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ABSTRACT
While classic data management focuses on the data itself,
research on Business Processes considers also the context in
which this data is generated and manipulated, namely the
processes, the users, and the goals that this data serves. This
allows the analysts a better perspective of the organizational
needs centered around the data. As such, this research is of
fundamental importance.

Much of the success of database systems in the last decade
is due to the beauty and elegance of the relational model and
its declarative query languages, combined with a rich spec-
trum of underlying evaluation and optimization techniques,
and efficient implementations. This, in turn, has lead to an
economic wealth for both the users and vendors of database
systems. Similar beauty and wealth are sought for in the
context of Business Processes. Much like the case for tradi-
tional database research, elegant modeling and rich under-
lying technology are likely to bring economic wealth for the
Business Process owners and their users; both can benefit
from easy formulation and analysis of the processes. While
there have been many important advances in this research
in recent years, there is still much to be desired: specifically,
there have been many works that focus on the processes be-
havior (flow), and many that focus on its data , but only
very few works have dealt with both. We will discuss here
the important advantages of a holistic flow-and-data frame-
work for Business Processes, the progress towards such a
framework, and highlight the current gaps and research di-
rections.

Categories and Subject Descriptors
H.2.3 [Database Management]: [Languages]; F.4.3 [Theory
of Computation]: [Formal Languages]
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1. INTRODUCTION
Recent years have seen s shift in data management re-

search. While research on stand-alone database manage-
ment continues to be foundational, increasing attention is
directed towards the context in which this data is generated
and manipulated, namely the processes, the users, and the
goals that this data serves. In a nutshell, this is what re-
search on Business Processes is all about.

A Business Process (BP for short) consists of a group of
business activities undertaken by one or more organizations
in pursuit of some particular goal. Such Business Processes
describe the operational logic of applications, including the
possible application flow and the data that is manipulated
by it. Research in this direction involves marrying ideas and
concepts from database management, with ideas from work-
flow and process flow management, that previously have
been mostly studied separately. This combined flow-and-
data management in Business Processes is the focus of this
paper. We note that we use here the term “Business Pro-
cesses” in a very broad sense and the problems and solutions
that we will consider are applicable to many other contexts
that involve data and flow, such as scientific workflows, Web
applications and services, e-government and electronic pa-
tient records.

Consider a classic example of an inventory management
of a company, say one that sells computer parts. Research
that focuses only on the inventory data, its storage and ma-
nipulation (perhaps in a distributed setting, or even in the
cloud) can tell us how to design the database, and how to
query it in an optimal way. However, in the broader per-
spective of the company, the inventory database is only a
tool that is used in the company Business Process, which,
to the company, is itself of no less interest than the data.
For instance, the company may provide an online interface
for ordering computer parts. In this case, the interaction
with the database may be initiated by an order made by an
online user; the process in charge of processing of this order
will query the database to find the required product, and if
absent will issue an order from the mainline factory. If the
product does not exist, the process may issue other queries
on the products database, possibly to recommend the user
other alternative products. The user may then choose one of
these options or ask for more recommendations, which will
be computed using a refined query, and so on.

Knowledge about the operation of such a Business Pro-

1



cess is thus of tremendous importance to both the company
(or application) owners and their users. First, the process
specification, and its possible executions flows, are them-
selves a valuable data; their analysis can be used by the
application owners for detecting bugs or optimizing the pro-
cess. For instance, in our computers company example, the
company owners may wish to verify that whenever a user
asks for a product that is not available, the appropriate ac-
tions are taken. Similarly, the application users may wish
to infer the optimal ways of using the process, e.g. shortest
(click-wise) navigation in the web-site to buy a computer
with some specified features, or one that leads to minimal
cost. Second, execution traces (logs) of Business Processes,
detailing (parts of) the course of past execution, are another
extremely valuable source of data. For example, logs anal-
ysis can reveal that customers are unsatisfied with the al-
ternative products that are recommended to them, (as they
typically navigate away from the store interface when pre-
sented with the suggestions), thereby helping to improve the
application design. A combined analysis that uses both the
process specification and its execution traces may also be
extremely valuable. Tt may allow, for instance, to obtain
answers to questions such as “what other alternative actions
could users whose request failed take, but didn’t”. This may
be used to improve the UI and make these options more
apparent.

We observe that in the Business Process settings there is
an inherent coupling of application data and logic (also re-
ferred to as flow): the flow affects the data and vice versa.
This attracted the attention of database researchers (e.g.
[10, 61, 46, 43, 32, 42]), that attempt to extend the good
principles of data management (declarative specifications,
optimization, etc.), to the broader perspective that includes
not only the database itself but also the process surrounding
it. Specifically, much of the success of database systems in
the last decade is due to the beauty and elegance and of the
relational model and its declarative query languages, com-
bined with a rich spectrum of underlying evaluation and op-
timization techniques, and efficient implementations. This,
in turn, has lead to an economic wealth for both the users
and vendors of database systems. Similar beauty and wealth
are sought for in the context of Business Processes. What
is desired for Business Processes is an equivalently elegant
formal model and query languages, that will allow easy for-
mulation, readability and seamless optimizations, while at
the same time will be expressively rich and comprehensive
enough to capture intricate processes flow and their manip-
ulation of data. Much like the case for database research,
such beauty and richness of the model are also likely to re-
sult in economic wealth, for both the owners and the users
of the processes.

While there have been many important advances in this
research in recent years, there is still much to be desired.
Specifically, there are several good models and techniques
for capturing and analyzing the processes flow, and several
good models and techniques for capturing and analyzing the
data they manipulate. But the former often consider data
only in a limited way while the latter typically capture the
flow only in an implicit, data driven, manner. We are still
missing a satisfactory, comprehensive solution for the ex-
plicit modeling and analyzing the processes flow and data,
and their interactions.

We next briefly review the main tasks that are required to-

wards achieving this goal, in the order considered in the rest
of this paper. These tasks include modeling the processes,
generating an instance of the chosen model, for a given Busi-
ness Process, and analyzing (querying) process specifications
and executions. The goal of the present paper is to highlight
some of the main challenges in this area, review the state-
of-the-art of research that tackles these challenges, and pin-
point several current research directions and challenges.

As always with such problems, the first challenge is mod-
eling. One difficulty that rise when attempting an effective
management of Business Processes is the typical complexity
of their representations. Business processes usually operate
in a cross-organizational, distributed environment and the
software implementing them is fairly complex. For instance,
our computer components company may interact in intricate
ways with various suppliers of components, with the users
that are placing orders, etc. But much like in the case of
data management, effective Business Process management
needs to rely on an abstract model for the Business Process.
To answer this need, many different abstract representation
models have been suggested (e.g. [5, 11, 12, 27, 10, 50, 33]
and many others), that combine, to some extent, “classic”
flow models such as state machines and context free systems
with models that describe the underlying databases of the
application and their interaction with flow. We review such
models in Section 2.

Clearly, for Business Processes implemented in a language
such as Java, their representation in such abstract models is
not an easy task. Luckily, this gap is slowly being bridged by
declarative standards that facilitate the design, deployment,
and execution of BPs. In particular, the recent BPEL [14]
standard (Business Process Execution Language), provides
an XML-based language to describe the interface between
the participants in a process, as well as the full operational
logic of the process and its execution flow. The BPEL stan-
dard is relatively declarative, and it is much easier to ab-
stract it further, to fit the model; there are also many graph-
ical interfaces and editors that allow for a relatively simple,
intuitive design of BPEL specifications.

Graphical interfaces are very useful in promoting a high-
level (formal) specification of a Business Process. Still, in
many cases, the specification of the Business Process is par-
tially or completely unknown. In such cases, the abstract
model needs to be mined [61, 66, 46] automatically, e.g. from
a set of observed executions. In Section 3, we review both
facets (graphical design interfaces and mining techniques) of
obtaining instances of process specifications.

Once a process model is given, it may be used for process
querying and analysis. Two kinds of analysis are of interest:
the first is analysis of the possible future executions of a
given process specification and the second is the analysis of
past execution, stored in execution logs.

First, consider analysis of possible future executions (also
referred to as static analysis). The idea is that we are given
a specification of the Business Process (that is considered as
our input data), and we wish to verify that some property
(query) holds for all possible executions of the process. For
instance, for our computer components company example,
we may be interested in verifying that no customer can place
an order without paying; or that whenever an order is pro-
cessed, the system checks for the existence of the product
in the database before asking an external vendor. Alter-
natively, we also be interested in computing the probability
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that some property holds in a random execution, e.g. what is
the probability for a user to ask for a component that is not
in stock. The results of such analysis are of interest for both
the process owners, as well as their users: the former may
optimize their business processes, reduce operational costs,
and ultimately increase competitiveness. The latter may al-
low users to make an optimal use of it (e.g. find out what
is the most popular way of buying a computer?). Impor-
tantly, the results of such an analysis, that is aware not only
of the company database, but also to the applications that
manipulate it, can be very useful in improving the Database
design, and in optimizing the data accesses (queries) made
in the course of the Business Processes.

Next, let us consider the analysis of past executions. Exe-
cution logs detailing such past executions are of tremendous
importance for companies, since they may reveal patterns
in the behavior of the users (e.g. “users that buy a specific
brand of RAM also tend to buy a specific brand of Mother-
board”), may allow to identify run-time bugs that occurred,
or a breach of the company policy etc. But the challenges
are that typical repositories of such execution logs are of
very large size, and that the patterns that are of interest
are those that occur frequently but are not always known
in advance. Consequently, various works considered data
mining and OLAP (On-line Analytical Process) techniques
for querying logs repositories; but there are also some works
that introduce query languages for execution traces. Con-
tinuing the analogy with Databases, what is required for
specifying the analysis tasks is a declarative query language,
supported by efficient query evaluation mechanisms.

One particular challenge in the context of Business Pro-
cesses and workflows is that of security / privacy [27, 59].
While the application owner may wish to disclose some of
the process specification / logs (or parts of them) of the
Business Processes, some (parts of) logs must be kept con-
fidential, such as the credit card details of users performing
a computer components purchase, or part of her interaction
with the company interface, etc. Privacy/security have been
studies (separately) for workflows and Databases. But what
is desired is combined flow-and-data privacy/security mech-
anisms. In Section 4 we consider the analysis and querying
of Business Processes, including all of the above aspects.

Personal Perspective. In a series of works (see e.g. [10,
28, 29, 30, 31]), the authors of this paper and collabora-
tors have studied a particular model for Business Processes,
its properties and the means for querying and analyzing it.
Wherever in this paper we use the term “Our model”, we
refer to this model, initially defined in [10] and extended in
further works.

2. MODELING
There are various models for Business Processes that may

be found in the literature. Similarly to process models in
verification and model checking (see e.g. [37, 20, 55, 53, 21,
58, 15] and many others), these models differ in their ex-
pressive power, i.e. in which sets of possible executions they
can represent. But unlike works on verification, research
on Business Processes further incorporates an explicit mod-
eling of the data that underly the process. However, as we
show below, in the vast majority of the models that consider
data, the flow description is either implicit, or lacks expres-
sive power. In our opinion, what is critically missing is an

integrated, expressive and intuitive (explicit) model for both
the flow and the underlying data. Such a model, accompa-
nied with appropriate analysis tools / query languages, can
allow process analysts to deduce important knowledge on
the process, and ultimately improve its performance.

We start our review by considering some common flow
models that are considered in verification; we then show
how research on Business Processes extends these models to
account for underlying data, of two kinds: relational and
semi-structured. Finally, we will highlight the main chal-
lenges still remaining in modeling Business Processes. We
will demonstrate the models using our running example of
a company that sells computer components.

2.1 Control Flow Models
In the context of verification, the focus is typically on

modeling (and analyzing; see section 4) the flow of appli-
cations. The simplest model that is studied is that of a
Finite State Machine (FSM) [48]; the FSM states model
the logical states of the application, and transitions are dic-
tated by (typically external) input. For instance, the logical
flow of our computer components company may be mod-
eled by a Finite State Machine where some of the states
may e.g. be “wait for user order”, “processing user order”,
“search database for product”, etc. But finite state models
have a quite limited expressive power from a theoretical per-
spective, and furthermore modeling real-life systems with
them may be cumbersome, and require a large number of
states. The latter problem is somewhat alleviated by using
the model of Hierarchial State Machine (HSM) [11]. HSMs
allow to define hierarchy of Finite State Machines, in a way
resembling “function calls”. That is, an HSM consists of a
set of state machines, and one state machine may “invoke”
another, meaning that the control flow moves to the invoked
machine; while the execution in this machine reaches an ac-
cepting state, the control returns to the invoking location 1.
For our example, the processing of orders may be modeled
as a “function”, itself represented by a Finite State Machine,
encapsulating all states in the sub-process of order manage-
ment.

The hierarchy of state machines gives conciseness in rep-
resentation, but not a stronger expressive power. In real-life
processes, there is often the need to represent (context-free)
recursion. For instance, our specification should enable re-
cursive invocations of the ordering sub-process, to account
for more and more orders. A more expressive model that
accommodates recursion is that of Recursive State Machine
(RSM) [8]. Like for HSMs, in RSMs state machines may
invoke each other, but they can furthermore do so in a re-
cursive manner. RSMs have strictly more expressive power
than HSMs, and in particular can capture context free lan-
guages [8]. There are multiple variants of RSMs, differing in
the number of entries (initial states) and exits (final states)
of the state machines. The class of RSMs where the state
machines have multiple exits is strictly more expressive than
the class of single exit recursive state machine [8].

Most of the process models, while modeling parallelism at
the specification level, consider every single execution as a
sequence (path) of events. There are however some explicit
formal models for parallel executions, such as Petri Nets

1We mention in this context that the notion of hierarchy,
along with additional constructs, lies at the core of the Stat-
eCharts [47].
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[58]. In the context of Business Processes, our model [10]
captures parallelism in the executions, as follows. The speci-
fication of a process in this model is a set of DAGs, connected
through (possibly recursive) implementation relation, which
is a notion similar to that of invocation in Recursive State
Machines. The implementation relation is one-to-many, i.e.
for every activity there are many possible implementations,
and one is chosen at run-time, dictating the course of ex-
ecution. The possible choices of implementation are anno-
tated by guarding formulas. These are logical formulas on
external effects such as user choices, network state, server
response time etc., that may dictate the course of execu-
tion. For instance, a guarding formula may have the form
UserChoice = “ShowRAMs”, and this formula will hold if
the user chose to view the brand of RAMs suggested by the
computer components store. At run-time the truth value of
these formulas will determine the chosen implementation for
every activity. For instance, depending on the user choice
(and thus the satisfaction of the above formula), the user
will be presented with the available RAM brands. Nodes
in these DAGs correspond to business activities, while the
edges reflect their ordering. Unlike RSMs, executions are
defined as the entire graph (in this case DAG) that is ob-
tained. This allows to capture parallelism in the execution,
reflected by its DAG structure: activities that have no di-
rected path between them are assumed to occur in parallel.
For instance, the business logic underlying the web-based in-
terface of our company may dictate that in parallel to having
the system wait for users orders, advertisements are injected
to the screen. Using a DAG structure for the execution it is
much easier to capture such parallelism.

We also mention that our model in [10] for BPs has strong
connections with that of Context Free Graph Grammars
(CFGGs) [60, 52, 26]. CFGGs, similarly to “classic” con-
text free (string) grammars (CFGs), CFGGs are composed
of non-terminals, terminals, and derivation rules. But unlike
string CFGs, with CFGGs the righthand side of the deriva-
tion rules contain graphs, and consequently a grammar de-
fine a family of graphs, that are derived by the grammar.
There are many variants of this model, different in the def-
inition of whether the non-terminals correspond to nodes
or (hyper)edges of the graph, in how the derived sub-graph
is connected (referred to as the “connection relation” [52]),
etc. Our model may be considered as specific, restricted
case of CFGGs, where all graphs are DAGs; the counterpart
of derivation rules is the possibly recursive implementation
relation described above.

Probabilistic Variants. In the context of Business Pro-
cesses, it is important to model the uncertainty that is in-
herent in the external effects that govern the executions.
For example, the course of execution of our computers store
Business Process depends on the choices of users, submit-
ted through its web interface. The choices that users will
make are unknown at the time of analyzing the process, but
we may have some probabilistic knowledge on the behav-
ior of users. The above mentioned models all have proba-
bilistic counterparts, where the possible executions (deriva-
tions) are associated with probabilities of occurring in prac-
tice. The probabilistic counterpart of Finite State Machines
is Markov Chains [57], where every transition is associated
with a probability of occurring in practice. These probabili-
ties are assumed to be independent (the Markovian assump-

tion is that the probability of taking a transition in a given
state is independent on the previously made transitions),
thus the probability of an execution is simply the multi-
plication of the probabilities along its transitions. Similar
extensions were studied for probabilistic context free gram-
mars (see e.g. [54]), and Recursive Markov Chains (RMCs)
[39] that are the counterpart of Recursive State Machines;
in these extensions the Markovian property is also assumed.

While the independence assumption simplifies the models
and allow for a more efficient analysis (See section 4), it is in
some cases unrealistic when modeling Business Processes. In
particular, when the transitions are governed by external ef-
fects such as user choices, the state of the network, server re-
sponse time etc., it is unreasonable to assume their indepen-
dence: for instance, users that choose a particular computer
component is more likely to later choose compatible compo-
nents. Consequently, our model for Probabilistic Business
Processes [30] (which extends the non-probabilistic variant)
allows to associate the guarding formulas dictating the exe-
cution course with probabilistic events, and these events may
be inter-dependent to some bounded extent. More specifi-
cally, a choice may depend on the n previous choices for
some constant n. The value of n is typically small in real-
life Business Processes (e.g. the choices of users depend on
their previous choices, but only on a small number of such
choices).

A Little Bit of Data. Before considering full fledged mod-
eling of data in Business Processes, we consider flow models
that capture data but only to a small extent. One such ex-
ample is in our own Business Process model where the guard-
ing formulas that “guard” the possible implementations use
data variable. The value of these variables determines the
formulas satisfaction and thus the choice of implementation
for each activity. This, in turn, dictates the course of exe-
cution. However the use of data here is limited: guarding
formulas may ask for the value of a specific data item, but
cannot e.g. issue full-fledged SQL queries on the underlying
Database to decide on the choice of implementation.

Another example is scientific workflows where the inter-
action between flow and data is given an interesting twist.
Scientific workflows are processes that are executed by scien-
tists and composed of modules. Each module performs some
scientific task and the modules interact by passing data be-
tween them. The workflow specification may be hierarchical,
in the sense that a module may be composite and itself im-
plemented as a workflow. The data that is modeled here
includes the input and output of every module, but not the
internal database or the way it is manipulated / queried by
the modules.

2.2 Underlying Relational Data
The models that we have mentioned so far mainly focused

on the flow, i.e. they allow to capture the control flow of
a given process, but the data that is manipulated by the
process was only modeled to a limited extent. A comple-
mentary line of research, in the databases area, resulted in
the development of a variety of process models that are cen-
tered around data. Such models have appeared even before
the term Business Processes emerged in research, such as
the model of Relational Transducers [5] (and the follow-up
work on ASM transducers [64]), that was shown to be very
effective in capturing e-commerce applications. In relational
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Ord(user, prod) + : − InOrd(user, prod)

PayedOrd(user, prod) + : − InPayment(user, prod)

UnpaidOrd(user, prod) + : − Ord(user, prod) AND

NOT PayedOrd(user, prod)

OutReceipt(user, prod) + : − PayedOrd(user, prod) AND

InStock(prod)

Figure 1: Relational Transducer Example

transducers, the state of the application is modeled as a re-
lational database and the database state is modified using
the repeated activation of queries (in the spirit of active
databases [3]). The database is used to model not only the
internal database state, but also the interaction of the trans-
ducer with the external environment: these are modeled via
a set of input and output relations. There is thus no clear
distinction between the flow and the underlying data - the
database stores it all. A Datalog-like program is used to
query and update the state, input and output relations. For
instance, the rules in Figure 1 can be used to (partially)
specify the business logic of our computers company. Rela-
tion names starting with“In”stand for input relations, those
with “Out” for output relations, and the rest are state rela-
tions. Here the semantics of the rules is like in inflationary
Datalog, that is, a satisfying assignment to the righthand
side leads to an addition of a corresponding tuple for the
relation whose name appears on the rule left hand side.

Note the process flow that is implicit in the above descrip-
tion: the input orders made by the user change the state of
the orders, and user payments change the order status from
unpaid to payed. The difficulty is that the underlying flow
is not easily observable from the process specification, espe-
cially in the common case when the number of state relations
is large and inter-dependent. As a consequence, the pro-
cess designers and analysts may have difficulty grasping the
causality and temporal relationship between actions/data,
e.g. which part of the data is influencing other parts, which
is updated before the other and how, etc. This is in contrast
to case of the flow models mentioned above, where the exe-
cution flow is immediately observable from the specification.

A similar approach is taken in the works on Business Pro-
cess artifacts [50, 42, 68, 2]. The model focuses on the data
received, generated and manipulated by the process (e.g.
purchase orders, sales invoices, etc.). The data structures
encapsulating this information are referred to in this con-
text as artifacts. An example for such an artifact, for a user
order of a computer component is given in Figure 2.2. Arti-
fact states are queried and modified by services, which are
defined by declarative rules, accompanied by pre-and post
conditions for their invocation. Again, there is an implicit
modeling of flow, since the state of the order (artifact) re-
flects whether or not it was processed, and whether or not it
was paid for, etc. and this information is updated as the flow
evolves. But similarly to the case of relational transducers,
the description of flow is somewhat implicit.

Last, we mention that the modeling of data-centered Web
Applications have also received a significant attention in re-
cent years. One notable model in this context is the one
of data-driven, interactive Web Applications [32, 34] which
are essentially implicitly specified infinite-state machines in

ArtifactClass : ComputerOrder

componentName : string

componentType : ”RAM”

processed : bool

PaidFor : bool

Figure 2: Artifact Example

which the state (database) is shared across various appli-
cations, each of which may read/write its contents. The
interaction of web services, and specifically the data passed
between them, were studied also in the context of [16].

2.3 Underlying Semi-structured Data
Before we conclude, we mention another class of works in

this context that considers data which is not relational, but
rather semi-structured, and specifically XML. Here again,
there are works with an underlying flow model of a finite
state machine or context free languages, as well as some
probabilistic models. We next review them briefly. The Ac-
tive XML model [1, 7] extends XML with Web Service calls,
whose results are embedded back in the document, allow-
ing to make additional calls etc. In a recent work [2] the
authors suggest an artifacts model that combines a simple
flow model of Finite State Machine, with the data model
of Active XML. Also, recent works have studied models for
probabilistic XML documents that is based on a generative
process modeled by a Recursive State Machine [12]. In our
opinion, these works are important steps towards rich mod-
els that combine flow and data; but more work is required to
further find the correct balance between the models expres-
siveness, and the efficiency of query evaluation they allow
(see Section 4).

2.4 Research Directions and Open Problems
We conclude this section by listing a few aspects that are

absent in the current Business Processes and workflow mod-
els, yet we believe are important.

• Arguably the biggest challenge in Business Process
modeling is the combination of rich flow model with
rich model for underlying database manipulation. As
we will see in the next section, high complexity or even
undecidability of analysis is difficult to avoid whenever
such rich models are considered. We note that the re-
cent work of [2] has made a progress in this area by
designing an artifact model for Active XML [7] with an
underlying, explicitly modeled, Finite State Machines.
But there is still a long way to go, extending the model
expressivity within the boundaries of decidability.

• In [25] the authors state that no model is likely to be
“the best” for all needs, and consequently that there is
a need for the development of a theory (and practical
implementations) of views on Business Processes and
a practical mapping between them. We concur and
believe that this is even more true for rich, combined
flow and data model. Recently, there have been a few
advancements in this respect. In [2] the authors sug-
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gest the notion of a workflow view and use it as a way
of comparing expressive power of workflow specifica-
tion languages. We believe that there are important
research challenges in the efficient computation and
maintenance of such views.

3. GENERATION OF A MODEL INSTANCE
In the previous section we have considered the modeling

of Business Processes, and discussed various possible choices
for such models. Once such a model is chosen, we need
to create an instance of this model for the given business
process. Ideally, this would be done as part of the process
specification, with the actual software that implements the
process being automatically generated following the speci-
fication (and thus matching precisely the model). In this
case, the challenge lies in suggesting effective specification
tools, and in particular convenient visual interfaces for the
designer. Alternatively, the process model can be defined
manually, describing as close as possible the (already exist-
ing) Business Process, or be automatically mined from the
available execution logs.

In recent years there has been significant effort in all these
directions, in both industry and the academia. However,
here too there is still much to be desired. We next review the
state-of-the-art in these directions: we first consider manual
model design, and then automatic mining tools.

3.1 (Manual) Instance Design
The increasing interest in high-level Business Process spec-

ifications has triggered research and development geared to-
wards User Interfaces that will allow such process design.
Many of these interfaces are based on process visualization.
This has many advantages: it allows the designer to eas-
ily formulate and modify the process logic, allows users to
easily understand the process logic and how to use it, and
allows analyzers to easily pose analysis tasks. One standard
class of such visual interfaces uses UML (Unified Modeling
Language) [13] state diagrams. These are essentially Stat-
eCharts [47] with standardized notation. Such state dia-
grams allow to represent the process flow (using hierarchical
states), along with the process interaction with its environ-
ment and other processes (i.e. events that affect the flow,
messages that are emitted by the process during the flow,
etc.) guarding the different transitions. While StateCharts
(and consequently UML state diagrams) are highly success-
ful as a user-friendly, graphical model for designers of process
flow, the incorporation of data and its interaction with flow
in this model may be quite intricate. In principal, this can
come as part of the description of events actions that guard
the transitions. But unlike the case for flow, the UML state
diagrams standard does not dictate any syntax for the exact
formulation of events and actions, and the common practice
is to use “structured English”, or high-level programming lan-
guages such as C or Java (but not database query languages)
for expressing the conditions and actions [36].

Another standard for specifying Business Processes that
has emerged in the last decade is the BPEL (Business Pro-
cess Execution language) standard. This standard, devel-
oped jointly by BEA Systems, IBM, and Microsoft, combines
and replaces IBMŠs WebServices Flow Language (WSFL)
and MicrosoftŠs XLANG. It provides an XML-based lan-
guage to describe, in a declarative way, the interface between
the participants in a process, as well as the full operational

logic of the process and its execution flow. Commercial ven-
dors offer systems that allow to design BPEL specification
via a visual interface, using a conceptual, intuitive view of
the process as a graph; these designs are automatically con-
verted to BPEL specifications, and can further be automat-
ically compiled into executable code that implements the de-
scribed process. Unlike StateCharts, BPEL specifications do
allow some explicit representation of data. However this
representation is mainly geared towards the modeling of the
interaction of different processes (and more specifically web-
services). It includes an XML schema for sent and received
data (captured by variables), and an XPath interface for ac-
cessing these variables. But it has no explicit modeling of
full-fledged database manipulation.

Figure 3 depicts an example BPEL specification, edited
through a Graphical User Interface. The specification given
here describes the operational logic of a fictive travel agency
called “AlphaTours” (as may be observed from the property
nodes on the upper righthand side of the figure). Observe
that the control flow of the agency is captured via a DAG,
appearing in the “behavior” tab; also for every activity, the
input data type required by the activity and the output data
type that it generates are depicted as nodes in the “Data”
tab; these nodes are connected to the corresponding flow
activities through unique “data edges”. For instance, the
input of the “searchTrip” activity is a trip request, and its
output (“tripResults”) is fed as input to the “reserveTrip”
activity, etc.

Another line of tools that allows for declaratively speci-
fying Business Processes / Web Applications flow and their
underlying database include WebML and Web Ratio [22],
WAVE [33], Hilda [70], Siena [24], and others. Here however
the representation of flow is only implicit, and an intuitive
flow visualization in the style described above is not avail-
able. What is desired, and is the subject of an intriguing
research is an interface for explicit visualizing of both the
processes flow and manipulation of data. Of course, there
may be parts of the specification (both in terms of flow and
data manipulation) which are complicated and difficult to
visualize in a user-friendly form. However, it is still worth-
while to intuitively visualize those parts that are simpler,
and perhaps suggest simplified “views” on the more compli-
cated part.

3.2 Mining Model Instance
Even the best interface for process design requires a de-

signer that will use it to specify the logic of the process.
Works on process mining take an orthogonal approach. It
tries to infer the process structure from a set of observed
(perhaps partial) executions. Even if we consider only flow,
this is clearly a challenge: consider a set of logs contain-
ing many different operations, occurring in different orders
among different logs. Inferring a process model here includes
deciding which of these operations are defined to occur in
“parallel” (i.e. in an arbitrary order), and which of them
are in order. But it may be the case that for two activities
which may actually be parallel in the process specification,
there exists some consistent ordering in the given set of logs
- simply because the number of “sampled” (observed) logs
is not big enough to exhibit all orderings. More generally,
identifying the causality relationship between the invocation
of activities is a major challenge in this context.

There are several approaches for process mining, attempt-
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Figure 3: A process example modeled using BPEL Editor

ing to alleviate these difficulties. Some of these approaches
use techniques such as Neural networks and Association
rules mining for learning the process structure. This includes
the Process mining tools in the Business (Process) Intelli-
gence (BPI) suite [46]. While these approaches have some
experimentally proven successful, it is difficult to provide
any formal guarantees on their results. Other approaches
[62, 54] are based on statistics, and try to maximize the
likelihood of the observed sequence given the model. These
approaches are rooted in works on formal models, such as
those on inference of a best fit (i.e. maximizing the likelihood
of observations, given the model) Markov Chain [62], or a
Probabilistic Context Free Grammar [54] for a given set of
observations. However these models typically do not model
parallelism, which is inherent in process models. Moreover,
to the best of our knowledge, these approaches all pertain
to the application structure and flow, some of them in the
broader context of the organization and the interaction of
the process with it and with other processes, but not the
manipulated data.

3.3 Research Directions and Open Problems
To conclude this section, we consider some open ques-

tions and promising research directions in this context of
the works presented above.

• Similarly to the case with process modeling (and thus
not surprisingly), visual interfaces for designing pro-
cesses flow hardly provide tools for modeling the data
that is manipulated. Of course, one can design ex-
ternally a database schema and simply annotate the
flow with SQL queries. But still, for instance, visual-
izing (even some part of) the effect of the data on the
flow, and vice versa, is an intriguing and non-trivial
task. What is required for that is an holistic model
and visual interface for both flow and data. The lack of
treatment of data is even more noticable in the works
on process mining, as observed above; any advance to-
wards this end would be very important.

• The declarative nature of some interfaces for process
design, such as BPEL, opens the way for dedicated
optimization techniques, improving the performance of
the processes. There have been works on optimization
of the execution of declaratively described processes,
in various contexts (e.g. [69, 63]). However, there
is currently no theory of declarative Business Process
optimization, that is comparable to the comprehensive
theory on database query optimizations.

• Due to the difficulty of process mining, one can con-
sider an hybrid approach, where some parts of (or
“clues about”) the process specification are given, but
other parts need to be inferred from the observed exe-
cutions. This could model relatively well real-life sce-
narios.

4. QUERYING
As exemplified in the Introduction, Business Processes

serve as an important mine of information for the processes
owners as well as their users. There are (at least) two kinds
of analysis that are of interest in this context: first, the anal-
ysis of possible (and, perhaps, probable) future executions of
the process. This can be e.g. used to preempt possible bugs
or breach of policies in future executions. Second, querying
logs of past executions can also reveal important informa-
tion, such as problems that occurred at runtime, trends in
the process usage, etc. To support such an analysis, what is
desired is a formal query language.

Desiderata. We next list some of the desired features of
such a query language.

• It is desired that such query language will be, like the
Business Process specification itself, declarative, intu-
itive and graphical, allowing the process designer to
specify the analysis tasks side by side with the design
of the process specification.
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• The same query language will preferably allow uni-
formly for the analysis of future as well as past exe-
cution. Such uniformity will have several advantages:
it will require analysts to only master a single lan-
guage, it will allow to combine specification analysis
with log querying, it may allow for uniform develop-
ment of query optimization techniques, etc.

• We have stressed the importance of models that de-
scribe both the process flow and its underlying data.
Correspondingly, the query language that is used to
analyze the modeled Business Processes should allow
to query both the process flow and the data, and the
interactions between them.

• The query language should allow to pose queries at
different levels of granularity, specified by the ana-
lysts. For instance, one may wish to ask coarse-grain
queries that consider certain process components as
black boxes and allow for high level abstraction, as
well as fine-grained queries that “zoom-in” on all or
some of the process components, querying there inner-
workings.

• The query language should allow to specify “boolean”
verification queries, pertaining to the existence of bugs,
the enforcement of policies etc, as well as“selection”
and “projection” queries that allow to retrieve some
parts of the process or its executions, that are relevant
for the analysis. For instance, we may not only be
interested in the boolean existence of a bug, but if it
exists we wish to know in which part of the process
it occurred / may occur, under what circumstances,
what is may affect, etc.

• Naturally, to make things practical, the query language
should allow for efficient query evaluation algorithms
and optimizations.

We next review the state-of-the-art in works on query-
ing future and past executions of Business Processes, high-
lighting which of these desired properties were (partially)
achieved, and which still remain as challenges.

4.1 Querying Future Executions
Given a Business Process specification, analysts are typi-

cally interested in testing/querying properties of its possible
future executions. The property may be some constraint
that is expected to hold in every execution, such as “a user
can not place an order without giving her credit card details”
or “a user must have a positive balance in her account before
placing an order”. It may also be the probability that some
situation occurs in a random execution, such as “what is
the probability that a user chooses to order a Motherboard
given that she ordered a RAM?”.

The analysis of possible future executions of a process,
also referred to as static analysis, was extensively studied
for formal flow models (Finite State Machines, Pushdown
automata, Context Free Grammars, etc.). The dominant
approach for such analysis is to use a temporal logic formal-
ism [37] to query the possible executions of a given process.
In temporal logic, formulas are constructed from predicates
and temporal quantifiers such as “before” (B) ,”always” (A),
”until” (U) etc. For instance, a query of the sort“a user must
login before placing an order” can be expressed by a formula

of the form Login B Order, where Login and Order are
predicates that can be checked locally on a given flow state.

While temporal logic is very useful, it fails to satisfy many
of the desiderata in the context of Business Processes. The
main difficulties in using it for analysis of Business Processes
executions are the following. First, similarly to the case of
First Order Logic, the design of temporal logic formulas for
complicated properties may be cumbersome, and the out-
come may be difficult to read. Second, in temporal logic
there is no explicit reference to underlying process data, and
the properties it allows to capture pertain only to the pro-
cess flow. Third, it allows only to verify boolean properties,
and cannot express any counterpart of selection and projec-
tion database queries, and in particular does not allow to
retrieve paths that are of interest.

The shortcoming of explicit constructs for referring to
both the flow and data was alleviated by the work of [32],
suggesting a query language called LTL-FO (for Linear Tem-
poral Logic-First Order). The idea is that temporal logic
is used for querying the execution flow, while First Order
constructs may be used inside the predicates, for querying
not only the execution flow state, but rather the database
state at the current point of the execution. For instance,
the following formula specifies that whenever a user orders
any product, its balance must be positive (we assume that
Order and Balance are database relations. A is the tempo-
ral operator “Always” and user, sum, product are used as
bound variables in the formula).

• ∀user, product.A(Order(user, product)⇒
∃sum > 0.balance(user, sum))

LTL-FO is an important step in the direction of query-
ing Business Processes. We also mention in this context
the work on querying Active XML documents [4], introduc-
ing tree-LTL, where temporal operators are used over tree
patterns. But these languages still lack some of the above
desiderata: they do not allow to specify non-boolean queries,
do not allow controlled levels of granularity, and they are
hard to formulate for non (logic) experts.

Some of the desiderata that are not achieved by the differ-
ent variants of temporal logic (with or without constructs for
querying data), are satisfied by our query language BPQL
(Business Process Querying Language) [10], allowing to pose
queries on our Business Process model. BPQL is based on
abstraction of the BPEL formalism, along with a graphical
user interface that allows for simple formulation of queries
on BPEL specifications. At the core of the BPQL language
are Business Process patterns that allow users to describe the
pattern of activities/data flow that are of interest. Business
Process patterns are similar to the tree and graph-patterns
offered by query languages for XML and graph-shaped data,
but include two novel features designed to address the above
desiderata. First, BPQL supports navigation along two axis:
(1) the standard path-based axis, that allows to navigate
through, and query, paths in process graphs, and (2) a novel
zoom-in axis, that allows to navigate (transitively) inside
process components and query them at any depth of nest-
ing. Second, paths are considered first class objects in BPQL
and can be retrieved, and represented compactly. An ex-
ample for such an execution pattern, designed using the
BPQL Graphical User Interface, is depicted in Figure 4.

8



Figure 4: A query example modeled using BPQL
Editor

This query looks for a login activity, followed, after some
sequence (path) of choices, by a searchFlights activity.

Recall however that our Business Processes model does
not allow explicit modeling of data, and correspondingly
BPQL does not have explicit constructs for underlying data,
but rather focuses on querying the execution flow of the pro-
cess. More work is required in combining the desired features
of BPQL, with the ability to formulate data-aware queries.

Complexity Results. We briefly review some main com-
plexity results for the query formalisms described above.
First, the complexity of evaluation of Linear Temporal Logic
(LTL) queries (as well as branching-time logic CTL∗ [37])
on Finite State Machines is known to be linear in the state
machine size but exponential in the size of the formula. In
[8] the authors show the same complexity results for context
free processes, and equivalently for Single Exit RSMs [38].
Similarly, for BPQL, the complexity of query evaluation was
shown to be polynomial in the process specification size,
with the exponent depending on the query size. We have
mentioned above the query language LTL-FO for querying
both flow and data. In [35] the authors show that evalu-
ating LTL-FO queries on their process model is PSPACE-
complete under some restrictive assumptions on the input
process, and is undecidable in general (although they de-
scribe in [32] a practical implementation based on strong
heuristics). It is observable that the blowup in the complex-
ity of query evaluation is difficult to avoid when querying
flow and data together. Finding a framework that will sat-
isfy all of the above listed desiderata, and will in particular
allow for efficient query evaluation, is an important research
challenge.

4.2 Querying Past Executions
We have discussed the analysis of future executions of a

given process specification. Equally important is the analy-
sis of executions that took place in the past, and are recorded
in a repository. Execution logs are of tremendous impor-
tance for companies, since they may reveal patterns in the
behavior of the users (e.g. “users that buy a specific brand
of RAM also tend to buy a specific brand of Motherboard”),
may allow to identify run-time errors that occurred, or a

breach of the company policy. In the context of scientific
workflows (see section 2), these execution logs are referred
to as provenance. They represent instances of the scientific
process that was used in practice, and they are in fact the
main object that is analyzed in this context. This analysis
can verify the correctness of experiments represented by the
workflow, identify the different tools that were used, with
which parameters, etc. Another application of log analysis
is inference of probabilities, based on past observations, for
the probabilistic process models discussed in section 2.

Contents of the Log. One basic question in this context is
what is recorded in execution logs. One option is to record
only the execution flow, i.e. the activities (functions, web-
services, modules..) that were used at run-time, along with
their order of occurrence. But in many cases what is also of
interest is the record of data that was manipulated / trans-
mitted throughout the execution, and the interaction of data
with the execution flow. This entails “marrying” workflow
provenance (that includes record of the activities or mod-
ules that occurred at run-time), with the notion of data
provenance (e.g. [45, 40, 67, 17, 44, 41, 23, 19, 18, 71,
49]) - the management of fine-grained record on the course
of databases queries evaluation.

There are two challenges in this context: first, keeping a
complete record of all activities that occurred at run-time,
and all data that was manipulated, may be infeasible in
terms of the required storage resources. Second, while parts
of the logs may be essential for analysis purposes, it is often
the case that other parts of the logs should be kept confi-
dential. How do we decide what to record?

There are various works that suggest partial solutions to
(different aspects of) this challenge. In [28], we have sug-
gested a selective tracing systems for Business Processes ex-
ecution flows, that uses a renaming function for activities,
to mask the real names of the recorded activities, and a
deletion set for activities, allowing the deletion of all record
of some activities from the execution logs. In the context
of scientific workflows, there are recent works [6, 51] that
suggest frameworks for keeping track of both the activated
modules and their internal manipulation of data. But the
provenance that is tracked there is not fine-grained“enough”,
in the sense that it does not keep track of the exact transfor-
mations performed on each data item (in contrast to the case
of provenance management in “standard” databases, see e.g.
[45]). In [27] the authors distinguish three types of work-
flow privacy: module privacy, data privacy, and provenance
privacy. The first refers to hiding the functionality of one
or more modules in a workflow, the second refers to hid-
ing the internal data of a module, and the third refers to
hiding the way a data item is manipulated and transmitted
between the modules of the workflow. There are still many
open challenges in workflow security, as described in [27].

What Formalisms to Use for Analysis. Ideally, the same
query language used for querying future executions could
be used for querying past executions, with the appropriate
adaptation of the query evaluation algorithms. This may al-
low analysts to only master a single language, allow to com-
bine specification analysis with log querying and allow a uni-
form development of query optimization techniques. Such
uniformity may be challenging to achieve, since queries that
can be evaluated on a given log (or a database of logs) may
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become undecidable when evaluated statically over (poten-
tially infinite number of) possible future executions. These
challenges can possibly be addressed by a careful choice of
the query formalism. For instance, we have shown in [28]
that BPQL, originally designed for querying future execu-
tions, can be used also as query language for execution logs.
LTL-FO, mentioned above in the context of querying future
executions, can also be adapted for querying past execu-
tions. There are also other works (e.g. [56]) that show how
to use temporal logic for analysis of execution logs. The sim-
ilarities of solutions entail also similarities in the remaining
challenges described above, and in particular the design of a
user friendly (graphical) query language, that will allow to
query both the flow and data of execution logs.

Challenges and (Partial) Solutions in Query Evalua-
tion. One challenge in querying log repositories is that their
typical size is very large (perhaps distributed among many
locations, for complex distributed systems), as logs are col-
lected over a long period. A first thing to observe is that pro-
cess logs may be abstractly viewed as graphs that record the
execution flow. Much research has been dedicated to query
evaluation over graphs, developing various index structures
and labeling schemes for the graph nodes to speed up query
processing. There is naturally also large body of work on
standard database query optimization. But, to our knowl-
edge, the problem of efficient combined analysis of flow-and-
data has not yet been addressed.

In the context of Business Processes, information about
the process structure (derived from its specification) may be
used to further improve performance. For example, in [28]
we have presented a framework for type-based optimization
of query evaluation on execution logs, based on the observa-
tion that the specification reveals useful information on the
kinds of flow that can (and cannot) appear in the execution
logs, and this information can be used to optimize query
evaluation. Similarly, we have shown in a recent paper [9]
that, using the process specification, one may derive com-
pact labels for the graph nodes, thereby allowing for efficient
processing of reachability queries. These works however fo-
cus on the flow and extending them to handle data aspects
is intriguing.

An additional challenge is that in many cases what is
sought for in these logs is vaguely defined as “interesting
patterns”, and is difficult to express formally. For these rea-
sons, a dominating approaches is to use data mining and
OLAP techniques for analyzing log repositories. Indeed,
many works adapt “classic” data mining techniques such as
clustering, associating rule mining and various sorts of sta-
tistical analysis [46]. One issue that appears uniquely in exe-
cution logs (in contrast to “general” data mining) is the tem-
poral nature of events. To that end, there are dedicated data
mining techniques such as Sequential Patterns and Complex
Event Processing that account for the order in which events
occur and find patterns in the sequence of events. But these
works focus mainly on the execution flow, rather than on
data. Here again what is missing is an effective processing
accounting for both flow and data.

Run-time Monitoring. To conclude this section we briefly
consider a third axis of analysis, namely that of run-time
monitoring of the process execution. For instance, the own-
ers of the computer store in our running example may be

interested in being notified whenever a user places orders
for five or more different products in, say, less than ten sec-
onds (because this may indicate that a malicious automated
process in fact placed these orders).

There have been several approaches to the runtime mon-
itoring of Business Processes. One approach [46] is to use
pre-defined templates (such as a process P was at a state S
for more than X seconds), that can be instantiated (i.e. fed
with concrete values) by analysts via a form. The instanti-
ated tasks are internally implemented using e.g. SQL state-
ments. But the templates are fixed and are intended to be
designed only by the system administrator, and not by the
analyst. This approach is effective in some cases, but fails
to satisfy the desiderata we listed above. More in the spirit
of our desiderata are works that lift the same formalisms
used for static analysis of executions, and use them in the
context of monitoring. Specifically, [56] showed how to use
LTL for effective monitoring of distributed systems; this is
an interesting direction but it suffers from the same prob-
lems discussed above regarding temporal logic. In [10] we
show how to adapt BPQL for monitoring tasks, but again,
the focus is on the process flow rather than its data. As
before, we believe that what is missing is a comprehensive
flow-and-data monitoring solutions, that will preferably be
employed uniformly with a solution for the analysis of past
and future executions.

4.3 Research Directions and Open Problems
To conclude, we list several research directions and open

questions in the context of querying Business Processes.

• We have presented many different formalisms for query-
ing processes, however most of them focus only on flow
and not on data, and those that allow to query flow-
and-data are computationally expensive in terms of
worst case complexity. Further studying the tradeoff
between expressivity and complexity of query evalua-
tion in this context is an intriguing research direction.

• One specifically important benefit of declarative query
languages is a seamless optimization. The develop-
ment of dedicated optimization techniques for the anal-
ysis of past, present and future executions, perhaps
based on the information given by the Business Pro-
cess specification, is an important challenge.

• We have mentioned the work on provenance for scien-
tific workflows and for database queries. As described
above, maintaining fine-grained (i.e. flow and data)
provenance for scientific (and other) workflows is use-
ful, but may require a lot of storage space. Finding
efficient ways of storing fine-grained provenance, and
then utilizing it for analysis tasks, is the subject of an
on-going research. We note in this context that eco-
nomical storage of temporal databases has been exten-
sively studied (see [65]), but the additional challenges
here are due to the possibly intricate structure of the
process flow that is absent from temporal databases,
and entails intricate causality relations between pro-
cess activities and data items.

5. CONCLUSION
We provide in this paper a database perspective to Busi-

ness Processes. Research in this area considers the context
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(processes) in which data is generated and manipulated, the
users interacting with the data and the goals that the data
serves. We have exemplified the importance of such a holistic
approach to process and data management and its benefits.
We have discussed the state-of-the-art research in this direc-
tion and highlighted the remaining gaps. We argue that sim-
ilarly to the case of“conventional”database research, elegant
modeling and rich underlying technology are likely to bring
economic wealth for the Business Process owners and their
users. Consequently, we believe that Business Processes con-
stitute a very promising area for research and that Database
researchers are best equipped to lead a breakthrough in this
field.
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