
Diagnosis of Asynchronous Discrete Event Systems:
Datalog to the Rescue!∗

Serge Abiteboul
INRIA-Futurs& U. Paris Sud
<fname>.<lname>@inria.fr

Zoë Abrams
Stanford U.

zoea@stanford.edu

Stefan Haar
INRIA Rennes

stefan.haar@irisa.fr

Tova Milo
Tel Aviv U.

milo@cs.tau.ac.il

ABSTRACT
We consider query optimization techniques for data intensive
P2P applications. We show how to adapt an old technique from
deductive databases, namely Query-Sub-Query (QSQ), to a set-
ting where autonomous and distributed peers share large vol-
umes of interelated data.

We illustrate the technique with an important telecommunica-
tion problem, the diagnosis of distributed telecom systems. We
show that (i) the problem can be modeled using Datalog pro-
grams, and (ii) it can benefit from the large battery of optimiza-
tion techniques developed for Datalog. In particular, we show
that a simple generic use of the extension of QSQ achieves an
optimization as good as that previously provided by dedicated
diagnosis algorithms. Furthermore, we show that it allows solv-
ing efficiently a much larger class of system analysis problems.

1. INTRODUCTION
Research on deductive databases, a hot topic in the late 80s,

led to beautiful results, with little industrial impact. Years later,
with networks everywhere, recursive data management is be-
coming more essential. For instance, telecommunication sys-
tems interact with each other to gather routing data, possibly
recursively. Also, a Web portal may want to retrieve informa-
tion from some Web servers, referring to other servers recur-
sively. In both cases, recursive data management is an essential
aspect of the problem. Things are of course more complex than
in the good old Datalog days: the architecture is often based on
distributed autonomous peers and the interaction is often asyn-
chronous. Nevertheless, one encounters again the management
of a mix of intensional and extensional information in a recur-
sive setting. As we will see here, some of the solid technology
∗This research has been conducted while the second and fourth
authors were visiting INRIA-Futurs. The research has been
partially supported by the European Project EDOS, the RNRT-
SWAN project, the ACI project MDP2P, the Arc ASAX, the
France-Stanford Center for Interdisciplinary Studies and the Is-
rael Science Foundation.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage, and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PODS 2005 June 13-15, 2005, Baltimore, Maryland.
Copyright 2005 ACM 1-59593-062-0/05/06 . . . $5.00.

developed for Datalog comes in handy.

Telecom systems. To illustrate issues often encountered in
data intensive P2P applications, we consider in this paper a par-
ticular application, the diagnosis of asynchronous discrete event
systems. We will show that although, on the face of it, this does
not appear to be a pure database application, (i) the problem can
be suitably modeled using Datalog programs, and (ii) it can ben-
efit from the large battery of optimization techniques developed
for Datalog.

A telecommunication network consists of a large number of
peers (pieces of hardware and software) that are distributed. Each
peer runs some application that may fail in various occasions
and that issues, depending on its state, alarm signals. The oper-
ational logic of each peer, including the possible states and their
corresponding alarm signal, is described by a Petri net. Each lo-
cal peer has only a partial view of the system, and its local time
is not synchronized with that of the other peers. Alarms are re-
ported to supervisors that perform diagnosis; we will consider
the case with a single supervisor only. The communication of
alarms over the network causes a loss of synchronization that
results in the need to consider their nondeterministic interleav-
ing at the supervisor to analyze the origin of the fault. Suppose
that the system fails (i.e. some kind of severe fault is reported);
the supervisor needs to determine what actually happened in the
global system. Observe that the information available when per-
forming this analysis may be seen as partially extensional data
(e.g., a sequence of alarms received by the supervisor), and par-
tially intentional (e.g., the possible execution flow of some peer
as described by its Petri net). Also observe the presence of recur-
sion since the execution in one peer may depend on the execution
at some other peers, and vice versa.

We will show that diagnosis problems can be stated in terms
of query evaluation in deductive databases.

Naturally a main concern is the efficiency of the diagnosis
process. Typically, one examines the possible executions and
isolates those that correspond to what was observed by the su-
pervisor, e.g., perform some analysis of the “unfoldings”, see
[13], of Petri nets. A technique is proposed in [8] to reduce the
portions of the unfoldings that are constructed during this analy-
sis. Similarly, for Datalog, two main, closely related, optimiza-
tion techniques for query evaluation in deductive databases have
been studied, namely Query-Sub-Query (QSQ) [34] and Magic
Set [7] (among others), that both aim at minimizing the quantity
of data that is materialized.

We will show how an extension of QSQ may be used to per-
form efficient diagnosis of asynchronous systems.

We enrich Datalog and QSQ to handle distribution, not a to-
tally new concern; see, e.g., [19, 33]. The core of the QSQ
technique consists in the rewriting of a Datalog program given
a query. In the diagnosis context, the Datalog program (i.e. the
alarms and the Petri nets) is distributed over several peers. We
show that each peer can perform its own rewriting with only lo-
cal information available. We call our distributed extension of
QSQ, dQSQ.

Interestingly, we will show that a simple “generic” use of
dQSQ achieves as good an optimization as that previously pro-
vided by the dedicated diagnosis algorithm of [8]. Moreover, we
will see that it allows optimizing a much larger class of system
analysis problems, including situations where only part of the
alarms are reported, or when alarm patterns need to be detected.
As soon as the problem can be stated in Datalog terms (and we
will see that this is possible for many important diagnosis prob-
lems), dQSQ can be applied to optimize the evaluation.

P2P information and ActiveXML. We believe that be-
yond this particular application, deductive database techniques
are well suited for a large range of applications that involve au-
tonomous peers managing large volumes of data. For instance,
the use of declarative queries for routing information in a net-
work naturally leads to recursive query processing [16]. Indeed,
the authors of the present paper have adapted QSQ to a P2P set-
ting while working on query optimization for ActiveXML [5],
i.e., XML documents where some of the data is given intention-
ally by means of calls to Web services. The analogy between
deductive databases and active documents is quite strong. Think
of an element node in a document as a collection. This collec-
tion may be given extensionally or specified intensionally with
a call to some Web service. So such nodes play the role of a
Datalog predicate and calls to Web services, the role of Datalog
rules. The recursion comes in naturally: think of a Web service
calling a second Web service that calls the first.

The dQSQ optimization technique presented here is in fact a
subset of a technique developped for ActiveXML, namely axml-
QSQ. The goal was to dramatically reduce data materialization
and communication via the management of selective service in-
vocation, service refinement and sideway information passing.
axmlQSQ is substantially more complex than dQSQ because it
also has to address issues related to tree manipulation and node
creation (when trees are copied). A difficulty in the tree setting
is query pushing into services, that entails some form of XML
query composition and tree unification. An implementation is
on-going that is based on asynchronous exchange of informa-
tion flows between the peers involved in a computation.

In the late 80’s, deductive databases had many fans who (we
think correctly) believed that recursive query evaluation tech-
niques were capturing fundamental aspects of information man-
agement. It turned out that the addition of transitive closure
to relational systems was sufficient to handle most applications
that were considered at that time. So, deductive databases did
not convince industry. We believe that the management of large
amounts of data in distributed peers mutually depending of each
other (as in the diagnosis problem and more generally in Ac-
tiveXML settings), naturally motivates the use of the deductive
database paradigm.

The paper is organized as follows. Section 2 defines the di-
agnosis problem. The distributed dDatalog and dQSQ are pre-
sented in Section 3, and applied to the diagnosis problem in Sec-
tion 4. Related works are discussed in Section 5.

2. PRELIMINARIES
We start by formally defining the diagnosis problem studied.

The model that we use is typical for modeling telecommunica-
tion systems, and is used in particular in the framework of the
Swan project [31]. A Petri Net describes the behavior of each
peer in a P2P system and the alarms each of them emits depend-
ing on its state. The unfolding of the Petri net is a representation
of the (possibly infinite) set of possible runs for such a system.
An alarm sequence describes a sequence of alarms gathered by
the system supervisor.

To formalize this, let V and A be infinite domains of nodes
and alarm symbols respectively. Let P be an infinite domain of
peer names. The two notions of net and Petri net given next are
central for describing the problem.

DEFINITION 1. A net is a directed labeled graph
N = (S, T, E, α, φ). S, T ⊆ V are two disjoint (possibly in-
finite) sets of nodes, called places and transitions, resp. E ⊆
(S × T) ∪ (T × S) is a set of edges, connecting places and
transition nodes. α : T → A and φ : S ∪ T → P are
two node labeling functions. α associates an alarm symbol to
each transition in the net, and φ associates a peer name to each
place and transition in the net. For v ∈ S ∪ T , we denote
by •v = {u | (u, v) ∈ E} the parents of node v, and by
v• = {u | (v, u) ∈ E} its children.

DEFINITION 2. A Petri net (N, M) consists of a net N =
(S, T, E, α, φ) where S and T are finite, and a distinguished
subset M ⊆ S of the places of N , called the marked places of
the net. A transition node t of the Petri net is enabled iff all its
parent nodes are marked. Such a transition can fire and yield a
new Petri net (N, M ′) where M ′ = M − •t + t• ; we assume
Petri nets are safe, i.e. if t is enabled in some reachable marking
M , then M ∩ t• = ∅.

We will use as a running example the safe Petri net given
in Figure 1. Transitions are denoted by squares and places by
circles. The marked places are in bold. The numbers inside
the nodes are the node identifiers. The labels next to transition
nodes are their associated alarm symbols. We have two peers
P1 and P2. For instance, α(i) = b, φ(i) = P1, •i = {1, 7},
i• = {2, 3}. Transition i, ii and v are enabled. If transition i
fires, the marking from places 1, 7 is removed and places 2, 3
become marked. The markings of the places in a particular peer
model the current state of this peer, and the transition nodes cap-
ture possible state transitions. Petri nets generalize automata, in
the sense that global states decompose into several local states
represented by marked places. Several transitions may occur in
parallel or in any order: this will be referred to as concurrency.

An execution of a Petri net is a sequence of firings of transi-
tions, up to interleaving (i.e. permutation of pairwise indepen-
dent events). Unfoldings of Petri nets (see Figure 2) are repre-
sentations of all possible executions, in the form of a particular
(acyclic) net together with a net homomorphism, defined next, to
the original Petri net.

DEFINITION 3. A homomorphism from a net N to a net N ′

is a mapping ρ : S ∪ T → S′ ∪ T ′ preserving the peer, the
alarm symbol, and the type (i.e. place or transition) of each node.
Furthermore, for every place v ∈ S, the restriction of ρ to •v
(and resp.v•) is a bijection from •v onto •ρ(v) (resp. v• onto
ρ(v)•).

Peer P1

Peer P2

3

5

42

iii ii i

71

6

c
b

b

a
c

a
viviv

Figure 1: A Petri net.

The fact that one transition may disable or enable another is
captured in the unfolding by the conflict and causal relationships
among the nodes, respectively.

DEFINITION 4. Two nodes v and u of a net N are in causal
relation, denoted by v � u, iff either v = u or the net contains
a path from v to u. Two nodes v and u of a net N are in con-
flict relation, denoted v#u, iff N contains two distinct transition
nodes t, t′ with a common parent and where t � v and t′ � u.
If neither v � u nor u � v nor v#u, u and v are concurrent,
written u ‖ v. An unfolding or branching process of a Petri net
(N, M) is a pair U = (bN, ρ) where bN is a (possibly infinite)
net and ρ a homomorphism bN → N such that:

• bN is acyclic (i.e. � is a partial order), and for each node
v in it, the set {u | u � v} is finite.

• the image under ρ of the set c0 of roots of bN is the set M
of marked places in (N, M).

• no node has two conflicting parents.

• each place node in bN has at most one incoming edge,

• for every two distinct transition nodes t, t′ ∈ bN , either •t
6= •t′ or ρ(t) 6= ρ(t′).

A configuration C of bN is a set of nodes containing c0, down-
ward closed (v ∈ κ and u � v imply u ∈ C) and conflict-free
(v ∈ C and u#v imply u 6∈ C).

A branching process of the Petri Net of Figure 1 is represented
in Figure 2 (ignore for now the shading of some nodes). The
places / transitions there represent instances of the correspond-
ing Petri net places / transitions visited during a run of the sys-
tem1; the ids in the nodes refer to the Petri net nodes they map to.
The alarm next to a transition is the alarm of the corresponding
transition in the Petri net.

The set of all branching processes of Petri net (N, M) is uni-
quely defined up to isomorphism. For two branching processes

1In the Petri net literature, the unfolding instances of the Petri
net places (resp. transitions) are often called conditions (resp.
events). To minimize the terminology introduced in the paper,
we refer to both as places (resp. transitions), keeping in mind
that one place in the unfolding is an instance of one in the Petri
net, and similarly for a transition.

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

���
���
���

���
���
���

���
���
���

���
���
���

	�	
	�	
	�	

�

�

�

�����
�����
�����

�����
�����
�����

�
�
�

���
���
���

1 7

3 4

5 6

iii

iv v

b

a a

2

iiic

vic

1 7 5 6

2 3 2 3 4

1 7

iii iv v

i i

iii

2

1

Peer P2

Peer P1

b

c

b b

c
a a

Figure 2: A branching process of a Petri net.

U, U ′ of a Petri net (N, M), U ′ is a prefix of U written U ′ v
U , if U ′s node set is contained in that of U (note that unfold-
ings generate downward closed sets, thus the name “prefix” is
justified). By [13], there is a unique (up to isomorphism) v-
maximal branching process. Unfold(N, M), called the unfold-
ing of (N, M).

The problem. When a transition fires, an alarm correspond-
ing to the associated alarm symbol is sent to the supervisor. We
model such an alarm as a pair (a, p) where a is some alarm sym-
bol and p is the peer that emitted this alarm. An alarm sequence
received by the supervisor is thus a sequence (a1, p1), (a2, p2)
. . . (an, pn). Recall that we assume asynchronous communica-
tions, so we do not guarantee that the alarms sent by different
peers appear in the order they were emitted; we can only assume
that for each individual peer the relative order of its alarms in the
sequence respects the order in which they were sent by the peer.
The goal is to find an explanation for a given alarm sequence.

Input:. A Petri net (N, M) and an alarm sequence A = (a1, p1),
(a2, p2) . . . (an, pn).

Output:. All configurations C of Unfold(N, M) s.t. there is
a bijection τ from the alarms in A to the alarms in C that (i)
preserves the alarms symbol (i.e. α(τ (ai, pi)) = ai), (ii) pre-
serves the peer names (i.e., φ(τ (ai, pi) = pi), and (iii) does not
contradict the partial order of alarms for this particular peer (i.e.,
for each (ai, pi), (aj , pj), i < j, if pi = pj then it cannot be
the case that τ (aj , pj) � τ (ai, pi). We call this set the diag-
nosis set (of A in (N, M)). In practice, this set will have to be
”explained” to a human supervisor and represented (preferably
graphically) in a compact form.

To continue with our example, the set of shaded nodes in Fig-
ure 2 is a diagnosis (i. e. configuration giving a possible expla-
nation) for the alarm sequence (b, p1), (a, p2), (c, p1). The same
set of nodes is also a diagnosis for the alarm sequence (b, p1),
(c, p1), (a, p2), but not, for instance, for (c, p1), (b, p1), (a, p2).

r relations R,A
rule 1 R@r(x, y) :- A@r(x, y)
rule 2 R@r(x, y) :- S@s(x, z), T@t(z, y)

s relations S, B
rule 3 S@s(x, y) :- R@r(x, y), B@s(y, z)

t relations T, C
rule 4 T@t(x, y) :- C@t(x, y)

Figure 3: A dDatalog program

3. DISTRIBUTED DATALOG AND QSQ
We will model Petri net unfoldings and alarm sequences using

a distributed version of Datalog, that we call dDatalog, and op-
timize it with a distributed version of QSQ, that we call dQSQ.
We define these next, borrowing notation from [32]. A main
difference from [32] is that peer names here are constants, while
they are allowed to be variables in [32]. The departure from clas-
sical Datalog is that we allow the presence of function symbols.
This is needed to capture the creation of the nodes when con-
structing the unfolding. Note that, as a consequence, the seman-
tics of a Datalog program may be infinite and its naive evaluation
may not terminate.

Syntax. We assume infinite domains D of constants, V ar of
variable names, F of function names, and a fixed collection
of relation symbols R1, . . . , Rn. We use x, y, z for variables,
b, c, p for constants, f, g for functions, and e for terms con-
structed by applying functions on constants, variables, and other
terms. Terms that contain no variables are called ground. An
atom a has the form R@p(e1, . . . , en) where p is a constant
(representing a peer name). The intuition is that R(e1, . . . , en)
“holds” at peer p.

A rule has the form
a0 :- a1, . . . , an, x1 6= y1, . . . , xm 6= ym

where the ai’s, i = 0 . . . n, are atoms and the xj , yj , j =
1 . . . m are constants or variables names that appear in a1 . . . , an.
Following standard terminology, a0 is the head, a1, . . . , an, x1 6=
y1, . . . , xm 6= ym is the body, and when n = 0, a0 is called a
fact. We require that all the variables in the head appear also in
the body of the rule.

A program P is a finite set of rules. The rules at site p are the
rules where p is the site of the head. The intuition is that peer
p holds the rules defining relation R@p. When all the atoms
appearing in P belong to one site, say p, we say that P is a
local program. For such local programs, when the peer p is clear
from the context, we will omit it and use a shorthand notation
R(e1, . . . , en) rather than R@p(e1, . . . , en).

As an example, consider the dDatalog program in Figure 3.
The rules are distributed between three peers, r (hosting rela-
tions R, A), s (hosting S, B) and t (hosting T, C). Relations
R, S, T are intensional, i.e., defined by the program; and A, B, C
are base relations, i.e., given extensionally as facts. For defining
queries, we also use rules, e.g., Q@r(y) :- R@r(“1”, y). This
query, posed at peer r, computes the R tuples having the value
“1” in their first column and projects out the first column.

Models and Semantics. There is a canonical translation
of a dDatalog program P into a Datalog program P g called

the global Datalog program: each n-ary relation name R is
translated into an (n + 1)-ary relation name Rg, and each atom
R@p(t1, . . . , tn) into Rg(t1, . . . , tn, p). We define a model of
P to be a model of P g . As usual the semantics of P is its mini-
mal model.

3.1 Query evaluation
We start by considering the evaluation of local programs, and

then move to distributed ones. We first consider naive query
evaluation and then its optimization with QSQ.

Naive evaluation revisited. We differ from standard naive
evaluation of Datalog in that we want to think of a naive eval-
uation as a continuous flow of tuples. The evaluation works as
follows. It starts with the query relation and activates it. When a
relation is activated, it activates all rules defining it. When a rule
is activated, it activates all relations occurring in its body. A rule
that is activated continuously receives tuples from the relations
in its body and produces tuples (by evaluating the corresponding
query). The computation terminates when (1) no more new rule
or relation may be activated and (2) no new fact may be derived
by any of the activated rules. This evaluation is slightly different
but equivalent to classic naive evaluations.

Query-sub-Query. QSQ is a beautiful but complex technique
and for space limitation, we do not intend to present it here in
detail, see [34, 3]. However, our work extends QSQ, so we give
some intuition on how it works.

The crux of the QSQ optimization technique is to minimize
the number of tuples derived. This is achieved by a rewriting of
the program based on the propagation of bindings. QSQ starts
from the rule defining the query. It processes the body of the
rule from left to right. For each atom in the rule, it creates a
”supplementary relation” to keep the bindings of variables that
can be used for this atom. It obtains a new subquery, namely
a call to the relation of this atom with the binding provided by
the supplementary relation. More precisely, the QSQ rewriting
is based on binding patterns and supplementary relations.

Binding Patterns. For each relation name, consider adorned
versions of the relation based on the bindings of the variables:
e.g., for the 2-ary relation R above, Rbb, Rbf , Rfb and Rff

represent, respectively, the case with both variables bound, only
the first one bound, only the second, and none. The top down,
left-to-right evaluation of the rules determines the propagation
of bindings.

Supplementary relations. For each adorned relation and
each position in the body of an adorned rule, a supplementary
relation is introduced to accumulate the bindings relevant to that
position. The notation supi,j is used to denote a supplementary
relation for position j in rule i.

For instance, consider a local version Plocal of the program
in Figure 3, ignoring the locations of rules and relations and as-
suming they all reside on one peer. The QSQ rewriting of Plocal

is given in Figure 4.
The QSQ evaluation has nice properties. It computes the cor-

rect answer to the query. It materializes only a minimal set of
tuples. It is guaranteed to terminate when the program contains
no function symbol. Clearly, QSQ deserves more elaboration
and we refer readers not familiar with this technique to [34, 3].

3.2 From QSQ to distributed QSQ
We next adapt QSQ to a distributed setting.

Query Q(x) :- Rbf (“1”, x)

in-Rbf (“1”) :-
Rule 1 sup10(x) :- in-Rbf (x)

sup11(x, y) :- sup10(x), A(x, y)
Rbf (x, y) :- sup11(x, y)

Rule2 sup20(x) :- in-Rbf (x)
sup21(x, y) :- sup20(x), Sbf (x, y)
sup22(x, y) :- sup21(x, z), T bf (z, y)
in-Sbf (x) :- sup20(x)
in-T bf (y) :- sup21(x, y)
Rbf (x, y) :- sup22(x, y)

Rule 3 sup30(x) :- in-Sbf (x)
sup31(x, y) :- sup30(x), Rbf (x, y)
sup32(x, y) :- sup31(x, y), B(y, z)
in-Rbf (x) :- sup30(x)
Sbf (x, y) :- sup32(x, y)

Rule 4 sup40(x) :- in-T bf (x)
sup41(x, y) :- sup40(x), C(x, z)
T bf (x, y) :- sup41(x, y)

Figure 4: The QSQ rewriting of the Datalog program

Naive distributed evaluation. Let us first reconsider newly
activated relations in our naive query evaluation. For local rela-
tions, the treatment is the same as before. For external rela-
tions, a request has to be sent to the external site. Then tuples
start being produced in various sites and exchanged. The system
reaches a fixpoint when no new relation may be activated and
no new fact derived at any peer. It is easy to see that the result
is exactly as in the centralized case. One problem here is the
detection of termination. Since the state of the Datalog program
is distributed, it is more complex to detect termination than in
classical Datalog. Nevertheless one can use standard termina-
tion detection algorithms for distributed computing, in the style
of [19, 33], for detecting that all peers are in idle mode; details
omitted.

Distributed QSQ (dQSQ). The dQSQ processing starts at
the peer where the query is posed. As in centralized QSQ, we
start with the rule defining the query, and then in a top-down
fashion, process the body of rules defining each encountered re-
lation, from left to right. The only difference is that now, when
a remote relation is encountered, the peer delegates the process-
ing of the remainder of the rule (from the remote relation name
to the right end of the rule) to the remote peer in charge of that
relation.

To illustrate the process, assume that the query Q@r(y) :-
R@r(“1”, y) is posed to peer r. Peer r rewrites its own rules
(Rule 1 and Rule 2). The rewriting of the first is like in the local
case since it contains no remote relations. For the second rule,
when the rewriting encounters the remote relation S, it sends to
peer s the remainder of the rule, namely a query that defines the
bindings that need to be computed by the remainder of the rule:
(†) sup22@s(x, y) :- sup20@r(x), Sbf@s(x, z), T bf@t(z, y)

Peer s processes (†), again using a QSQ rewriting. Observe
that, if a peer receives the same request from different peers , it
reuses the same machinery to answer.

To conclude, Figure 5 gives the resulting dQSQ program. Ob-
serve that it is almost identical to that of Figure 4, obtained in

r Q@r(x) :- Rbf@r(“1”, x)
in-Rbf@r(“1”) :-
sup10@r(x) :- in-Rbf@r(x)
sup11@r(x, y) :- sup10@r(x), A(x, y)
Rbf@r(x, y) :- sup11@r(x, y)
sup20@r(x) :- in-Rbf@r(x)
Rbf@r(x, y) :- sup22@s(x, y)
sup31@r(x, y) :- sup30@s(x), Rbf@r(x, y)
in-Rbf@r(x) :- sup30@s(x)
sup32@r(x,y) :- sup32@s(x,y)

s sup21@s(x, y) :- sup20@r(x), Sbf@r(x, y)
in-Sbf@s(x) :- sup20@r(x)
sup22@s(x,y) :- sup22@t(x, z)
sup30@s(x) :- in-Sbf@s(x)
Sbf @s(x, y) :- sup32@r(x, y)
sup32@s(x, y) :- sup31@r(x, y), B@s(y, z)

t sup22@t(x, y) :- sup21@s(x, z), T bf@t(z, (y))
in-T bf@t(y) :- sup21@s(x, y)
sup40@t(x) :- in-T bf@t(x)
sup41@t(x, y) :- sup40@t(x), C@t(x, z)
T bf@t(x, y) :- sup41@t(x, y)

Figure 5: The full distributed QSQ rewriting

the local case. The only difference is that some supplementary
relations are defined in one peer and then sent to another peer
where their bindings are used. (See rules in bold for sup22 and
sup32.) In general, one can verify that dQSQ is as optimal as
QSQ, namely materializes the same minimal information.

THEOREM 1. Let P be a dDatalog program, and assume
w.l.o.g. that the relation names of distinct peers are different2.
Let Plocal be a “local” version of P ignoring peer names, bP ,
bPlocal be the rewritten programs generated from P and Plocal

by the dQSQ and QSQ algorithms, resp.

1. There is a surjection ζ from the relation names in bP to
those of bPlocal, that is a bijection for all the adorned rela-
tions, and where every relation R@p ∈ bP , bP |=

R@p(c1, . . . , cn) iff bPlocal |= ζ(R)(c1, . . . , cn).

2. dQSQ computes the same facts (up to the mapping ζ) as
QSQ and terminates on P iff QSQ does on Plocal.

An important point is that in dQSQ the rewriting is performed
locally at each peer without any global knowledge.

We conclude with two general observations on dQSQ.

Remark 1. One could use a different distribution for the sup-
plementary relations, based on some cost model.

Remark 2. The dQSQ computation, and the generation of re-
sults, may start even before the rewriting is complete. This prop-
erty is especially important in the context of the Web where the
number of sites transitively involved in a computation may be
too large to explore exhaustively.
2Otherwise rename the relations, e.g. by concatenating the peer
name.

4. FROM PETRI NETS TO DQSQ
In this section, we show how to use dDatalog and dQSQ to

solve the diagnosis problem. We first explain how unfoldings
and alarm sequences are modeled in dDatalog. Then we show
the powerful effect of dQSQ in this context. Naturally there are
different ways to express the problem in dDatalog. We first give
a simplified version of the program, then explain how it can be
improved.

4.1 Unfolding as dDatalog
We now explain how the Petri net unfolding can be expressed

using dDatalog. Observe that the rules at each peer are defined
locally at the peer: They are based solely on the peer’s view of
the Petri net, namely the places and transitions of the peer and
their nearby neighborhood without any global knowledge of the
overall net structure.

To simplify, we assume below that every transition node has
exactly two parents. This can be generalized to the arbitrary
case in a straightforward manner. We use further the constant
symbols c1, . . . , cn to identify the nodes of the petri net. These
correspond, for instance, in our running example to the node
identifiers 1 − 7, i − iv. W.l.o.g we assume that the node iden-
tifiers are all distinct 3.

We say that a peer p′ is a neighbor of peer p, if it holds a
transition t′ that controls a place node that is used to fire some
transition t in p, i.e., p′ holds a transition node that is a grandpar-
ent of some transition in p. We denote by Neighb(p) the set of
neighbor peers of peer p. For instance, in our running example,
Neighb(p1) = {p1, p2}.

We define eight intensional relations at each peer p: places,
trans, map, notCausal, notConf, causal, placesTree and
transTree. The first two relations places and trans describe
respectively the place and transition nodes of the unfolding. In-
tuitively, the atom trans(t, s, s′) states that the transition node
t is a child place of nodes s and s′. Similarly, places(s, t) in-
dicates that place node s is a child of transition node t. (Recall
from the definition of the unfolding that each place node has a
unique parent). The relation map represents the map ρ between
the nodes of the unfolding and those of the Petri net. Namely,
map(x, c) holds for a node x of the unfolding and a node c of
the Petri net if ρ(x) = c.

The notCausal(x, y) and notConf(x, x, y) atoms represent
the non causality and non conflict relation between the unfolding
nodes x, y and are used for the construction of the places and
trans of the unfolding, following Definition 4. Finally, causal,
placesTree, and transTree are auxiliary relations used for the
definitions of the previous two. We next explain how each of
these relations is defined.

trans, places, map:. To define these relations, we use two
function symbols f and g to generate fresh identifiers for the
unfolding nodes.

The first rule creates the unfolding roots. For each marked
place node cr of the Petri net in peer p, we have a rule creating a
corresponding place node of the unfolding, and mapping it to cr .
We use some arbitrary virtual transition node id r as the ”parent”
of cr .

3To guarantee that distinct peers use different identifiers the peer
id can be concatenated.

(††)
places@p(g(r, cr), r) :-
map@p(g(r, cr), cr) :-

We next build inductively the unfolding. For brevity, we use
below the notation a, a′:-body as a shorthand for the two rules
a:-body and a′:-body having the same body. For each transition
node c in p with grandparent nodes at peers p′, p′′, peer p has
the rule:

trans@p(f(c, u, v), u, v),
map@p(f(c, u, v), c) :- map@p′(u, c′), map@p′′(v, c′′),

places@p′(u, u′), places@p′′(v, v′),
notCausal@p′(u′, v),
notCausal@p′′(v′, u),
notConf@p′(u′, u′, v′)

Note that the petri node ids c, c′, c′′ and the peer ids p, p′, p′′

in the above rules are all constants, which is in accordance with
the dDatalog syntax that requires constant peer ids.

Similarly, for each place node c′ in the Petri net that is a child
of node c at peer p, we have the rule:

places@p(g(x, c′), x),
map@p(g(x, c′), c′) :- map@p(x, c),

trans@p(x, y, z)

We next explain how the notCausal and notConf used in the
above rules are defined.

notCausal:. This is the complement of the causal relation.
Interestingly, it can be defined positively. Namely, for two tran-
sition nodes, x, y in the unfolding, notCausal(x, y) indicates
that ¬[y � x]. For all peer names p′, p′′ ∈ Neighb(p), peer p
holds the following rules:

notCausal@p(x, y) :-
trans@p(x,u, v), places@p′(u, u′),
notCausal@p′(u′, y), places@p′′(v, v′),
notCausal@p′′(v′, y), u 6= y, v 6= y, x 6= y

Additionally, we have to use one rule to state that the virtual
transition node r (used in rule (††) above) is not causal to any
transition node:

notCausal@p(r, x) :- trans@p(x, y, z)

To conclude, we define notConf. The definition uses three
auxiliary relations causal, placesTree, and transTree.

causal:. For two transition nodes x, y of the unfolding, the
atom causal(x, y) indicates that node y is an ancestor of node x
(i.e. y � x). causal and notCausal are complements. However,
since the emphasis is on negation free dDatalog, we define both
directly in a positive manner. We will return to this issue later.
For peers p′, p′′ ∈ Neighb(p), peer p holds the following rules:

causal@p(x, y) :- trans@p(x,u, v), places@p′(u, y)
causal@p(x, y) :- trans@p(x,u, v), places@p′′(v, y)
causal@p(x, y) :- causal@p(x, u), causal@p′(u, y)
causal@p(x, y) :- causal@p(x, v), causal@p′′(v, y)
causal@p(x,x) :- trans@p(x,u, v)

transTree and placesTree:. We would like to have a copy
of the ancestor tree stored locally at a node. This will be used
to keep communication local in the notConf relation. We use
transTree(x,w, w′, w′′) to store the relation trans(w,w′, w′′)
locally at node x, where w is an ancestor of node x. Simi-
larly, placesTree(x,z, z′) stores a local copy of the relation
places(z, z′) at node x. For all possible peers p′ ∈ Neighb(p):

transTree@p(x,x, u, v):-trans@p(x,u, v)
transTree@p(x,w, w′, w′′):-trans@p(x,u, v),

places@p(u, u′), transTree@p′(u′, w, w′, w′′)
placesTree@p(x,u, u′):-trans@p(x,u, v),

places@p′(u, u′)
placesTree@p(x,z, z′):-trans@p(x,u, v),

places@p(u, u′), placesTree@p′(u′, z, z′)

notConf:. Finally, the relation notConf(w, x, y) captures ab-
sence of conflict (¬[x]y]) between two transition nodes in the
unfolding, as observed by node w.
First, we do not want a conflict between any transition and the
virtual transition node r:

notConf@p(w, r, x) :- trans(x, y, z), trans(w, y′, z′)
Next, we denote by Mates(p) the set of peers that hold a tran-
sition that is the grandparent of a grandchild of some transition
at p. For each peer p′ ∈ Mates(p), peer p holds the following
rules.

notConf@p(x, z, y) :- transTree@p(x,z, u, v),
placesTree@p(x,u, u′), placesTree@p(x,v, v′),
notConf@p(x, u′, y), notConf@p(x, v′, y),
notCausal@p′(y, u), notCausal@p′(y, v)

notConf@p(x, z, y) :- transTree@p(x,z, u, v),
placesTree@p(x,u, u′), placesTree@p(x,v, v′),
notConf@p(x, u′, y), notConf@p(x, v′, y),
causal@p′(y, z)

We are now ready to state the following theorem that en-
sures the correctness of the distributed construction of the pro-
gram. Given a Petri net (N, M), let Prog(N,M) denote the
distributed dDatalog program, defined as above, consisting of
the set of rules at all peers. Let N (N, M) consists of the pos-
sibly infinite set of domain elements representing the unfolding
nodes constructed by the program.

N (N, M)={c | Prog(N,M) |= trans@p(c, c′, c′′)
for some p, c′, c′′ }

∪ {c | Prog(N,M) |= places@p(c, c′)
for some p, c′}

THEOREM 2. Given a Petri net (N, M), there exists a bijec-
tion δ from the nodes of its unfolding Unfold(N, M) = (bN, ρ)
to N (N, M) s.t. for every peer name p:

1. c ∈ bN is a transition node in p and child of place nodes
c1, c2 iff Prog(N,M) |= trans@p(δ(c), δ(c1), δ(c2)).

2. c ∈ bN is a place node in p and child of a transition node
c1 in peer p iff Prog(N, M) |= places@p(δ(c), δ(c1))

2’. c ∈ bN is a place node in p and is a root of the unfolding
iff Prog(N, M) |= places@p(δ(c), r),

3. c ∈ bN is a transition mapped by ρ to a Petri net node c′

on peer p iff Prog(N,M) |= map@p(δ(c), c′).

The proof follows from the structure of the rules defining trans,
places and map, and is based on Lemma 1 that is proved by
induction on the depth of the unfolding.

LEMMA 1. For each transition nodes c (residing in peer p)
and c′, in Unfold(N, M), we have:
¬[c′ � c] iff Prog(N,M) |= notCausal@p(δ(c), δ(c′));
¬[c]c′] iff Prog(N,M) |= notConf@p(δ(c), δ(c), δ(c′)).

We conclude this subsection with two remarks regarding the
structure of our program.

Remark 3:. Since there is a one-to-one correspondence be-
tween place nodes and the transitions creating them, one can
avoid computing and storing them and simply infer the relevant
information, when needed, from that of their parents. We have
chosen to give the above variant for simplicity of the presenta-
tion. The more space conscious variant can be easily inferred.

Remark 4:. The program defines two relations that are com-
plements of each other, causal and notCausal. The compu-
tation of one could have been saved by using negation. Note
that the negation has a stratified flavor: The notCausal rela-
tion of two nodes can be determined once the causal relation-
ship for all their ancestors is determined, and cannot be effected
by later node creations. Consequently, whenever notCausal is
needed in the trans rules for the creation of a new node, it can
be inferred from the causal relation among the previously cre-
ated nodes. Extensions of Magic Sets for Datalog with negation
were studied, e.g. in [29, 15] and similar extensions are applica-
ble to the distributed dQSQ setting. In this paper we restricted
our attention to positive dDatalog since one of the main goals is
to show that even this restrictive setting is powerful enough to
model and optimize real life distributed applications.

4.2 Diagnosis of an alarm sequence
Let p0 be the supervisor site, and A the alarm sequence re-

ceived by p0. Each peer pi provides a description of the transi-
tions in its Petri net, along with the alarm symbols which they
emit in the atom petriNet@pi(c, a, c′, c′′), which states that
transition node c at peer pi is a child of place nodes c′, c′′ and
emits the alarm a. These base relations describing the Petri net,
together with relations trans@pi describing the unfolding, will
be used by the supervisor p0 to solve the diagnosis problem.

Here again, a crucial point is that p0 defines its Datalog pro-
gram locally. The rules are based solely on its view of the Petri
net, as presented by the alarm sequence it received.

Let k be the number of peer names in the sequence. p0 first
splits the alarm sequence A into k subsequences, one per peer,
each being the restriction of A to the alarms emitted by that
peer. These subsequences are represented in a base relation
called alarmSeq as follows. Consider the subsequence Ap =
(a1, p), . . . , (an, p) of the alarms emitted by a peer p. To encode
the index of the alarms in Ap we use n + 1 distinct constants
c0 . . . , cn. The relation contains, for i = 1 . . . n, the atom

alarmSeq(ci−1, ai, p, ci):-
Additionally it defines the following intensional relations. The

first set of rules below constructs, for increasingly larger prefixes
of the alarm sequence, configurations that match this prefix. To
simplify the presentation, let us first assume that all the alarms

come from a single peer p. We will explain afterwords how to
generalize the given rules for an arbitrary number of peers.

Each (diagnosis) configuration for an alarm sequence prefix
of length i is assigned some id. It is obtained from a configura-
tion of length i−1 by extending it with one additional transition
corresponding to the ith alarm in the sequence. This construc-
tion is described by the relation configPrefixes. The relation
configPrefixes@p0(id, id′, x, i) holds iff id is the identifier
of prefix configuration of length i, constructed by extending a
shorter configuration with id id′ with the transition node x. The
ids of the prefix configurations are generated using the Skolem
function h.

We initialize with sequences of length zero using the constant
virtual transition node r, as in rule (††) above:

configPrefixes@p0(h(r), h(r), r, c0) :-

Then, we recursively construct the configurations for longer pre-
fixes. More precisely, let p be the name of the peer emitting the
alarms in the sequence. (Recall that for now we assume that all
alarms come from a single peer). The supervisor defines a rule
of the following form.

configPrefixes@p0(h(z, x), z, x, i) :-
petriNet@p(t, a, c, c′), alarmSeq@p0(i

′, a, p, i),
configPrefixes@p0(z, w, y, i′),
transInConf@p0(z, u), transInConf@p0(z, v),
notParent@p0(z, g(u, c)), notParent@p0(z, g(v, c′)),
trans@p(x, g(u, c), g(v, c′))

Intuitively, the rule states that a prefix configuration of length
i is constructed by picking a shorter configuration z and two
transition nodes u, v in z having children place nodes g(u, c),
g(v, c′) which (1) can together trigger a new transition x with
alarm a, and (2) haven’t been used already to trigger some other
transition in the configuration.

Observe that the rule uses two auxiliary relations, namely trans-
InConf and notParent. transInConf@p0(z, u) states that the
transition node u participates in the prefix configuration with id
z, and is defined as follows. The construction starts from the
last node in the configuration z, and recursively iterates through
the shorter prefix configurations from which it was constructed,
collecting their transitions:

transInConf@p0(z, x):-configPrefixes@p0(z, w, x, i)
transInConf@p0(z, x):-configPrefixes@p0(z, w, y, i),

transInConf@p0(w, x)
transInConf@p0(h(r), r):-

The atom notParent(z,m) holds if the unfolding place node
m is not a parent of any transition node in the prefix configura-
tion z. It is built monotonously in the style of notCausal: For
all peer names p in the alarm sequence A, the supervisor defines
the following rule:

notParent@p0(z, m):-configPrefixes@p0(z, w, y, i),
trans@p(y,u, v), m 6= u,
m 6= v, notParent@p0(w, m)

notParent@p0(h(r), m):-places@p(m,y)

Finally, we select the configurations (and their transitions) cor-
responding to the full alarm sequence. cn here is the index of
the last alarm in the sequence.

q(z, x) :- configPrefixes(z,w, y, cn), transInConf(z, x)

Multiple peers. The above rules assume that all the alarms
come from a single peer p, and consider incrementally larger
prefixes of the alarms from that peer. When the alarm sequence
comes from several peers we need to consider incrementally
larger prexes of all the subsequences A1, . . . , Ak. Correspond-
ingly we replace, in the configPrefixes relation, the index
attribute i by a k-ary index recording the position in each of the
peers subsequences. The peer p0 now defines configPrefixes
rules for all the peers p in the sequence, with an increment to
the k-ary index being an increment to any of the subsequence
indexes.

The following theorem states the correctness of the above con-
struction. For a Petri net (N, M) and an alarm sequence A, we
use PA(N, M, A) to denote the distributed dDatalog program
consisting of the Petri net and supervisor rules. Conf(N, M, A)
denotes the set of configurations computed by the program
PA(N, M, A):

Conf(N, M, A) = {C(c′) | for some configuration id c′}
where for each c′

C(c′) = {c | PA(N, M, A) |= transInConf(c′, c)}

THEOREM 3. Conf(N, M, A) is precisely the set of all pos-
sible configurations of A in Unfold(N, M) (modulo the bijec-
tion δ of Theorem 2 between the nodes of the unfolding to the
node ids constructed by the program).

Remark 5:. Here again, the rules that we give above are not
the most efficient storage wise. For instance, the ids of nodes
in prefix configurations are copied at each step to form a con-
figuration for a longer prefix. This can be saved by using more
complex rules that ”chase” the nodes in shorter configurations.
Note that the configuration (function term) id holds information
about the ids of the shorter configurations from which it was
constructed, and can be used, via unification, to identify these
configurations. We have chosen the above variant for simplic-
ity of presentation. The more space conscious variant is easily
inferred.

4.3 Computation with dQSQ
To perform the diagnosis, the supervisor issues the query

q@p0(?, ?), which is evaluated with dQSQ. Termination of the
computation is guaranteed by the following proposition.

PROPOSITION 1. On input q@p0(?, ?) (and PA(N, M, A)),
dQSQ terminates.

A main concern is the efficiency of the diagnosis process. Pre-
vious research aimed at reducing the portions of the unfolding
that are constructed during analysis. Similarly, for dDatalog,
dQSQ aims at minimizing the quantity of materialized data.

To quantify the success of dQSQ in this context, we have com-
pared it to a dedicated diagnosis algorithm that has been recently
proposed in [8]. The algorithm is aimed at solving the diagnosis
problem while materializing minimal portions of the unfolding.
We sketch the main principals of this algorithm below. For a full
description and study see [8].

Given a Petri net (N, M) and an alarm sequence A, the algo-
rithm (i) models A as a linear Petri net formed by a sequence of

transitions emitting the alarms in A, (ii) computes the product
Petri net of (N, M) and A and unfolds it completely. This prod-
uct unfolding projects to a prefix of Unfold(N, M) contain-
ing only the nodes that are “relevant” for the observed alarm se-
quence. Intuitively, the product of (N, M) and A is a net whose
runs satisfy the constraints imposed by both the original Petri
net and the alarm sequence. It explains increasing prefixes of
the alarm sequence. Starting from the set M of initially marked
places on the Petri net and an empty alarm sequence, one adds,
to the net constructed for the prefix of length i − 1, the transi-
tion nodes that emit the ith alarm in the sequence and can extend
some configuration of length i − 1 already in the net. When the
last alarm symbol is processed, the net contains all the nodes
belonging to the possible configurations, and those are extracted
bottom up.

Interestingly, the “generic” use of dQSQ achieves precisely
the same reduction as the above dedicated algorithm, for the por-
tion of the unfolding materialized during the diagnosis process.

To state this more formally, we use the following notations.
Given a Petri net (N, M) and an alarm sequence A,

let Ûnfold(N, M, A) denote the prefix Unfold(N, M) mate-
rialized for the alarm sequence A by the algorithm of [8].

Let cPA(N, M, A) denote the rewritten programs generated

from PA(N, M, A) by the dQSQ algorithm. Let t̂rans, p̂laces
and dmap denote the union of the adorned trans, places and
map relations in cPA(N, M, A), and bN (N, M, A) the set of un-
folding nodes constructed by the program in these relations. We
can show the following by induction on the length of the alarm
sequence.

THEOREM 4. There exists a bijection δ from the nodes of

Ûnfold(N, M, A) to bN (N, M, A), satisfying conditions anal-
ogous to those of Theorem 2.

4.4 Extensions
We considered above a basic diagnosis problem where all the

alarms emitted by the analyzed peers have been reported to the
supervisor. This can be generalized in several ways.

Hidden transitions. The peers may decide to report to the
supervisor only part of the alarms, e.g. when some of the transi-
tions have only internal significance (minor alarms).

Alarm patterns. Rather than analyzing one particular alarm
sequence, we may seek explanation of a pattern described by
some regular language, e.g., α.β∗.α.

Constraints on the configurations of interest. One may
be interested only in sequences of alarms not containing some
known patterns, and block the unfolding construction upon de-
tection of those patterns.

In all the above problems the structure of the alarm sequences
of interest can be easily described by a regular automaton whose
allowed transitions can be encoded in the alarmSeq relation.
The construction of the possible configurations then follows the
same lines as above. One problem introduced here is that the
length of the alarm sequence of interest is not bounded. The
number of corresponding solutions, as well as the size of the rel-
evant unfolding, may be infinite. While termination is decidable
(due to the finite number of simultaneously marked petri nodes),
some gadgets to prevent non terminating computations, such as
bounding the depth of the unfolding, are desirable.

5. RELATED WORK & CONCLUSION
Petri-net based computations can be modeled and analyzed

using several temporal-logic based formalisms [11]; conversely,
net unfoldings have been used for model checking temporal log-
ics [14]. The focus of this paper is on a P2P setting where
each peer has only a limited view of the system, and on the op-
timization of computation. We argue that the management of
large amounts of data in distributed peers, naturally motivates
the use of the deductive database paradigm and can benefit from
the large battery of optimization techniques developed for Dat-
alog. We illustrated this thesis here with the diagnosis problem
and QSQ, and believe that other optimization techniques can be
similarly employed.

The present work falls under the general umbrella of distributed
data management [26]. The problem of distributed query pro-
cessing in a Web context is very active [10]. The architecture
stressed here is P2P. P2P information management [1], is be-
coming popular with systems such as Kazaa [20] and a number
of techniques have been developed to support it, e.g., distributed
look-up as in [6, 18]. We showed in this paper a connection be-
tween an increasingly popular P2P application - the distributed
management of telecommunication systems, and a generic Dat-
alog optimization technique, namely QSQ. Interestingly, when
adapted to a distributed setting, the extended QSQ achieves an
optimization as good as that previously provided by the dedi-
cated diagnosis algorithms. Furthermore, it allows solving effi-
ciently a much larger class of system analysis problems.

The diagnosis of distributed discrete event systems with asyn-
chronous communication is a relatively new research topic. De-
centralized diagnosis is analyzed in [21], for the case of syn-
chronous communication; and [23] addresses fault diagnosis for
distributed systems modeled by Petri nets, again with synchronous
communication. An extension is proposed in [22] to address the
effect of (bounded) communication delays in decentralized di-
agnosis. Difficulties resulting from communications are also in-
vestigated in [30]. While [8] provides a detailed and efficient
data structure to represent all solutions of the (centralized) diag-
nosis of concurrent and asynchronous systems by using unfold-
ings, [9] investigates the high level orchestration of distributed
diagnosis for concurrent and asynchronous systems.

We adapted here techniques from recursive query processing
[3]. The literature on this topic used to be quite prolific and it is
difficult to do justice to all who contributed. A nice entry point to
the field is [27]. Bottom-up [34] and top-down [28, 7] optimiza-
tions have been proposed. Some works considered it in the con-
text of distributed or parallel query processing. E.g., complexity
issues are studied in [12]. Perhaps most relevant to this work
are [19, 33] that also consider QSQ-like optimizations with data
flow evaluations and a termination detection mechanism that re-
semble ours (not detailed in the present paper). One should also
mention many works on the parallel evaluation of transitive clo-
sure [4, 17], and of other limited classes of programs [35]. Fi-
nally, other optimization techniques have been proposed for dis-
tributed/recursive query processing, that are somewhat orthog-
onal to dQSQ, e.g., semi-join techniques to minimize commu-
nications [25], and the exchange of intensional information [2,
32].

As mentioned in the introduction, dQSQ was originally devel-
oped to optimize query evaluation for the ActiveXML system,
i.e., a system based on the exchange of XML documents with
embedded service calls in the P2P setting. We are currently im-

plementing in the ActiveXML system, the algorithms presented
here. In the ActiveXML setting, an intensional relation is an
active document that is enriched while new facts are deduced.
A rule is simulated by a Web service that produces facts. The
service calls other relations (local or external) to obtain flows of
tuples and produces as well a flow of tuples. Thus the services
are continuous and asynchronous.

6. REFERENCES

[1] S. Abiteboul. Managing an XML Warehouse in a P2P
Context, 15th International Conference on Advanced
Information Systems Engineering, 2003.

[2] S. Abiteboul, A. Bonifati, G. Cobena, I. Manolescu, T.
Milo. Dynamic XML Documents with Distribution and
Replication. SIGMOD 2003.

[3] S. Abiteboul, R. Hull, V. Vianu. Foundations of
Databases. AddisonWesley, 1995.

[4] R. Agrawal, H.V. Jagadish. Multiprocessor Transitive
Closure Algorithms. Procs. Intl. Symp. on Database in
Parallel and Distributed Systems, 1988

[5] Active XML Web site, http://activexml.net
[6] H. Balakrishnan, M. F. Kaashoek, D. Karger, R. Morris, I.

Stoica. Looking up data in P2P systems. CACM 46(2):
43-48, 2003.

[7] F. Bancilhon, D. Maier,Y. Sagiv, J.D. Ullman. Magic sets
and other strange ways to execute logic programs. PODS,
1986.

[8] A. Benveniste, E. Fabre, S. Haar, C. Jard. Diagnosis of
asynchronous discrete event systems, a net unfolding
approach. IEEE Transactions on Automatic Control
48(5):714–727, May 2003.

[9] A. Benveniste, E. Fabre, S. Haar, C. Jard. Distributed
Monitoring of Concurrent and asynchronous Systems.
Proc. CONCUR ’03, LNCS 2761, pp. 1–26.

[10] R. Braumandl, M. Keidl, A. Kemper, D. Kossmann, A.
Kreutz, S. Seltzsam, K. Stocker. ObjectGlobe: Ubiquitous
query processing on the Internet. VLDB Jour., 10:48,
2001.

[11] E.M. Clarke, E.A. Emerson, A.P. Sistla. Automatic
verification of finite–state concurrent systems using
temporal logic. ACM Transactions on Programming
Languages and Systems, 8(2):244–263, 1986.

[12] S.S. Cosmadakis, P.C. Kanellakis. Parallel Evaluation of
Recursive Rule Queries. PODS, 1986.

[13] J. Engelfriet. Branching Processes of Petri Nets. Acto In
formatica 28, 1991, pp. 575-591.

[14] J. Esparza. Model Checking Using Net Unfoldings.
Science of Computer Programming vol 23, pp. 151–195,
1994.

[15] W. Faber, G. Greco, N. Leone. Magic Sets and their
Application to Data Integration. To appear in ICDT’05.

[16] J. Hellerstein, B. T. Loo and I. Stoica. Customizable
Routing with Declarative Queries, HotNets-III, 2004.

[17] M.A.W. Houtsma, P.M.G. Apers, S. Ceri. Distributed
Transitive Closure Computations: The Disconnection Set
Approach. VLDB, 1990.

[18] M. Harren, J. Hellerstein, R. Huebsch, B. Thau Loo, S.
Shenker, I. Stoica. Complex Queries in DHT-based
Peer-to-Peer Networks, Peer-to-Peer Systems Int.

Workshop, 2002.
[19] G. Hulin. Parallel Processing of Recursive Queries in

Distributed Architectures. VLDB, 1989.
[20] Kazaa, www.kazaa.com/
[21] R. Debouk, S. Lafortune, D. Teneketzis. Coordinated

decentralized protocols for failure diagnosis of discrete
event systems. Disc. Event Dyn. Systems: theory and
application vol. 10 no. 1/2, pp 33-86, 2000.

[22] R. Debouk, S. Lafortune, D. Teneketzis. On the effect of
communication delays in failure diagnosis of
decentralized discrete event systems. Control group rep.
CGR00-04, Univ. Mich. Ann Arbor, subm. for
publication, 2001.

[23] S. Genc, S. Lafortune. Distributed diagnosis of
discrete-event systems using Petri nets. Proc. ICATPN
2003, LNCS 2679, pp 316–336, 2003.

[24] K. McMillan. Using Unfoldings to avoid the state
explosion pro blem in the verification of asynchronous
circuits. 4th CAV Workshop, pp.164-174, 1992.

[25] W. Nejdl, S. Ceri, G. Wiederhold. Evaluating Recursive
Queries in Distributed Databases. TKDE 5(1):104–121,
1993.

[26] M.T. Ozsu, P. Valduriez. Principles of Distributed
Database Systems. Prentice Hall, 1991.

[27] Parallelism in Logic Programs, Raghu Ramakrishnan,
Proceedings of Symposium on Principles of Programming
Languages, 1990

[28] J. Rohmer, R. Lescoeur. La Methode Alexandre une
solution pour traiter les axiomes recursifs dons les bases
de donnees deductives. Colloque Reconnaissances de
Forme et Intelligence Artificielle, Grenoble, 1985

[29] K. Ross. Modular Stratification and Madic Set for
DATALOG Programs with Negation.

[30] R. Sengupta. Diagnosis and communications in distributed
systems. Proc. WODES 1998 pp. 144-151, IEE, London.

[31] The SWAN project. http://swan.elibel.tm.fr
[32] J. Trevor, D. Suciu. Dynamically Distributed Query

Evaluation. PODS, 2001.
[33] A. van Gelder. A Message Passing Framework for Logical

Query Evaluation. SIGMOD, 1986.
[34] L. Vieille, ”Recursive axioms in deductive databases: The

Query-Subquery approach,” in Proc. Int. Conf. Expert
Database Syst., L. Kerschberg, Ed., Charleston, 1986.

[35] O. Wolfson. Sharing the Load of Logic-Programming
Evaluation. Proceedings of the International Symposium
on Databases in Parallel and Distributed Systems, 1988.

