
On Provenance Minimization ∗

Yael Amsterdamer
Tel Aviv University

and University of Pennsylvania

yaelamst@post.tau.ac.il

Daniel Deutch
Ben Gurion University

and University of Pennsylvania

deutchd@cs.bgu.ac.il

Tova Milo
Tel Aviv University

milo@post.tau.ac.il

Val Tannen
University of Pennsylvania

val@cis.upenn.edu

ABSTRACT
Provenance information has been proved to be very effec-
tive in capturing the computational process performed by
queries, and has been used extensively as the input to many
advanced data management tools (e.g. view maintenance,
trust assessment, or query answering in probabilistic databases).
We study here the core of provenance information, namely
the part of provenance that appears in the computation of
every query equivalent to the given one. This provenance
core is informative as it describes the part of the computa-
tional process that is inherent to the query. It is also useful
as a compact input to the above mentioned data manage-
ment tools. We study algorithms that, given a query, com-
pute an equivalent query that realizes the core provenance
for all tuples in its result. We study these algorithms for
queries of varying expressive power. Finally, we observe
that, in general, one would not want to require database
systems to evaluate a specific query that realizes the core
provenance, but instead to be able to find, possibly off-line,
the core provenance of a given tuple in the output (com-
puted by an arbitrary equivalent query), without rewriting
the query. We provide algorithms for such direct computa-
tion of the core provenance.

Categories and Subject Descriptors
H.2.1 [Database Management]: [Data Models]

General Terms
Algorithms, Theory

∗This work has been partially funded by the NSF grant IIS-
0629846, the NSF grant IIS-0803524, by the Israel Science
Foundation, by the US-Israel Binational Science Founda-
tion, by the EU grant MANCOOSI and by the ERC grant
Webdam under agreement 226513.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PODS’11, June 13–15, 2011, Athens, Greece.
Copyright 2011 ACM 978-1-4503-0660-7/11/06 ...$10.00.

1. INTRODUCTION
Recording provenance information for query results, that

explains the computational process leading to their genera-
tion, is now a common technique. In particular, the work
of [19] suggested capturing provenance information via poly-
nomials. The idea is to associate every tuple in the input
database with an annotation, and to extend the operations
of relational algebra so that they will work on these anno-
tated tuples. The resulting annotation of every output tuple
is a polynomial over the original annotations, that reflects
the operations performed on the original tuples to obtain
the output tuple. Provenance polynomials were shown to be
very useful, serving as input to many advanced data man-
agement tools, such as view maintenance, trust assessment,
or query answering in probabilistic databases (See e.g. [18,
25, 30]). We note that provenance polynomials give a trace
of the computational process associated with every tuple in
the query result. For example, if the provenance annotation
p of an output tuple is x·y ·y + z + z (= x·y2 + 2z) where
x, y, z are annotations that uniquely identify three input tu-
ples (e.g., tuple ids) then p indicates that there are three
different ways (derivations) to compute the output tuple,
one uses x once and y twice while the other two use only z,
once.

Consequently, the evaluation of two equivalent queries (in
the standard sense of [9]), on a given input database in-
stance, may lead to different provenance polynomials for the
same output tuples. While this is sometimes useful, there are
many cases in which what is of interest is not the computa-
tional process induced by the query chosen among equivalent
queries (which is affected by optimizers and may change over
time), but rather the “core” computational process, whose
use of input tuples must be “included” in the query evalu-
ation for every equivalent query. We are therefore led to a
notion of core provenance capturing the core computation.
We will define this notion formally, for provenance that is
defined in a very general way (namely, using the N [X] semir-
ing [19]) and then see that the core provenance is not only
informative in exposing the core of the execution, but is also
compact. We propose using this compact representation to
alleviate practical challenges that arise in data management
tools due to the size of provenance information [10, 27].

Following the above observations, the present paper ad-
dresses two main challenges: defining the core provenance,
and then realizing it. Towards the definition, we introduce
an order relation p ≤ p′ on provenance polynomials. In-
tuitively, this order relation captures the “terseness” in the
use of tuples. For example, in this order using a tuple once

141

is terser than using it twice, within the alternative ways of
computing the same answer. In a more complex example,
x·y2+2z ≤ x·y2+x·z+y·z but the opposite is not true. The
ordering of polynomials lifts naturally to queries. Given two
equivalent queries Q,Q′ (denoted Q ≡ Q′), we say that Q is
“terser” w.r.t. provenance than Q′, and we write Q ⊆P Q′

if for any input database D and any tuple t in the output,
where the annotation of t in Q(D) is p and that of t in Q′(D)
is p′, we have p ≤ p′. Now, given a class of queries C, we can
formally define core provenance for a query Q ∈ C: it is the
provenance yielded by a query Q′ ∈ C such that Q′ ≡ Q and
for any other Q′′ ∈ C equivalent to Q, we have Q′ ⊆P Q′′.
In that case, we say that Q′ is a provenance-minimal (p-
minimal) query in C equivalent to Q.
We then study the realization of this core provenance, first

via queries and then by direct computation, as follows.

Realization via Queries. Given a query Q and a class of
queries C we aim at finding a p-minimal query in C equivalent
to Q. Since the identification of the p-minimal query (and
thus the core provenance) depend on a “context” class of al-
ternative query plans C, the choices for this class become im-
portant. In this paper we study the p-minimization in query
classes of increasing expressivity, for which there exist solid
foundations of provenance management using polynomials:
conjunctive queries (CQ), conjunctive queries with disequal-
ities (CQ̸=) and unions of conjunctive queries with dise-
qualities (UCQ̸=). When considering disequalities, we fur-
ther distinguish the classes of complete queries, i.e. queries
that disequate all of their distinct arguments. The classes of
complete conjunctive queries and unions thereof are denoted
cCQ ̸= and cUCQ̸=, respectively.
We note that query minimization in terms of the query

length (or number of joins [9], referred to hereinafter as
“standard minimization”) has been extensively studied for
these classes of queries. Interestingly, in general the queries
that realize the core provenance may be very different than
the minimal ones in the sense of [9]. In particular, there are
conjunctive queries for which an equivalent query in UCQ̸=

yields a “terser” provenance, as the latter query allows only
a subset of the original derivations for each output tuple.
Table 1 summarizes the results on finding p-minimal queries,

contrasted with results on standard minimization. Follow-
ing the above discussion we distinguish between finding the
p-minimal equivalent query among all queries in UCQ ̸=, or
in a further restricted class C. For instance, when given as
input a query in CQ̸=, there are cases where not only that
terser provenance can be obtained by resorting to UCQ ̸=,
but furthermore no equivalent query that realizes its core
provenance in CQ̸= exists. I.e., for some sets of equivalent
queries in CQ ̸=, each query leads to strictly more prove-
nance than some other query in the set, for some output
tuple. If the input query is in CQ, then we can use stan-
dard minimization to obtain an equivalent CQ query which
is p-minimal among all those in CQ, but an equivalent query
entailing terser provenance may be still found in UCQ̸=.
The complexity of our p-minimization algorithms is in

general exponential in the query size (with the exception
of cCQ ̸= for which we suggest a PTIME algorithm). This
is unavoidable as the corresponding decision problem (de-
scribed in the sequel) is DP-complete [16].

Query “Standard” P-minimal P-minimal
Class Minimal in in Class Overall

Class/Overall

CQ ̸= In CQ ̸= No p-minimal In UCQ ̸=,
query exists EXPTIME

CQ In CQ same as In UCQ ̸=,
“standard” EXPTIME

minimization

cCQ ̸= In cCQ̸= same as In cCQ̸=,
“standard” PTIME

minimization

UCQ ̸= In UCQ ̸= different than In UCQ ̸=,
“standard” EXPTIME

minimization

Table 1: Summary of Results

Realization by Direct Computation. Core provenance is
also useful in improving the efficiency of provenance-based
analysis tools, in the sense that they may be fed with smaller
provenance polynomials. While so, we would not want database
systems to be obligated to evaluate a specific query that real-
izes the core provenance, but would rather allow optimizers
to evaluate the most efficient query. We would thus like to
be able to evaluate any equivalent query, but then (possibly
off-line) find the core provenance of given tuples in the re-
sult, without re-evaluating the query. We show that this is
possible by manipulations on the provenance polynomials of
the individual tuples in the query result. Moreover, we show
that this can be done even in absence of the original query
(e.g. if it is not available due to confidentiality or to its loss,
etc.), assuming that we know the input database and the set
of constants used in the query (if any are used).

Paper Organization. The rest of this paper is organized as
follows. In Section 2 we provide the main definitions used
throughout the paper. In Section 3 we study provenance-
wise minimization of conjunctive queries, and in Section 4
we study it for union of conjunctive queries. In section 5 we
study minimization applied directly on provenance polyno-
mials. In Section 7 we provide an overview of related work,
and we conclude in Section 8.

2. PRELIMINARIES
We provide in this section the formal definitions used

throughout the paper. The definitions of these notions will
be accompanied by simple examples, which nevertheless will
be valuable in explaining the more complicated construc-
tions in the sections that follow.

2.1 Classes of Queries
We start by briefly recalling the basic definitions for con-

junctive queries and union thereof from [1]. We use the
standard notions of relational databases and schema, with-
out repeating their definitions in [1].

We assume in the sequel the existence of a domain V of
variables and a domain C of constants. Conjunctive queries
are then defined as follows:

Definition 2.1. A rule based conjunctive query Q with
disequalities, over a database schema S, is an expression of
the form:

ans(u0) := R1(u1), ..., Rn(un), E1, ..., Em where:

• R1, ..., Rn are relation names in S, ans is a relation
name not in S.

142

• Each ui is a vector (l1, ..., lk), where ∀j ∈ {1, .., k} lj ∈
V ∪ C.

• Each Ei is an expression of the form lj ̸= lk where
lj ∈ V and lk ∈ V ∪ C.

R1(u1), ..., Rn(un) are called the relational atoms of Q,
and E1, ..., Em are the disequality atoms. We require that
every variable that appears in a disequality Ei appears also
in a relational atom uj of the query. ans(u0) is called the
rule head, and is denoted head(Q), while R1(u1), ..., Rn(un),
E1, ..., Em is the rule body, denoted body(Q). The variables
and constants in the body of Q are called the arguments
of Q, and are denoted V ar(Q) and Const(Q) respectively.
The variables appearing in head(Q) are called the distin-
guished variables of Q, and each of them must also appear
in body(Q). Finally, if head(Q) is of arity 0, we say that Q
is boolean.

We use CQ̸= to denote the set of all conjunctive queries
with disequalities; the subset of queries in which no dise-
quality expression appears is denoted by CQ.
We say that a conjunctive query is complete (following

[21]) if it explicitly specifies all disequalities between pairs
of distinct variables (or a variable and a constant) occurring
in it. More formally:

Definition 2.2. A query Q ∈ CQ ̸= is complete if (1)
for every pair of distinct variables x, y ∈ V ar(Q), the query
contains the disequality x ̸= y (or y ̸= x), (2) for every
x ∈ V ar(Q) and c ∈ Const(Q), it contains x ̸= c.

We use cCQ ̸= to denote the class of all complete conjunc-
tive queries with disequalities.

Example 2.3. In the following example, x, y are vari-
ables and c is a constant. Q,Q′ are both in CQ̸= but only
Q′ is complete (i.e. Q′ ∈ cCQ ̸=):

Q: ans(x,y):=R(x,y),S(y,c), x ̸= y, y ̸= c
Q′: ans(x,y):=R(x,y),S(y,c), x ̸= y, y ̸= c, x ̸= c

We next also recall the definition of union of conjunctive
queries, as follows:

Definition 2.4. A union of conjunctive queries with dis-
equalities is an expression of the form Q = Q1∪Q2∪ ...∪Qm

where for each i ∈ {1, ...,m}, Qi ∈ CQ ̸=, and for each
i, j ∈ {1, ...,m} head(Qi) and head(Qj) are of the same
relation. We say that each Qi is an adjunct of the query Q.
The set of adjuncts of Q is denoted by Adj(Q).

We use UCQ to denote the class of union of conjunctive
queries with no disequalities, use UCQ ̸= where the adjuncts
may include disequalities, and cUCQ̸= where each adjunct
is complete.
We further intuitively extend the definitions of V ar and

Const for unions of conjunctive queries, such that V ar(Q) =∪
Qi∈Adj(Q) V ar(Qi) and Const(Q) =

∪
Qi∈Adj(Q) Const(Qi)

Example 2.5. Figure 1 depicts the query Qunion, which
is in cUCQ ̸=. Intuitively, its first adjunct Q1 looks for pairs
of different tuples (since it requires x ̸= y) where the value of
the first (second) attribute in the first tuple equals the value
of the second (first) attribute in the second tuple, while the
second adjunct Q2 seeks for a single tuples, where the values
in the two attributes are equal. For both adjuncts, the head
relation is a tuple which contains a single variable x.

Q1 : ans(x) := R(x, y), R(y, x), x ̸= y

Q2 : ans(x) := R(x, x)

Qunion : Q1 ∪Q2

Qconj : ans(x) := R(x, y), R(y, x)

Figure 1: Example Queries

Assignments and Query Results. We formally define the
notion of assignments of database tuples to query relational
atoms, and use it to define query results, as follows:

Definition 2.6. An assignment α of a query Q ∈ CQ ̸=

to a database instance D is a mapping of the relational atoms
of Q to tuples in D that respects relation names and in-
duces a mapping over arguments, i.e. if a relational atom
R(l0, ..., ln) is mapped to a tuple R(a0, ..., an) then we say
that li is mapped to ai (denoted α(li) = ai) and we require
that a variable li will not be mapped to multiple distinct val-
ues, and a constant li will be mapped to itself. We also
require the induced mapping over arguments to respect dise-
qualities appearing in Q.

Given such an assignment α, we define α(head(Q)) as the
tuple obtained from head(Q) by replacing each occurrence of
a variable li by α(li), and a constant li by its value.

The set of all such assignments for a database instance
D is denoted A(Q,D), and the result of evaluating a query
Q ∈ CQ ̸=, denoted Q(D), is then defined as

∪
α∈A(Q,D)

α(head(Q)). For Q = Q1 ∪Q2 ∪ ... ∪Qn, we further denote
Q(D) =

∪
i=1,...,n Qi(D), and A(Q,D) =

∪
i=1,...,n A(Qi, D)

Finally, we define A(t, Q,D) = {α ∈ A(Q,D) | t = α(head(Q))}
as the set of all assignments yielding t.

A B Provenance
a a s1
a b s2
b a s3
b b s4

Table 2: Relation R

A Provenance
a s2 ·s3 + s1
b s3 ·s2 + s4

Table 3: Relation ans

Example 2.7. Consider the query Qunion depicted in Fig-
ure 1, and the database D whose single relation R is depicted
in Table 2 (ignore for now the Provenance column). There
are two possible assignments for the first adjunct Q1, the
first(second) maps the atom R(x,y) to the tuple (a,b) (the
tuple (b,a)), the atom R(y,x) to the tuple (b,a) (the tuple
(a,b)), and the head to the tuple (a) (the tuple (b)); there are
two possible assignments for Q2, mapping its single atom ei-
ther to (a,a) or (b,b), and its head to (a) or (b) respectively.
A ((a), Qunion, D), for instance, contains exactly the first as-
signment of Q1 and the first of Q2, since these are the only
assignments that map the head to (a).

2.2 Query Containment and Homomorphisms
We next recall the definitions of query containment and

equivalence, as well as the definition of homomorphism be-
tween queries.

Definition 2.8. Given queries Q and Q′ over a database
schema R, we say that Q is contained in a query Q′ (denoted

143

Q ⊆ Q′) if for every database instance D of the schema R,
Q(D) ⊆ Q′(D). We say that Q,Q′ are equivalent (denoted
Q ≡ Q′) if Q ⊆ Q′ and Q′ ⊆ Q.

Example 2.9. Consider the queries Q2 and Qconj in Fig.
1. It is easy to verify that Q2 ⊆ Qconj.

Homomorphisms between Queries. We next define ho-
momorphism between conjunctive queries, as follows:

Definition 2.10. Let Q,Q′ ∈ CQ ̸=; a homomorphism
h : Q → Q′ is a mapping from the atoms of Q to those
of Q′, inducing a mapping on the instances of arguments
occurring in these atoms, such that:

1. If an atom a uses a relation R (resp. is a disequality)
so does (is) h(a).

2. The head of Q is mapped to the head of Q′.

3. If one instance of a variable x ∈ V ar(Q) is mapped to
an instance of y ∈ V ar(Q′) then all instances of x are
mapped to instances of y.

4. Each occurrence of a constant c ∈ Const(Q) must be
mapped to an occurrence of c.

Example 2.11. Reconsider Q2, Qconj from figure 1. There
exists a homomorphism from Qconj to Q2 mapping the two
atoms of Qconj to the single atom of Q2. The induced ho-
momorphism over variables maps both x, y to x. Note that
there is no homomorphism from Q2 to Qconj because x will
necessarily be mapped to both x and y.

2.3 Provenance of Query Results
We use here provenance annotations that are elements

from the provenance semiring [19], as these annotations al-
low to capture the computational process inflicted by a given
query evaluation. A semiring is an algebraic structure with
two operations: addition and multiplication [23]; the prove-
nance semiring is defined as (N[X],+,·, 0, 1), where N[X] is
the set of all polynomials with natural numbers as coeffi-
cients, over some pre-defined set of variables X. Each mul-
tiplicative term in a polynomial is called a monomial. For
instance, the monomials of x+ x·y ·z are x and x·y ·z.
An N[X]-relation P maps each tuple t to a provenance

annotation P (t). We consider here input N[X]-relations that
are abstractly-tagged [19], meaning that ∀t P (t) ∈ X, and
∀t ̸= t′ P (t) ̸= P (t′) (the case of non-abstractly-tagged input
relations is discussed in Section 6). For instance, reconsider
the relation depicted in Table 2: the provenance annotations
are depicted in the last column; all annotations are distinct
and the relation is abstractly-tagged.
In the sequel we will use the notations s (or si for some in-

dex i) for provenance annotations, p (or pi) for polynomials,
and m (or mi) for monomials.
Given a database instance D and a query Q ∈ UCQ̸=, we

adopt the definition of [20] for the provenance of each tuple
in the query result1:

Definition 2.12. Given a query Q ∈ CQ̸=, a database
instance D of N[X]-relations, a tuple t ∈ Q(D), we define
the provenance of t w.r.t. Q and D, denoted by P (t, Q,D),
as follows: P (t, Q,D) =

∑
α∈A(t,Q,D)

∏
Ri∈body(Q) P (α(Ri)),

where A(t, Q,D) is the set of all assignments yielding t as a

1The definition in [20] for UCQ is an adaptation of the orig-
inal definition in [19] for SPJU queries.

result (See Definition 2.6). If Q = Q1 ∪ Q2 ∪ ... ∪ Qn then
P (t, Q,D) =

∑
i=1,...,n P (t,Qi, D).

In the case of boolean queries, where the only possible tuple
in the result is the empty tuple, we may use the notation
P (Q,D) for the provenance of this single tuple, and call it
the provenance of Q for D.

Example 2.13. Reconsider the relation R depicted in Ta-
ble 2, this time along with the provenance annotation of its
tuples, and reconsider the query Qunion from Figure 1.

The output relation ans along with the provenance annota-
tions assigned to its tuples is depicted in Table 3. Consider
for example the output tuple (a); it is computed from Q1

as the result of an assignment that maps the first (second)
atom to the tuples annotated by s2 (s3 resp.), and from Q2

as the result of an assignment that maps its single atom to
s1. Consequently its provenance is computed as s2 ·s3 + s1.
Similarly, (b) is obtained due to the assignment for Q1 that
assigns s3 to the first atom and s2 to the second one, and
the assignment that assigns the single atom of Q2 to s4.

We note that different queries which are equivalent with
respect to containment may yield different provenance poly-
nomials for the same database and result tuple.

Example 2.14. Reconsider Qconj as well as Qunion from
Figure 1. These two queries are equivalent. However, con-
sider the provenance of the output tuple (a) for Qconj and the
relation R depicted in Table 2. This output tuple is yielded
by an assignment that maps the first atom of Qconj to s2
and the second atom to s3, and by an assignment that maps
both atoms to s1. Thus, the provenance of (a) for Qconj is
s2·s3+s1·s1. The provenance of tuple (b) would be s3·s2+s4·s4.
In both cases, the provenance polynomial is different than the
polynomial yielded by query Qunion.

Note. The above definition of provenance polynomials in-
dicates the existence of an isomorphism between the as-
signments and the monomials of the polynomial, when the
monomials are written in a form where all coefficients and
exponents equal 1 (This isomorphism simply maps each as-
signment to the monomial it yields). For ease of presenta-
tion and to have the isomorphism between assignments and
monomials clearly visible, we will assume that the polyno-
mial is indeed written in this form. When this complicates
the reading, we will also give (in brackets) the “compact”
expression with coefficients and exponents. For instance, in
Example 2.14 above we wrote s2 ·s3 (rather than s3 ·s2) as
one of the monomials in the provenance of the tuple (a) to
reflect the fact that the corresponding assignment mapped
the first atom of Qconj to a tuple annotated with s2, and the
second to a tuple annotated with s3. Similarly, we wrote the
other monomial as s1 ·s1 to reflect that the corresponding
assignment mapped both the first and second atoms to s1.

So far we have repeated existing definitions for general
concepts. The following subsection presents definitions which
are specific to the context of core provenance.

2.4 An Order Relation
We next define an order relation over the provenance poly-

nomials, that will allow comparing different provenance poly-
nomials yielded by equivalent queries. The order relation we
define below reflects relative “terseness” of a provenance of
a given tuple in the query result, and will be used in the

144

sequel for defining minimal provenance. Intuitively, we will
say that p ≤ p′ if there is an injective mapping of the mono-
mials in p to the monomials in p′, such that each monomial
is mapped to a monomial in which it is contained. Recall
the correlation between the polynomials and assignments of
atoms to tuples, where each monomial corresponded to such
an assignment; consequently, if a query Q (Q′) generates a
tuple t with provenance p (p′), then p ≤ p′ means that each
assignment of Q is contained within an assignment of Q′,
thus the provenance of Q is more “terse”. Formally,

Definition 2.15. Given two monomials m = s1·...·sk and
m′ = s′1·...·s′k′ we say that m ≤ m′ if there exists an injective
mapping Im : {1, ..., k} → {1, ..., k′} such that si = s′Im(i) for
every 1 ≤ i ≤ k.
Given two polynomials p =

∑
i=1,...,n mi and

p′ =
∑

i=1,...,n′ m
′
i, we say that p ≤ p′ if there exists an

injective mapping Ip from monomials in p to monomials in
p′ such that mi ≤ Ip(mi) for every 1 ≤ i ≤ n.
We say that p = p′ if it holds that p ≤ p′ and p′ ≤ p.
Finally, we say that p < p′ if p ≤ p′ but not p = p′.

Example 2.16. Let p1 = s1 ·s2 + s3 + s3 and p2 = s1 ·s2 ·
s2 + s2·s3 + s3·s4 + s5, then p1 < p2. To see that this holds,
observe that we can map the monomial s1·s2 to s1·s2·s2, map
the first occurrence of s3 to s2·s3, and the second occurrence
of s3 to s3·s4; but in the other direction we cannot e.g. map
the monomial s3 ·s4 of p2 to any monomial of p1.

We then utilize the order relation over provenance poly-
nomials to define an order relation over queries which are
equivalent in the “standard” sense.

Definition 2.17. For two equivalent queries Q,Q′ we say
that Q ⊆P Q′ if for every abstractly-tagged database instance
D, and for every tuple t in the result of evaluating Q (Q′)
over D, P (t,Q,D) ≤ P (t, Q′, D). We say that Q ≡P Q′ if
Q ⊆P Q′ and Q′ ⊆P Q; we say that Q ⊂P Q′ if Q ⊆P Q′

but not Q ≡P Q′.

Example 2.18. Reconsider the queries Qconj , Qunion from
Figure 1. As observed above, Qunion and Qconj are equiva-
lent. We will show in the sequel (Theorem 3.11) that Qunion ⊂P

Qconj. But already now we can observe that in some cases
Qconj entails more provenance (and thus that the queries are
not equivalent in terms of provenance): in examples 2.13 and
2.14 we have shown that for the output tuple (a) the prove-
nance of Qunion was s2·s3+s1 while the provenance of Qconj

was s2 ·s3 + s1 ·s1, which is strictly larger.

We now define the notion of minimal query in terms of
provenance, as follows:

Definition 2.19 (Minimal Provenance). We say that
a query Q is provenance-minimal (p-minimal) in a class of
queries C 2 if ∀Q′ ∈ C Q′ ≡ Q⇒ Q ⊆P Q′.

The provenance yielded by a p-minimal query is called core
provenance.
We then define the PROVENANCE-MINIMIZATION problem,

with respect to a given class C of queries, as follows: given a
query Q ∈ C, find, if exists, a query Q′ ∈ C such that Q′ ≡ Q
and Q′ is p-minimal. We study in the sequel PROVENANCE-
MINIMIZATION for the query classes CQ,CQ̸=, cCQ ̸=, UCQ ̸=.

2C may e.g. be CQ, CQ̸=, etc.

Note. We note that “standard” query minimization ([9, 22,
26]) aims at minimizing the query length, i.e. the number
of relational atoms in the query (equivalently, minimizing
the number of joins [22]). We show in the sequel that such
minimization does not necessarily minimize the provenance.
Another important note is that (unlike for comparison based
on length) it can be the case that two equivalent queries will
be incomparable with respect to our order relation, and we
will show such an example in the sequel (See Theorem 3.5).

3. MINIMIZING CONJUNCTIVE QUERIES
In this section we focus on solving PROVENANCE-MINIMIZATION

for conjunctive queries. We start by presenting a homomor-
phism theorem that will be of use in all of our p-minimization
algorithms. We then consider first p-minimization within
the most general class, CQ ̸=. Then we turn to analyze sub-
classes of CQ̸= which are of interest, namely CQ and cCQ̸=.

3.1 Homomorphisms and Provenance
In the work on “standard” minimization, where one aims

at minimizing the number of joins in a given query, homo-
morphism mappings between queries play an important role.
Evidently, this is also the case for provenance minimization,
albeit in a different manner. We first recall the homomor-
phism theorems from [9, 21]:

Theorem 3.1 ([9, 21]). Given two queries Q ∈ CQ
(Q ∈ cCQ ̸=) and Q′ ∈ CQ (Q′ ∈ CQ ̸=), there exists a
homomorphism from Q′ to Q if and only if Q ⊆ Q′.

We note that the requirement on Q with disequalities to
be complete is essential; otherwise, homomorphism implies
inclusion but the converse fails in general, as indicated by
the following example:

Example 3.2 (Adapted from [22]). Consider the fol-
lowing queries:

Q : ans() := R(x, y), R(y, z), x ̸= z
Q′ : ans() := R(x, y), x ̸= y

Q is included in Q′: if there exists x, y, z such that R(x, y),
R(y, z) and x ̸= z, then either x ̸= y or y ̸= z, in both cases
there exists a tuple R(w, t) with w ̸= t which thus matches
Q′. But there is no homomorphism from Q′ to Q as if we
can either map R(x, y) occurring in Q′ to R(x, y) or R(y, z)
occurring in Q; but in both cases the disequality x ̸= y could
not be mapped to x ̸= z.

We shall see below that the property exemplified in Exam-
ple 3.2 will have interesting implications on the (in)existence
of p-minimal queries equivalent to a given query in CQ ̸=.

We next present a counterpart theorem that will form the
basis for our provenance minimization algorithms.

Theorem 3.3. Given two equivalent queries Q,Q′ ∈ CQ̸=,
if there exists a homomorphism h from Q′ to Q that is sur-
jective on relational atoms, then Q ⊆P Q′.

Proof sketch. Let D be an input database, and let t ∈
Q(D) (thus t ∈ Q′(D)). Let p =

∑
i mi (p′ =

∑
i m

′
i) be

the provenance of t with respect to Q (Q′) and D. We claim
that p ≤ p′. For that we need to show an injective mapping
I mapping each monomial mi in p and some monomial m′

i′

in p′, such that mi ≤ m′
i′ .

145

We define I as follows: for mi, there exists an assignment
α to Q that yielded it. Given the surjective mapping h :
Q′ → Q, define β as the assignment which assigns each
relational atom a′ of Q′, α(h(a′)). It is straightforward to
show that β is indeed a satisfying assignment for Q′ (proof
omitted). Since h is surjective on relational atoms, every
tuple t′ assigned to k different atoms by α is assigned to at
least k atoms by β. Finally, let I(mi) be m′

i′ , the monomial
yielded by the assignment of β to Q′. Then each variable
P (t′) which appears k times in mi appears at least k times
in m′

i′ , and by definition of the order relation, mi ≤ m′
i′ .

We still have to show that the mapping I between the
monomials is injective. For that, consider mi,mj s.t. i ̸= j.
Let αi (resp. βi), αj (resp. βj) be the assignments that
yielded these monomials, respectively, in the evaluation of
Q (resp. Q′). Different monomials in our presentation (See
note at the end of Section 2.4) are always yielded by different
assignments; thus αi and αj must be distinct assignments;
that is only possible if they assign some relational atom a
in Q different tuples, let us call them ti and tj respectively.
Then there exists some relational atom a′ in Q′ such that
h(a′) = a (by the surjectiveness of h). By the construction
of βi and βj , βi (βj) assigns a′ the tuple αi(h(a

′)) = ti
(αj(h(a

′)) = tj), and thus they are distinct assignments,
which yield different monomials. That means mi and mj

are always mapped by I to different monomials in p′, i.e. I
is injective.

We note that unlike the case of queries inclusion (Theorem
3.1), Theorem 3.3 requires the homomorphism to be surjec-
tive. The following example shows that a non-surjective
mapping does not guarantee an order on the provenance.

Example 3.4. Consider the following two simple boolean
queries Q,Q′:

Q: ans() := R(x),R(y)
Q′: ans() := R(x)

There exists a (trivial) homomorphism from Q′ to Q, but
no surjective one (since Q′ has less atoms). For the simple
unary relation R bearing a single tuple R(a) with provenance
s, the provenance of the (boolean) result of evaluating Q over
R is s·s, while for Q′ the provenance is s < s·s.
In contrast, mapping both atoms of Q to the one of Q′ is

a surjective homomorphism from Q to Q′. It is easy to see
that the provenance of Q′ is smaller.

In the sequel we consider different subclasses of CQ̸=, and,
where possible, utilize the above results for minimizing the
provenance of a given query within the sub-class.

3.2 General Conjunctive Queries
We start with general queries in CQ̸=. Note that [22]

has shown that for standard minimization, for each query
Q ∈ CQ̸= there exists a minimal equivalent query in CQ ̸=.
Interestingly, this is not the case for p-minimal queries, as
the following theorem holds:

Theorem 3.5. There exists a query Q ∈ CQ̸= such that
Q has no p-minimal equivalent query in CQ ̸=.

Proof sketch. Consider the queries QnoPmin and Qalt

from Figure 2. We can show that QnoPmin is equivalent to
Qalt. But none of these queries is p-minimal, as the following
Lemma holds:

A B Provenance
a b s1
b a s2
a a s3

Table 4: Relation R
in Database D

A B Provenance
a b s′1
b c s′2
c a s′3
a a s′4

Table 5: Relation R in
Database D’

QnoPmin : ans() := R(x1, x2), R(x2, x3), R(x3, x4),
R(x4, x5), R(x5, x1), S(x1), x1 ̸= x2

Qalt : ans() := R(x1, x2), R(x2, x3), R(x3, x4),
R(x4, x5), R(x5, x1), S(x1), x1 ̸= x3

Qalt2 : ans() := R(x1, x2), R(x2, x3), R(x3, x4),
R(x4, x5), R(x5, x1), S(x1), x1 ̸= x4

Qalt3 : ans() := R(x1, x2), R(x2, x3), R(x3, x4),
R(x4, x5), R(x5, x1), S(x1), x1 ̸= x5

Figure 2: Queries in CQ ̸=

Lemma 3.6. It neither holds that QnoPmin ⊆P Qalt, nor
that Qalt ⊆P QnoPmin.

Proof. Consider a database D with the Relation R de-
picted in Table 4, and the relation S consisting of a single
tuple (a) annotated with s0. The provenance expression for
QnoPmin is
s1 ·s2 ·s1 ·s2 ·s3 ·s0 + s1 ·s2 ·s3 ·s1 ·s2 ·s0 + s1 ·s2 ·s3 ·s3 ·s3 ·s0(
= 2·(s1)2 ·(s2)2 ·s3 ·s0 + s1 ·s2 ·(s3)3 ·s0.

)
For Qalt, the provenance expression is

s3 ·s1 ·s2 ·s1 ·s2 ·s0 + s3 ·s1 ·s2 ·s3 ·s3 ·s0(
= (s1)

2 ·(s2)2 ·s3 ·s0 + s1 ·s2 ·(s3)3 ·s0.
)

which is strictly smaller. In contrast, for a database D′

with Relation R as depicted in Table 5, and relation S as
before, the provenance obtained for QnoPmin is

s′1 ·s′2 ·s′3 ·s′4 ·s′4 ·s0

and for Qalt it is

s′1 ·s′2 ·s′3 ·s′4 ·s′4 ·s0 + s′4 ·s′1 ·s′2 ·s′3 ·s′4 ·s0

which is strictly greater.

The following lemma concludes the proof by showing that
no other equivalent query in CQ ̸= has a minimal provenance:

Lemma 3.7. There exist database instances D,D′ for which
there is no query Q ∈ CQ ̸= equivalent to QnoPmin (and to
Qalt) such that both P (Q,D) ≤ P (QnoPmin, D) and P (Q,D′) ≤
P (Qalt, D

′) hold.

Proof sketch. The databases D,D′ are as in the proof
of Lemma 3.6 above. Assume by contradiction the existence
of such Q. It must contain exactly 5 atoms in which R oc-
cur and exactly one atom in which S occur (otherwise if it
contains less it will not be equivalent and if it contains more
it will have greater provenance for one of the Databases).
Since all the variables of QnoPmin can be different, there

146

must be at least 5 different variables in Q; it follows that Q
must be of the form

Q : ans() := R(z1, z2), R(z2, z3), R(z3, z4),
R(z4, z5), R(z5, z1), S(z1), E

Where E is some conjunction of disequalities between
z1, ..., z5. However, for most choices of E there exists a
database instance for which the query result is not equiv-
alent to QnoPmin. There are only two other queries equiva-
lent to QnoPmin of the form of Q, depicted in figure 2: Qalt2,
whose provenance is equivalent to that of Qalt on D,D′; and
Qalt3, whose provenance is equivalent to that of QnoPmin on
D,D′. Thus, neither of them could be Q, implying that such
Q does not exist.

This concludes the proof of Theorem 3.5.

The construction that we have used in the proof is in-
spired by [17]. Interestingly, note that in the above proof
we constructed two equivalent queries, both minimal in the
standard sense (but not isomorphic). This settles an open
problem posed in [22], indicating the correctness of the fol-
lowing Lemma:

Lemma 3.8. There exists a query Q ∈ CQ̸= such that
Q has no minimal equivalent query which is unique up to
isomorphism in CQ̸=.

While there are queries for which no p-minimal equivalent
query in CQ̸= exists, we will see in Section 4 that there
always exists an equivalent p-minimal query in UCQ ̸=. But
before that, let us consider other restricted classes in which
the p-minimal query can be found. The conclusions for these
restricted classes will gradually lead us towards the general
solution for the overall p-minimal query in UCQ̸=.

3.3 Conjunctive Queries without Disequalities
We consider CQ, i.e. the class of conjunctive queries with

no disequalities. The following theorem shows that in CQ,
the “standard”minimal query is also p-minimal. As a result,
a standard minimization algorithm (such as in [9]) can be
used here to obtain the p-minimal query.

Theorem 3.9. Let Q ∈ CQ. Then Q is a minimal query
(in the standard sense) iff Q is p-minimal in CQ.

Proof sketch. Assume that Q is minimal, and consider
some query Q′ ∈ CQ equivalent to Q. By the equivalence
between Q and Q′, and from theorem 3.1 there is a ho-
momorphism h : Q′ → Q. We can show that this homo-
morphism is surjective on relational atoms, and thus from
theorem 3.3, Q ⊆P Q′.

Following the lines of [16] (for standard query minimiza-
tion), we define the decision problem corresponding to p-
minimization in CQ as follows: given two queries Q,Q′ ∈
CQ, where Q′ is a sub-query of Q, decide if Q′ is the p-
minimal equivalent of Q. Note that verifying p-minimality
of a query Q is a restricted case. The following is a corol-
lary of Theorem 3.9, resulting from the known hardness of
conjunctive query minimization [16]:

Corollary 3.10. The decision problem corresponding to
PROVENANCE-MINIMIZATION in CQ is DP-Complete 3.
3DP is the class of decision problems that can be expressed
as the intersection of an NP and a co-NP problem [16].

In the context of “standard” minimization, the obtained
minimal query is minimal also among all equivalent queries
in UCQ̸= [9]. Interestingly, this is not the case for prove-
nance minimization, as the following theorem holds.

Theorem 3.11. There exists a query Q ∈ CQ such that
Q is p-minimal in CQ but there exists an equivalent query
Q′ ∈ UCQ ̸=, such that Q′ ⊂P Q.

Proof. Consider again the queriesQconj andQunion from
Figure 1. It is easy to see that there is no surjective homo-
morphism from Qconj to any of its sub-queries, and thus
(following theorem 3.9) Qconj is p-minimal within CQ. To
show that Qunion ⊆P Qconj , observe that every assignment
to Qunion that yields every output tuple t is either an as-
signment to its first adjunct, Q1, or its second argument Q2.
In the former case the same assignment to Qconj will also
yield the output tuple t, and in the latter case this assign-
ment will have a counterpart assignment to Qconj that maps
two atoms to the same tuple. In both cases the provenance
monomials yielded by Qconj are greater or equal, and thus
the provenance polynomial of each tuple for Qconj is greater
or equal, i.e. Qunion ⊆P Qconj .

Last, Qunion ⊂P Qconj because there exists a database
instance and output tuple for which Qunion yields strictly
less provenance (See Example 2.18).

The above theorem shows that even for queries which are
p-minimal in CQ, there may be equivalent queries in UCQ ̸=

with smaller provenance. In the next section we show that
equivalent p-minimal queries in UCQ̸= always exist, and
explain how to compute them.

3.4 Complete Conjunctive Queries with Dise-
qualities

The last sub-class of CQ̸= that we study here, and will
be very useful when we consider UCQ̸= in the next section,
is cCQ ̸=, the class of complete conjunctive queries with dis-
equalities. Recall that completeness means here that for
every pair of distinct variable x and argument l occurring in
the query, x ̸= l appears in the query. In this case, we will
show that like in CQ, p-minimization within the cCQ̸= class
is equivalent to standard minimization. However, we will
further show that in contrast to Theorem 3.11 the p-minimal
in cCQ ̸= is also the overall p-minimal in UCQ̸=. Another
difference from CQ is the complexity of (p-)minimization in
cCQ ̸=, which we prove to be polynomial.

The following theorem holds:

Theorem 3.12. Given a query Q ∈ cCQ ̸=, Q is minimal
in the standard sense iff Q is p-minimal in cCQ ̸=, and that
is iff Q is p-minimal in UCQ ̸=. The (p-)minimal equivalent
of any Q ∈ cCQ ̸= can be computed in time polynomial in
the size of Q.

Proof sketch. Recall the proof sketch of theorem 3.9,
showing that in CQ minimality and p-minimality are the
same. Note that this proof was based only on theorems
3.1 and 3.3. Since those theorems also hold for cCQ ̸=, it
can be proved in a similar manner that p-minimality and
minimality in cCQ̸= are the same. Thus, if we minimize
Q we will get Q′, the equivalent of Q which is p-minimal
in cCQ ̸=. The p-minimality of Q′ in UCQ̸= (thus making
it the general p-minimal equivalent of Q) is a corollary of
Theorem 4.6 shown in the sequel.

147

To show that Q′ can be computed efficiently, we use the
following Lemma:

Lemma 3.13. A query Q ∈ cCQ ̸= is (p-)minimal if and
only if Q does not contain duplicated relational atoms (i.e.
two atoms of the same relation with the same arguments).

Thus, a simple minimization algorithm for cCQ ̸= will com-
pare every two relational atoms and remove the duplicates.
This can be done in PTIME.

4. MINIMIZING UNIONS
We next consider minimizing the provenance for UCQ ̸=,

union of conjunctive queries with disequalities. As observed
above, resorting to UCQ ̸= in search of a query with min-
imal provenance may be necessary even if the input query
is guaranteed to be a conjunctive query. Our study of min-
imization of queries in this class is done in two steps, as
follows. We start by introducing the canonical rewriting of
a query, which is essentially its rewriting as a union of com-
plete queries; we then introduce a minimization algorithm,
based on canonical rewritings, and we show that its result
is a p-minimal equivalent of the original query.

4.1 Canonical Rewritings
Recall the queries in Example 2.18: the queriesQconj , Qunion

are equivalent, but Qunion has less provenance. Intuitively,
this is because Qunion employs a by-case reasoning: each
combination of equalities and disequalities among each pair
of variables is dealt with separately, using distinct conjunc-
tive queries. Intuitively, such a by-case reasoning is imple-
mented by the canonical rewriting of a query. We next first
define a possible completion of a query, which corresponds to
a particular “case”, and then the canonical rewriting, which
encapsulates all the possible “cases”.

Definition 4.1. Let Q ∈ CQ ̸=. A possible completion
of Q is a query in cCQ ̸= obtained by splitting the arguments
V ar(Q)∪Const(Q) into m disjoint subsets, V1, ..., Vm, such
that (1) each set contains at most one constant, and (2) if Q
contains the disequality li ̸= lj, then li and lj are not in the
same subset. Then, for each subset Vi that contains a con-
stant c, every occurrence of an argument from this subset is
replaced in the relational atoms of Q by c; for each subset Vi

without a constant, all the occurrences of arguments within
it are replaced in Q by some new variable vi; and finally all
the disequalities in Q are removed, and instead a disequality
vi ̸= vj for each two new variables vi, vj and a disequality
vi ̸= c for each new variable vi and c ∈ Const(Q) are added.

A canonical rewriting of Q, denoted by Can(Q), is then
a query in cUCQ̸= where each possible completion of Q is
isomorphic to exactly one adjunct in Q, and vice versa.
Finally, an extended canonical rewriting with respect to a

set of constants C which is a superset of Const(Q), is de-
fined in a similar manner, except that every possible com-
pletion is obtained by splitting V ar(Q) ∪ C into disjoint
sets as before. We denote it Can(Q,C). In particular,
Can(Q) = Can(Q,Const(Q)).

Example 4.2. Consider for example the query

Q : ans(x, y) := R(x, y), x ̸= a, x ̸= y

Its canonical rewriting with respect to C = {a, b} (which
contains Const(Q)) is

Can(Q,C) := Q1 ∪Q2 ∪Q3 ∪Q4 ∪Q5

Q1 : ans(v1, a) := R(v1, a), v1 ̸= a, v1 ̸= b
Q2 : ans(v1, b) := R(v1, b), v1 ̸= a, v1 ̸= b
Q3 : ans(v1, v2) := R(v1, v2), v1 ̸= a, v1 ̸= v2, v2 ̸= a,

v1 ̸= b, v2 ̸= b
Q4 : ans(b, a) := R(b, a)
Q5 : ans(b, v2) := R(b, v2), v2 ̸= a, v2 ̸= b

We next study some basic properties of the (extended)
canonical rewriting. First, it is easy to show that it preserves
the query results:

Theorem 4.3. For any query Q ∈ CQ ̸=, and any super-
set C of the constants in Q, Q ≡ Can(Q,C).

Furthermore, we show that the output tuples of the canon-
ical representation bear the same provenance as those of the
original query:

Theorem 4.4. For every query Q ∈ CQ̸= and any su-
perset C of the constants in Q, Q ≡P Can(Q,C).

Proof sketch. We use the following lemma:

Lemma 4.5. For every query Q ∈ CQ̸=, and two different
adjuncts Q1, Q2 in Can(Q), if α is an assignment for Q1,
then it is not valid for Q2.

Now, let D be an input database and t a tuple in the query
result. It follows from the lemma that each assignment to
Can(Q) satisfies exactly one of its adjuncts, and thus has the
same provenance as its corresponding assignment for Q, i.e.
P (t, Can(Q), D) ≤ P (t, Q,D). Conversely an assignment to
Q decides (in)equalities between variables (and constants),
consequently corresponds to an assignment to exactly one
adjunct of Can(Q), thus P (t,Q,D) ≤ P (t, Can(Q), D); since
this holds for every tuple t in the result set, it follows that
Can(Q) ≡P Q.

4.2 Provenance Minimization Algorithm
We are now ready to present an algorithm for finding a

p-minimal equivalent of a query in UCQ̸=. By doing so, we
will prove the following theorem:

Theorem 4.6. Given a query Q ∈ UCQ̸=, there exists a
p-minimal equivalent query Q′ ∈ UCQ ̸=; Q′ may be found
in time exponential in the size of Q.

We next give the algorithm, analyze it and then show that
its exponential complexity is inevitable.

Algorithm. The minimization methodMinProv is depicted
in Algorithm 1 and operates in 3 steps. First (step I), it re-
places each adjunct of the input query Q by its canonical
rewriting with respect to the full set of constants in Q, ob-
taining a query QI as a result. Then, in step II, each of the
adjuncts is minimized separately, using any efficient algo-
rithm for minimization of cCQ ̸= queries (such as the simple
algorithm depicted in the proof of theorem 3.12), obtaining
QII as the union of minimized queries. Finally, in step III
the algorithm checks every pair of adjuncts in QII for query
containment: recall that since QII is a canonical rewriting,

148

Algorithm 1: MinProv

Input: Query Q
Output: An equivalent p-minimal query
// Step I

QI ← ϕ ;1

C ← Const(Q) ;2

foreach Qi ∈ Adj(Q) do3

foreach Qi,j adjunct in Can(Qi, C) do4

Add Qi,j to QI;5

end6

end7

// Step II

QII ← ϕ ;8

foreach Qi ∈ Adj(QI) do9

Minimize Qi and add to QII10

end11

// Step III

QIII ← QII ;12

foreach Qi ∈ Adj(QIII) do13

foreach Qj ∈ Adj(QIII) other than Qi do14

if Qj ⊆ Qi then15

Remove Qj from QIII16

end17

end18

end19

return QIII ;20

each adjunct in it is complete, therefore Theorem 3.1 holds
and checking for containment amounts to checking for the
existence of a homomorphism. Whenever a contained query
is found, it is omitted by the algorithm. QIII (and the algo-
rithm output) is then QII without the contained adjuncts.

Example 4.7. Consider the queries depicted in figure 3.
We apply the MinProv algorithm on Q̂, showing the ob-
tained intermediate queries. Step I of the algorithm com-
putes the canonical rewriting of (the single adjunct of) Q̂,

resulting in Q̂I Then, in step II, each of the adjuncts of Q̂I

are (p-)minimized. Recall (Lemma 3.13) that a complete
conjunctive query is p-minimal if and only if it has no du-
plicated relational atoms; the only adjunct which is not p-
minimal is Q̂1. We remove the duplicated atoms to obtain
its p-minimal equivalent, Q̂min1. Consequently the result of
step II of the algorithm is Q̂II. Finally, in step III of the
algorithm we eliminate contained adjuncts. In this case we
can easily verify that Q̂2, Q̂3 and Q̂4 are contained in Q̂min1.
There are no other containments between adjuncts; thus the
result of step III (and the algorithm output), Q̂III, is the

union of the remaining adjuncts, Q̂min1 and Q̂5.

Correctness. First, it is easy to see thatQ ≡MinProv(Q).
We next show that the query that is computed is indeed the
minimal one.

Proposition 4.8. For every two equivalent queries, Q,Q′ ∈
UCQ ̸=, MinProv(Q) ⊆P Q′, i.e. MinProv returns a p-
minimal query equivalent to Q.

Proof. We say in the sequel that a query Q is complete
w.r.t. a set of constants C if it is complete and additionally
contains a disequality v ̸= c for every v ∈ V ar(Q), c ∈ C.
The following lemma is an adaptation of a Theorem in [26],
adapted to consider queries with disequalities.

Q̂ : ans() := R(x, y), R(y, z), R(z, x)

Q̂I : Q̂1 ∪ Q̂2 ∪ Q̂3 ∪ Q̂4 ∪ Q̂5

Q̂1 : ans() := R(v1, v1), R(v1, v1), R(v1, v1)

Q̂2 : ans() := R(v1, v2), R(v2, v1), R(v1, v1), v1 ̸= v2
Q̂3 : ans() := R(v1, v2), R(v2, v2), R(v2, v1), v1 ̸= v2
Q̂4 : ans() := R(v1, v1), R(v1, v2), R(v2, v1), v1 ̸= v2
Q̂5 : ans() := R(v1, v2), R(v2, v3), R(v3, v1), v1 ̸= v2,

v2 ̸= v3, v1 ̸= v3

Q̂II : Q̂min1 ∪ Q̂2 ∪ Q̂3 ∪ Q̂4 ∪ Q̂5

Q̂min1 : ans() := R(v1, v1)

Q̂III : Q̂min1 ∪ Q̂5

Figure 3: Example for MinProv, Step by Step

Lemma 4.9. Let Q ∈ cCQ ̸=, Q′ ∈ UCQ ̸=, such that Q
is complete with respect to the constants in Q′, Q ⊆ Q′ iff
there exists an adjunct Q′

i ∈ Adj(Q′) s.t. Q ⊆ Q′
i.

Now, let C = Const(MinProv(Q))∪Const(Q′). We next
show that Can(MinProv(Q), C) ⊆P Q′; since
Can(MinProv(Q), C) ≡P MinProv(Q), this will prove propo-
sition 4.8. LetQi be one of the adjuncts in Can(MinProv(Q), C).
Since we removed contained adjuncts in step III of the al-
gorithm, and thus every two adjuncts must differ in some
equality/disequality, every monomial contributed to the prove-
nance byQi must be unique. Since Can(MinProv(Q), C) ⊆
Can(Q′, C), it holds thatQi ⊆ Can(Q′, C). Thus, by lemma
4.9 (Qi is complete on all the constants in Q′) there exists
some adjunct Q′

j in Can(Q′, C) s.t. Qi ⊆ Q′
j . The contain-

ment and completeness on the other direction also holds,
thus there exists some adjunct Qk in Can(MinProv(Q), C)
s.t. Q′

j ⊆ Qk. We get that Qi ⊆ Q′
j ⊆ Qk, and since we re-

moved all containments from MinProv(Q), Qi ≡ Qk, thus
Qi ⊆ Q′

j ⊆ Qi, i.e. Qi ≡ Q′
j .

Since at step II we minimized each adjunct, Qi is p-
minimal. In particular, Qi ⊆P Q′

j . Thus, for every input
database D and t ∈ Q(D), Qi contributes at most the prove-
nance that Q′

j does. This is true for every such adjunct Qi in
Can(MinProv(Q), C), thus P (t, Can(MinProv(Q), C), D) ≤
P (t, Can(Q′, C), D). Since it is true for every t and D,
Can(MinProv(Q), C) ⊆P Can(Q′, C).

Complexity Upper Bound. The complexity of MinProv
is EXPTIME in the size of its input query: step I of the
algorithm replaces each adjunct of the original query Q with
its canonical rewriting, which is of exponential size. Then
we may have an exponential number of adjuncts, but each
of them is of polynomial size (by definition of the canonical
rewriting). Then the overall complexity of steps II and III
is (respectively) polynomial and exponential in the maximal
size (number of relational atoms) of an adjunct in their input
query.

This concludes the proof of Theorem 4.6 above.

Complexity Lower bound. The EXPTIME complexity of
MinProv is inevitable as the following theorem holds:

Theorem 4.10. For every n ∈ N there exists a query Qn

of size Θ(n) such that any p-minimal equivalent of Qn is of

size 2Ω(n).

149

A B Provenance
a a s1
a b s2
b a s3
b c s4
c a s5

Table 6: Relation R in D̂

The proof is based on constructing a query Qn which is of
the form
ans() := R1(x1, y1), R1(y1, x1), ..., Rn(xn, yn), Rn(yn, xn). We
can show that a p-minimal equivalent of Qn must consider
exponentially many “cases” of (dis)equalities, hence is of ex-
ponential size.
It is interesting to compare this result to “standard”min-

imization, where the output is at most of the same size of
the input (albeit minimization still requires EXPTIME).

5. DIRECT PROVENANCE MINIMIZATION
In the previous sections we have discussed the compu-

tation of a p-minimal query equivalent to a given query.
As explained above, this p-minimal query realizes the core
provenance for the query and every database instance. How-
ever, in some real-life scenarios we may wish not to change
the query that is evaluated, since it is determined by opti-
mizers and governed by evaluation time considerations. In
such cases it is preferable to compute the core provenance
directly from the provenance of tuples in the query result.
This section shows how such a direct computation can be
done. We present the next theorem.

Theorem 5.1. Let Q ∈ UCQ ̸= be a query, D be some
input database, t a tuple in Q(D) and let p = P (t, Q,D).
Let p′ be the provenance of t as computed by Q′, a p-minimal
query equivalent to Q.

• Given p, (and without any other information on Q,Q′, D
or t), p′ can be computed in time polynomial in the size
of p, up to the number of occurrences of equal mono-
mials (corresponding to its coefficient).

• Given p, D, t and Const(Q), and without any other
information on Q or Q′, p′ can be exactly computed
(including the correct number of occurrences of equal
monomials) in time exponential in the size of p.

The rest of the section is dedicated to proving Theorem
5.1. Our proof technique is to (i) closely examine the three
steps of Algorithm MinProv (given in Section 4), (ii) study
the effect that each step has on the provenance polynomials,
and (iii) prove that we can simulate this effect by directly
working on the polynomials.
Several notations will be used in the sequel: given a query

Q ∈ UCQ̸=, an input instance D and a tuple t in Q(D), we
use QI, QII, QIII ∈ cUCQ̸= to denote the queries obtained af-
ter step I,II,III respectively of applying MinProv on Q; and
the corresponding provenance polynomials pI = P (t, QI, D),
pII = P (t,QII, D), pIII = P (t, QIII, D).

5.1 Step I of MinProv
Recall that the first step of MinProv replaces each ad-

junct with its canonical rewriting. By theorem 4.4, this does
not affect the provenance. We exemplify this next.

Example 5.2. Recall the query Q̂ from Example 4.7 (de-

picted in Figure 3). Let D̂ be a database with R relation as

in table 6. The provenance of the boolean result of Q̂ (and

thus also Q̂I) when evaluated on D̂ is given next (each row

contains the monomials yielded by one adjunct of Q̂I):

s1 ·s1 ·s1+
s2 ·s3 ·s1+
s3 ·s1 ·s2+
s1 ·s2 ·s3+
s2 ·s4 ·s5 + s4 ·s5 ·s2 + s5 ·s2 ·s4

5.2 Step II of MinProv
We next consider the impact of step II on the provenance

polynomial. The following Lemma holds:

Lemma 5.3. For each monomial mi in pI there is a mono-
mial mj in pII which contains every variable s of mi exactly
once.

Example 5.4. Consider again Q̂I from Example 4.7 and
recall that only the first adjunct Q̂1 was further minimized.
Accordingly, only the monomial contributed by the first ad-
junct is changed (compare to the provenance in Example
5.2), and we get the following provenance (for database D̂).

s1+
s2 ·s3 ·s1+
s3 ·s1 ·s2+
s1 ·s2 ·s3+
s2 ·s4 ·s5 + s4 ·s5 ·s2 + s5 ·s2 ·s4

5.3 Step III of MinProv
Step III of Algorithm MinProv eliminates adjuncts which

are contained in other adjuncts. It turns out that removing
contained adjuncts from the query, causes the elimination
of containing monomials from the provenance polynomial.
We first show this, then study the effect of step III on the
number of occurrences of the remaining monomials.

Lemma 5.5. For every monomial mi of pIII, it holds that
mi ∈ pII and there is no mj ∈ pII such that mj < mi

Proof sketch. It is easy to see that each monomial in
pIII is also in pII (since at step III the algorithm only removes
adjuncts). Assume by contradiction the existence of such
mi,mj . Let αi and αj be the assignments corresponding to
mi andmj respectively, and Qi, Qj the adjuncts on which αi

and αj are applied, respectively. By definition of the order
relation, there exists an injective mapping I : mj → mi

from each multiplicand of mj to an identical multiplicand
in mi. We define h : Qj → Qi s.t. every atom Rj

k in Qj is

mapped by h to Ri
l in Qi, where I(P (αj(R

j
k))) = P (αi(R

i
l)).

That means every atom in Qj is mapped to an atom in Qi

which is assigned the same tuple. We can show that h is a
homomorphism, thus Qi ⊆ Qj . Then, we can further show
that there exists no homomorphism from Qi to Qj , thus
Qi ⊂ Qj and Qi would have been eliminated in step III of
MinProv.

Our analysis so far leads to the following corollary:

Corollary 5.6. Up to number of equal monomial occur-
rences, pIII may be obtained from p by removing all the mul-
tiple occurrences of the same variable in each monomial, and
omitting every monomial mi in p that includes some mono-
mial mj in p.

150

This transformation can easily be done in PTIME, proving
part (1) of theorem 5.1. We next prove part (2).

Computing the number of monomial occurrences. We
first characterize the number of occurrences of each remain-
ing monomial. The following Lemma holds:

Lemma 5.7. Let mi be a monomial of pII that was yielded
by an adjunct of Q, that has k automorphisms. If mi appears
in pIII then k monomials equal to mi appear in pIII.

Proof sketch. Let αi be the assignment corresponding
to mi. Then we define k different assignments as follows.
For every automorphism τ we define the assignment ατ =
αi ◦ τ . We can show that: (i) ατ ∈ A(t, Q,D), i.e. it is an
assignment for Q that yields t; (ii) for τ ̸= τ ′, ατ ̸= ατ ′ , and
(iii) an assignment contributes a monomial equal to mi to
the provenance of t iff it is in {ατ |τ is an automorphism of
Q}.

Example 5.8. Recall that according to Example 4.7, the
second, third and forth adjuncts of the result of step II, Q̂II,
are eliminated, since they were contained in the first ad-
junct, Q̂min1. Consider again the provenance polynomial
corresponding to Q̂II, which appears in Example 5.4. Ob-
serve that the monomials yielded by the eliminated adjuncts
strictly contain the monomial yielded by the first adjunct.
For instance, s1 < s2·s3·s1. The three equivalent monomials
yielded by the last adjunct remain intact. Indeed, the last
adjunct has exactly 3 automorphisms.

s1+
s2 ·s4 ·s5 + s4 ·s5 ·s2 + s5 ·s2 ·s4

Computing the number of automorphisms for the adjunct
corresponding to a monomialm (denotedAut(m)) is straight-
forward to do (in EXPTIME) if we have the corresponding
query adjunct in hand. But interestingly, we can do it with-
out seeing the query, if we are given the input database and
the set of constants used by the query (if any are used). This
will conclude the proof of Theorem 5.1. Formally,

Lemma 5.9. Given a monomial m in polynomial P (t, Q,D)
on database D and the output tuple t, and given Const(Q),
where Q is a p-minimal query, Aut(m) can be computed in
time exponential in m.

6. GENERAL ANNOTATIONS
So far we have limited our discussion to abstractly-tagged

databases, i.e. databases in which every tuple has a distinct
annotation. However, we note that in some cases, input
relations are not abstractly-tagged, for instance if they are
the result of some previous computation. We can show that
since our core provenance captures the essence of the com-
putation in terms of the participating tuples and regardless
of their annotations, the p-minimal query remains the same.
Intuitively, the proof is by replacing all annotations in the
database with unique new annotations, and then show that
the order between provenance polynomials in the result of
query evaluation remains intact after these replacements.

Theorem 6.1. Let Q be a p-minimal query (w.r.t ab-
stractly tagged databases), within the class C. Then for every
equivalent query Q′ ∈ C, a non-abstractly-tagged database D
and a tuple t ∈ Q(D), P (t, Q,D) ≤ P (t, Q′, D).

In contrast, our results for direct provenance computa-
tion (Section 5) do not go through to non-abstractly-tagged
database. We can show that such direct computation is
impossible without knowing the query. Intuitively, this is
because two occurrences of the same annotation can either
come from the same tuple or different tuples.

Theorem 6.2. There exist a database D and a tuple t, for
which there exist two non-equivalent queries Q,Q′, such that
Const(Q) = Const(Q′), t ∈ Q(D)∩Q′(D) and P (t, Q,D) =
P (t, Q′, D), but P (t,MinProv(Q), D) ̸= P (t,MinProv(Q′), D).

Proof. Let D have a single relation R, with the tuples
(a) and (b), both annotated with s and let t be (a). Consider
the following queries:

Q : ans(x) := R(x), R(y), x ̸= y
Q′ : ans(x) := R(x), R(x)

The provenance of both queries is P (t, Q,D) = P (t, Q′, D) =
s ·s. It is easy to see that Q is p-minimal in UCQ̸= w.r.t.
abstractly-tagged databases, thus by the above theorem,
P (t, Q,D) = P (t,MinProv(Q), D) = s · s. However, the
p-minimal equivalent of Q′, MinProv(Q′), is ans(x) :=
R(x) (obtained by removing the duplicated atom) and thus
P (t,MinProv(Q′), D) = s ̸= s·s.

7. RELATED WORK
Management of provenance information has been exten-

sively studied in the database literature, in multiple branches.
In [6, 12, 7, 4, 5] and other works, the authors define different
provenance management techniques (e.g. Why Provenance
[7], Trio Provenance [4]). In [19] the authors suggest the use
of a provenance semiring, where provenance expressions are
represented as polynomials detailing the computation of the
different output tuples. [20] has shown that Trio provenance
can be represented as polynomials with no exponents, while
Why provenance is a set of sets and can be captured as a
polynomial with no exponents or coefficients. Since the cur-
rent paper focuses on the core computational processes, we
found the model of provenance semirings best suited to our
needs. We mention in this context that [5] studies problem of
identifying“maximal”provenance, namely the (possibly infi-
nite) union of all provenance expressions obtained for equiv-
alent queries; in contrast we study here the“minimal”prove-
nance, for provenance polynomials. Defining and studying
“maximal” provenance for provenance polynomials is an in-
teresting future research. Our analysis of “direct” identifica-
tion of the core provenance (Section 5) also sheds light on
the provenance polynomials obtained, and shows that there
are some “core coefficients” in the polynomials, appearing
in the provenance of tuples for every equivalent query. The
core provenance is more minimal than Trio provenance: con-
taining monomials are not omitted in Trio; core provenance
also gives more details on the core computation than both
Trio and Why Provenance, due to the coefficients reflecting
this core computation (in Why provenance there are no coef-
ficients, in Trio provenance the coefficients may be different
among equivalent queries). As mentioned in the Introduc-
tion, provenance information is extensively used as input to
various data management tools (e.g. trust assessment, up-
date propagation [18, 25, 30, 29]). A particular challenge
here arises from the size of provenance, both in terms of
storage and efficiency of the operation of the tools [10, 27].

151

We believe that the identification of core provenance can
be the basis of optimization techniques that reduce the size
of the input given to these tools, helping to alleviate these
challenges.
Query minimization in a“classic”sense, that aims at mini-

mizing the number of joins has been well investigated for the
different classes discussed here. Minimization of conjunctive
queries was first suggested in [9], and was extended to union
of conjunctive queries in [26]. Minimization of conjunctive
queries with inequalities was studied in [22]. We have com-
pared and contrasted our results with classic minimization
for all of these classes, except that we restricted the discus-
sion to queries with disequalities (̸=) instead of general in-
equalities (<,≤, ...). Query inclusion and minimization were
further studied for queries of various classes, for instance,
aggregation, bag semantics and arithmetic comparisons [13,
14, 2, 8]; identifying the core provenance for queries of these
classes, and for queries with general inequalities (<,≤, ...),
is an interesting future work. Practically efficient heuris-
tics (e.g. [28, 11]) are known for “standard”minimization of
queries. For CQ queries, such algorithms will also serve as
heuristics for p-minimization; for other classes their adapta-
tion to p-minimization is an intriguing challenge.
Last, we note that our reference to the minimal prove-

nance as “core provenance” was inspired by the notion of
core of universal solutions in Data Exchange [16, 3, 15, 24],
with the intuition that the core provenance be a part of the
computational process, for every “solution”. Studying the
connection between the core in data exchange and the core
provenance is an interesting future research.

8. CONCLUSIONS
We have studied in this paper the core of provenance in-

formation, namely the part of provenance that appears in
the result of evaluating every query equivalent to the query
in hand. We have considered query classes of varying ex-
pressive power, and studied the problem of computing an
equivalent query that realizes the provenance core for the
query in hand, and for every input database instance. We
have analyzed the existence of such a query in the different
classes, and have given algorithms for computing it where it
exists. We have further presented algorithms that compute
the core provenance directly from the provenance informa-
tion of tuples in the query result, and showed its applicability
even for cases when the input query is absent.
In the previous section we have mentioned several intrigu-

ing research directions such as exploiting the compact size of
the core provenance for practical applications, and studying
the nature of core provenance in the presence of additional
query constructs. Due to the importance of provenance in
general, and of provenance polynomials in particular, we be-
lieve them to be promising subjects for future work. Addi-
tionally, we have restricted our study to Conjunctive Queries
with disequalities, and unions thereof. Considering prove-
nance minimization for more expressive query languages,
e.g. Datalog, is an additional further research challenge.
Last, we note that different physical query plans for the same
query may result in different provenance, and finding the p-
minimal among those is an intriguing research challenge.

Acknowledgements. We are grateful to Georg Gottlob for
providing us with a counter-example for non-unique minimal
query for CQ̸=, which helped us to prove the non-existence

of a p-minimal query for this class (Theorem 3.5 and Lemma
3.8). We are also grateful to the anonymous reviewers of
PODS for their comments that have helped to improve the
final version of this paper.

9. REFERENCES
[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of

Databases. Addison-Wesley, 1995.

[2] F. N. Afrati, C. Li, and P. Mitra. On containment of
conjunctive queries with arithmetic comparisons. In EDBT,
2004.

[3] M. Arenas, P. Barceló, L. Libkin, and F. Murlak. Relational
and XML Data Exchange. Synthesis Lectures on Data
Management. Morgan & Claypool Publishers, 2010.

[4] O. Benjelloun, A.D. Sarma, A.Y. Halevy, M. Theobald, and
J. Widom. Databases with uncertainty and lineage. VLDB J.,
17:243–264, 2008.

[5] Deepavali Bhagwat, Laura Chiticariu, Wang-Chiew Tan, and
Gaurav Vijayvargiya. An annotation management system for
relational databases. In VLDB, 2004.

[6] P. Buneman, J. Cheney, and S. Vansummeren. On the
expressiveness of implicit provenance in query and update
languages. ACM Trans. Database Syst., 33(4), 2008.

[7] P. Buneman, S. Khanna, and W.C. Tan. Why and where: A
characterization of data provenance. In ICDT, 2001.

[8] D. Calvanese, G. De Giacomo, and M. Lenzerini. On the
decidability of query containment under constraints. In PODS,
1998.

[9] A. K. Chandra and P. M. Merlin. Optimal implementation of
conjunctive queries in relational data bases. In STOC, 1977.

[10] A. Chapman, H. V. Jagadish, and P. Ramanan. Efficient
provenance storage. In SIGMOD Conference, 2008.

[11] C. Chekuri and A. Rajaraman. Conjunctive query containment
revisited. In ICDT, 1997.

[12] J. Cheney, S. Chong, N. Foster, M. I. Seltzer, and
S. Vansummeren. Provenance: a future history. In Proc. of
OOPSLA, 2009.

[13] S. Cohen. Equivalence of queries combining set and bag-set
semantics. In PODS, pages 70–79, 2006.

[14] S. Cohen, W. Nutt, and Y. Sagiv. Rewriting queries with
arbitrary aggregation functions using views. ACM Trans.
Database Syst., 31(2):672–715, 2006.

[15] G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. On
reconciling data exchange, data integration, and peer data
management. In PODS, 2007.

[16] R. Fagin, P.G. Kolaitis, and L. Popa. Data exchange: getting to
the core. ACM Trans. Database Syst., 30:174–210, 2005.

[17] G. Gottlob, 2010. private communication.

[18] T. J. Green, G. Karvounarakis, Z. Ives, and V. Tannen. Update
exchange with mappings and provenance. In VLDB, 2007.

[19] T. J. Green, G. Karvounarakis, and V. Tannen. Provenance
semirings. In Proc. of PODS, 2007.

[20] T.J. Green. Containment of conjunctive queries on annotated
relations. In ICDT, 2009.

[21] G. Karvounarakis and V. Tannen. Conjunctive queries and
mappings with unequalities. Technical report, 2008.

[22] A. Klug. On conjunctive queries containing inequalities. J.
ACM, 35(1), 1988.

[23] W. Kuich. Semirings and formal power series. In Handbook of
Formal Languages, 1997.

[24] L. Libkin and C. Sirangelo. Open and closed world assumptions
in data exchange. In Description Logics, 2009.

[25] A. Meliou, W. Gatterbauer, K. F. Moore, and D. Suciu. The
complexity of causality and responsibility for query answers
and non-answers. PVLDB, 4(1), 2010.

[26] Y. Sagiv and M. Yannakakis. Equivalences among relational
expressions with the union and difference operators. J. ACM,
27(4):633–655, 1980.

[27] Y. L. Simmhan, B. Plale, and D. Gannon. A survey of data
provenance in e-science. SIGMOD Rec., 34, September 2005.

[28] I. Tatarinov and A. Halevy. Efficient query reformulation in
peer data management systems. In SIGMOD, 2004.

[29] S. Vansummeren and J. Cheney. Recording provenance for sql
queries and updates. IEEE Data Eng. Bull., 30(4):29–37, 2007.

[30] W. Zhou, M. Sherr, T. Tao, X. Li, B. T. Loo, and Y. Mao.
Efficient querying and maintenance of network provenance at
internet-scale. In SIGMOD Conference, 2010.

152

