Query-Based Monitoring of BPEL Business Processes

Catriel Beeri

Hebrew University
cbeeri@cs.huji.ac.il

Anat Eyal
Tel Aviv University
anate @post.tau.ac.il

1. INTRODUCTION

A Business Process (BP for short) consists of a group of busi-
ness activities undertaken by one or more organizations in pursuit
of some particular goal. It often interacts with other BPs carried by
the same or other organizations, and the software implementing it
is fairly complex. Standards facilitate the design, deployment, and
execution of BPs. In particular, the recent BPEL standard (Busi-
ness Process Execution Language [3]), provides an XML-based
language to describe the interface between the participants in a
process, as well as the full operational logic of the process and
its execution flow. BPEL specifications are automatically compiled
into executable code that implements the described BP and runs on
a BPEL application server.

Monitoring the execution of such processes for interesting pat-
terns is critical for enforcing business policies and meeting effi-
ciency and reliability goals. For some intuition about the type of
monitoring that a given BP may require, consider a manager of
a Web-accessible auctioning business. Monitoring of process ex-
ecutions may allow the manager, among others, to guarantee fair
play, detect frauds, and track services usage and performance. She
can ask, for instance, to be notified whenever an auctioneer can-
cels bids too often, or when buyers attempt to confirm bids without
first giving their credit details, so that she can block their actions.
Similarly, being notified whenever the average response time of the
database in a given service passes a certain threshold allows her to
fix the problem or switch to a backup database. In general, moni-
toring encompasses the tracking of particular patterns in the execu-
tions of individual processes or in the interaction between different
processes, as well as the provision of statistics on the performance
of some processes or the system. This provides an essential in-
frastructure for companies to optimize business processes, reduce
operational costs, and ultimately increase competitiveness.

The goal of this demonstration is to present BMon (Business
process Monitoring), a novel query language and system for mon-
itoring business processes. BMon allows users to visually define
monitoring tasks and associated reports, using a simple intuitive
interface similar to those used for designing BPEL processes. We
will illustrate the language features as well as its implementation.
An interesting characteristic of the implementation is that BMon

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

Tova Milo
Tel Aviv University
milo@post.tau.ac.il

Alon Pilberg
Tel Aviv University
allonpil @post.tau.ac.il

queries are translated to BPEL processes that run on the same ex-
ecution engine as the monitored processes. Our experiments indi-
cate that this approach incurs very minimal overhead, hence is a
practical and efficient approach to monitoring.

2. BACKGROUND

We start with some background on current BP Management Sys-
tems and the challenges in monitoring BPs.

As mentioned above, many enterprises nowadays use business
processes, based on the BPEL standard, to achieve their goals.
Since the BPEL syntax is quite complex, commercial vendors offer
systems that allow to design BPEL specifications via a visual inter-
face, using an intuitive view of the process, as a graph of activity
nodes connected by control flow edges. Designs are automatically
converted to BPEL specifications, which are automatically com-
piled into executable code that implements the described BP.

An instance of a BP specification is an actual running process
(that follows the logic described in the specification), which in-
cludes specific decisions, real actions, and actual data. BP Manage-
ment Systems allow to trace process instances - the activities they
perform, messages sent or received by each activity, values of vari-
ables, performance metrics - and send this information as events in
XML format to a monitoring systems (often called BAM — Busi-
ness Activity Monitoring — systems). Typical monitoring systems
(e.g. [1, 10, 11]) are composed of three layers: one that absorbs
the stream of events coming from the BP execution engine; another
that processes and filters events, selects relevant events data and
automatically triggers actions; and a dashboard that allows users to
follow the processes progress, view custom reports and statistics on
the processes and send alerts.

Although rather powerful, most BAM systems were developed
for enterprise workflow management and address the needs of such
companies. But the dynamic open nature of modern BPs pose new
requirements, demanding, on the one hand, tighter surveillance,
and on the other hand, a lighter, more add hoc, deployment:

Execution patterns. When monitoring BP instances, users may
be interested in identifying certain execution patterns in a process
flow (e.g. a buyer that attempts to confirm bids without first giving
her credit details), as well as in retrieving the relevant parts of the
flow (e.g. the actions sequence that the buyer followed, after regis-
tering, to bypass the request for credit card). Existing monitoring
tools [11, 4] allow users to filter individual events based on their
type and data values only, but do not consider the flow.

Flexible granularity. The execution of a BP instance may be
abstractly viewed as a nested set of DAGs (Directed Acyclic Graphs)
The DAGs structure captures the execution flow of the instance;
the nesting is due to the fact that processes contain composite ac-



tivities with complex internal execution flow (itself represented by
a DAG). When monitoring a process, users may wish to consider
certain activities as black boxes, but zoom-in, possibly recursively,
into some other activities. Thus, there is a need to provide users
the flexibility to monitor processes at varying levels of granularity.
This is extremely difficult, if not impossible, in most existing tools:
selecting the relevant entries from all the possible events, without
being able to reference the process flow, is complex and requires
intimate knowledge of the monitored application.

Easy deployment. As mentioned above, the BPEL standard fa-
cilitate the design, development and deployment of BPs: BPs are
specified in a high level manner and the specifications are auto-
matically compiled into executable code that can in principle run
on any BPEL application server [13]. Analogously, it is desirable
that a monitoring task would be defined in a declarative manner,
and be compiled, and easily deployed, on whatever BPEL appli-
cation server chosen for the monitored BP. In existing monitoring
tools, however, the selection rules for events are written in propri-
etary format and are not portable. Furthermore, their definition is
not trivial and is typically done by the system administrator when
a new system is deployed, or when business requirements change.

3. THE svon SYSTEM

The BMon (Business processes Monitoring) system presented
in this demonstration addresses these issues. It makes the following
contributions.

Query language The system is based on an intuitive graphical query
language that allows for simple description of the execution pat-
terns to be monitored. A tight analogy between the graphical in-
terface used by commercial vendors for the specification of BP and
our graphical query interface allows intuitive design of monitoring
tasks. The execution patterns in BMon extend string regular ex-
pressions to (nested) DAGs. They can describe sequential and par-
allel execution of activities, possibly with repetitions and/or alter-
natives, and allow to indicate the granularity levels to be employed
for different components of a monitoring task. The BMon report-
ing facility allows to notify users of occurrences of the monitored
patters, report relevant data (including relevant execution paths),
and possibly invoke corrective actions.

Implementation To support flexible deployment, our system com-
piles a BMon query ¢ into a BPEL process specification .S, whose
instances perform the monitoring task. As for all standard BPEL
specifications, S can now be automatically compiled into executable
code to be run on the same BPEL application server as the moni-
tored BP. Our experiments prove that the resulting monitoring is
extremely efficient and incurs only very minimal overhead.

Query evaluation and optimization Users should be notified as soon
as their patterns of interest occur. BMon uses an efficient automata-
based algorithm that finds the first match of a query (execution pat-
tern) in a given process trace. A novel optimization technique that
prunes redundant monitoring activities based on an analysis of the
process BPEL specification, allows to speed up computation, by
focusing on the relevant parts of the trace.

In summary, BMon allows to design complex monitoring tasks
that deal with both events and flow; it offers easy, user-friendly de-
sign of such tasks; and it compiles these tasks into standard BPEL
processes, thus providing easy deployment, portability, and mini-
mal overhead.

Related work and discussion. 1In a previous work [2] we pro-
posed to use a graphical query language for querying BP specifica-

tions. There, the goal was to be able to retrieve specifications with
certain properties (e.g. that an execution path from activity A to ac-
tivity B is possible), and the solution relied on modeling specifica-
tions and queries as graph grammars. In contrast, our work here is
concerned with querying the actual execution of process instances
(e.g. to find when an execution path that started at activity A arrives
to activity B), and the solution is based on automata construction.
Indeed the two works are complementary: The query language of
[2] can be used to focus on parts of the PBs that require monitoring,
while monitoring can be used to to check at runtime properties that
cannot be statically determined by querying the specification.

We have mentioned above that events are sent to monitoring sys-
tems in standard XML format. A natural question is why not use
XQuery, coupled with some XML stream-processing engine [8, 6,
14, 12], to process this stream of events? A key observation is
that the XML elements in this stream describe individual events.
To express any non-trivial query about a process execution flow,
one needs to write a fairly complex XQuery query, that performs
an excessive number of joins, and can hardly (if at all) be handled
by existing streaming engines[5, 7]. Furthermore, standard XML
stream processing would still be inadequate for the task, even if a
more query-friendly nested XML representation, that reflects the
flow, had been chosen for the data: XML stream engines manage
tree-shaped data and not DAGs. More importantly, they expect to
receive the tree elements in document order and process siblings
sequentially, as they arrive[5, 9]. But the events flow in BPs does
not necessarily follow this order since parallel activities interleave.
Here, parallel processing, that processes each event according to its
position in the flow is called for; this is provided by BMon .

4. DEMONSTRATION

To illustrate the features of BMon we will consider a set of BPEL
business processes used by a Web-accessible auctioning business.
The processes include seller and buyer services as well as account-
ing, credit, and price comparison facilities. They reside and operate
on three peers (three computers, in our demo). We will show how
the intuitive graphical BMon query interface is used to define mon-
itoring queries for a variety of critical tasks such as fraud detection,
SLA (service level agreement) maintenance, and general business
management. The ease of query formulation will be illustrated by
comparing our graphical query interface to that used by commer-
cial vendors for the specification of business processes (e.g. [13]);
there is a tight analogy between how processes are specified and
how they are monitored.

The system runs on Windows XP Professional, JBoss AS 4.0.4.
Oracle BPEL Process Manager 10.1.2. with Oracle 9i database.
The system architecture is depicted in Fig. 1. The demonstration
will illustrate each of the components and their interaction. The
visual interface is implemented as an Eclipse plug-in, similarly to
Oracle BPEL designer; both products can run simultaneously in the
same framework.

Visual editor. BMon queries are written via a visual editor, in
one of two modes. The user can draw the query patterns that she
wishes to monitor from scratch, using a drag-and-drop items palette.
Or, starting from a BPEL specification of a BP p, use a wizard to
create a query to monitor p, as follows: The user marks the nodes
of the specification that she wishes to include in the query. Then
by one click a query(pattern) draft is created, where non selected
nodes are omitted and the selected nodes are connected with special
edges that reflect their flow and zoom-in relationship in the specifi-
cation. The user can then add conditions on the node values, detail
the report data she wishes to see, make some final adjustment, and



Visual query editor

query

subscription | Query franslator
requests

client invocation
deploy

h,
Query process

Dispatcher invoke new
instance

Business process

process

Queried instance I Query instance F‘ —» Report
events output generator
BPEL process manager streams

Figure 1: Architecture.

click a button to deploy the query on a BPEL server.

We will illustrate in the demonstration each of these two modes
and show how, starting from the BPEL specification of the auc-
tioning BP, one can easily formulate monitoring queries for it. As
an example, Figure 2 shows (part of) the BPEL specification of the
auctioning BP with the nodes selected (in this part) by the user. The
generated monitoring query, after some user adjustments, is shown
in Figure 3, ready to be deployed. We do not discuss the syntax
here, but will naturally detail it in the demonstration.

Query translator. As mentioned in Section 3, to support flex-
ible deployment, the system compiles BMon queries into BPEL
specifications. This is done by the Query Translator module. The
specification S(p) generated for a query pattern p describes a process
(essentially a sophisticated automaton) that will perform the mon-
itoring task for p. S(p) is called the Query Process (QP for short)
of p. The QP is deployed onto the BPEL server where the instances
of p are executed. Several QPs, monitoring the same or different
processes, may be deployed on a server. Note that in principle one
may even have queries that monitor the execution of other queries!
In the demonstration we will show the BPEL specification gener-
ated for the defined queries and the deployment of the correspond-
ing QP. We will demonstrate how these monitoring tasks can be
themselves monitored, e.g. to follow their progress.

Dispatcher. Now that the QPs are deployed onto the BPEL server,
we will demonstrate what happens at runtime. The dispatcher mod-
ule is responsible for the run-time mapping between the events of
BP instances and the QPs. It subscribes to relevant events of the
queried BPs when a query is deployed, and receives the relevant
events generated by instances of these BPs (as described in Section
2). The first event from a new BP instance causes the dispatcher to
create a new instance of relevant QPs. Further events are delegated
to the running QP instances.

Report generation. A successful matching for the query pat-
tern associated with a report triggers the generation of a corre-
sponding report or corrective action. Two reporting modes are
available: local, where an individual report is issued for each process
instance, and global, that spans all the BP instances. For each re-
port one can specify when should it be issued (e.g. at the first time
that the pattern occurs, at periodic time interval, or when certain
conditions are satisfied) and what should be the structure of the
output (in XML format) or the actions triggered at this point. Re-
ports may include sliding window aggregations like average, max,
min, count, sum. We will show how different types of reports can
be defined using the system’s graphical editor (see above) and be
attached to various parts of the query patterns, to be reported on

£ BMon perespective - Bian Document Editor - Eclipse Platform i B [=TE|
y Edit | Deploy & {5 | (5 BMon perespe.

[ :ceeL Documon: o % N =0

T
B & Auction

v

wey"ppe

add_item_request

e

uoyone”j2aue?

cancel_aliCHon, request

cancel_auction_from_dk

cancel_bid_request
+

cancel_bid_from_db

35usnbas”plgT|asues

add_item_to_db

a5Ushb s

Property | Yalie
0 CEAEGECH-
Name manage_au
Type  compound

gousnbesuopone sbeuew

2ouanhas’

confirm_add_item | X
e
@’ confirm_cancel_auction
[
track_auction [

4 | &l | .'JL‘

Figure 2: Selection from a BPEL specification.

confirm_cancel_bid

" =lolx|
ych Project Bun EP Deploy & {15 | [ BMon perespe.
PE L Document Edtcr [LTRTT e, =i
~ |l o =
| Transition s L )
Creation o ¥ Report
osmplest.. #|| |3 stT_ <user>
[ assign 2 reg?s“ier {$x.username}
S invake 3 ) <Juzer>
mon [
& reply. -
4 receive 2
@ 2 7& |
B wait I
= s !
S 5 0| Gt * g 0
F ot oS a
e T 3 —
Preparty [ vae || <D switch 1 ? n
&) while s 4
@) L cancel_bid_request cancel_auction_request - 11%
T flow
[ Gther obj... #| *
@ o
" | @ e

Figure 3: Edit query.

match for the corresponding part.

To conclude the demonstration, we will briefly present experi-
mental results that demonstrate that the resulting monitoring is ex-
tremely efficient and incurs only very minimal overhead for the
running PBs.

S. REFERENCES

[1] BEA. Bea aqualogic bpm suite. http://www.bea.com/bpm/.
[2] C. Beeri, A. Eyal, S. Kamenkovich, and T. Milo. Querying business
processes. In VLDB, 2006.
[3] Business Process Execution Language for Web Services, 2003.
http://www.ibm.com/developerworks/library/ws-bpel/.
[4] M. Castellanos, F. Casati, M. Shan, and U. Dayal. ibom: A platform
for intelligent business operation management. In /CDE, 2005.
[5] Y. Diao and M. J. Franklin. Query processing for high-volume xml
message brokering. In VLDB, 2003.
[6] D.J. Abadi et al. The design of the borealis stream processing
engine. In CIDR, 2005.
[7] R. Motwani et al. Query processing, approximation, and resource
management in a data stream management system. In CIDR, 2003.
[8] S. Chandrasekaran et al. Telegraphcq: Continuous dataflow
processing for an uncertain world. In CIDR, 2003.
[9] T.J. Green, G. Miklau, M. Onizuka, and D. Suciu. Processing xml
streams with deterministic automata. In /CDT, 2003.
[10] HP. Openview bpi. http://www.hp.com.
[11] Ilog jviews. http://www.ilog.com/products/jviews/.
[12] N. Koudas and D. Srivastava. Data stream query processing. In
ICDE, 2005.
[13] Oracle BPEL Process Manager 2.0 Quick Start Tutorial.
http://www.oracle.com/technology/products/ias/bpel/index.html.
[14] F. Peng and S. S. Chawathe. Xpath queries on streaming data. In
SIGMOD, 2003.



