
foreach call node n of q do16

foreach node m of s that was associated with n do17
Add (m,n, IsTransitive(n), location) to WorkSet;18

end19
end20

end21
end22
Insert S ′ in ‘location’;23
Remove (s,q) out of WorkSet;24

end25
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