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ABSTRACT
Many enterprises nowadays use business processes, based on the
BPEL standard, to achieve their goals. These are complex, often
distributed, processes. Monitoring the execution of such processes
for interesting patterns is critical for enforcing business policies
and meeting efficiency and reliability goals. BP-Mon (Business
Processes Monitoring) is a novel query language for monitoring
business processes, that allows users to visually define monitoring
tasks and associated reports, using a simple intuitive interface, sim-
ilar to those used for designing BPEL processes. We describe here
the BP-Mon language and its underlying formal model. We also
present the language implementation and describe our novel opti-
mization techniques. An important feature of the implementation is
that BP-Mon queries are translated to BPEL processes that run on
the same execution engine as the monitored processes. Our exper-
iments indicate that this approach incurs very minimal overhead,
hence is a practical and efficient approach to monitoring.

1. INTRODUCTION
A Business Process (BP for short) consists of some business ac-

tivities undertaken by one or more organizations in pursuit of some
particular goal. It often interacts with other BPs of the same or
other organizations. BP Management Systems are software plat-
forms that facilitate the definition, deployment, execution, and mon-
itoring of BPs. Because of their central role in carrying out busi-
ness activities, and their complexity, monitoring of BPs is a critical
activity in modern enterprises.

For some intuition about the type of monitoring that a BP may
require, I imagine a manager of a Web-accessible auctioning busi-
ness. Monitoring of process executions may allow the manager to
guarantee fair play, detect frauds, and track services usage and per-
formance. The manager can ask, for instance, to be notified when-
ever an auctioneer cancels bids too often, or when buyers attempt to
confirm bids without first giving their credit details, so that she can
block their actions. Similarly, being notified whenever the average
response time of the database in a given service passes a certain
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threshold, allows her to fix the problem or switch to a backup data-
base. In general, BP monitoring encompasses the tracking of par-
ticular patterns in the executions of individual processes or in the
interaction between different processes, as well as the provision of
statistics on the performance of some processes or the system. Our
goal here is to provide intuitive, easy to use, efficient tools to facil-
itate this critical task.

Before presenting our results let us briefly highlight some of the
main characteristics of existing BP Management Systems and the
challenges encountered in monitoring current BPs.

Background. BPs operate in a cross-organization, distributed en-
vironment, and the software implementing them is fairly complex.
Standards enable the design, development and deployment of such
software. The recent BPEL standard (Business Process Execution
Language[6]) provides an XML-based language to describe both
the interface exposed by a process, and its full operational logic
and execution flow. Since the BPEL syntax is quite complex, com-
mercial vendors offer systems that allow to design BPEL specifica-
tions via a visual interface, using an intuitive view of the process, as
a graph of activity nodes connected by control flow edges. Designs
are automatically converted to BPEL specifications. These can be
automatically compiled into executable code that implements the
described BP and runs on a BPEL application server [27].

An instance of a BP specification is an actual running process
which includes specific decisions, real actions, and actual data. BP
Management Systems allow to trace process instances – the activi-
ties they perform, messages sent or received by each activity, vari-
able values, performance metrics – and send this information as
events (in XML format) to monitoring systems (often called BAM
– Business Activity Monitoring – systems). Typical monitoring
systems (e.g. [3, 20]) allow users to specify events of interest, and
actions to be performed when the events are identified. Events may
be atomic or composite (i.e. consist of a group of other atomic or
composite event). Detection and processing of (composite) events
has been an active research area since the early 90’s. Rich event
algebras have been proposed for describing composite events (e.g.
[16, 29]), and sophisticated evaluation and optimization techniques
have been developed for their detection [23] (see Section 7 for de-
tails). Nevertheless, existing technology suffers from three main
drawbacks when it comes to the monitoring of BPEL BPs.
Abstraction level. In existing systems, the specification of mon-
itoring tasks and, in particular, of the the relevant (composite) events,
requires intimate knowledge of both the monitored application and
the specific events emitted by activities. This is contradictory to the
high level abstraction employed when defining BPEL BPs, where
implementation details (including the types of run-time events gen-
erated by the system) are deliberately hidden. Thus, programmers
nowadays use two distinct tools, one for defining BPs at a high level



of abstraction, typically via a graphical UI, and another for defin-
ing monitoring tasks for the BPs, typically via lower level Event-
Condition-Action style rules. The abstraction gap between these
tools is akin to the one between assembly and high level languages.

To close this gap, it is desirable that the specifications of moni-
toring be performed on the same (high) level of abstraction as that
of the BPs, possibly even using a similar specification language.
Such a monitoring tool would allow (a) simultaneous formulation,
by the BP designer, of a BP and its corresponding monitoring tasks,
and (b) a faster learning curve of the monitoring language.
Optimization. A variety of methods have been proposed for op-
timized processing of (composite) events, employing relation and
object-oriented database technology [32, 16], petri nets, finite state
automata, event graphs, and storage minimization (See [29] for a
survey) . The proposed methods are generic, hence can be em-
ployed in a variety of application domains, including BP monitor-
ing. A disadvantage, however, of a generic approach is that it does
not exploit the particular properties of BPs and available knowledge
about them. As a simple example, assume we wish to be notified
when a given activity sequence occurs in some process. If, accord-
ing to its (BPEL) specification, an activity o never co-occurs with
such a sequence, monitoring for the sequence can be stopped im-
mediately if an activation of o is detected. While such knowledge
about BPs structure is naturally valuable for optimization, to our
knowledge it is not exploited by any current BP monitoring tool.

Runtime monitoring that considers the processes structure has
been studied, e.g., for models and query languages based on tem-
poral logics as LTL (See Section 7). But what is desirable here are
optimizations stated directly in terms of BPEL and a corresponding
high-level monitoring language.
Deployment. As mentioned above, BPs are specified in a high
level manner and the specifications are automatically compiled into
executable code that can, in principle, run on any BPEL application
server [27]. Analogously, it is desirable that a monitoring task be
defined in a declarative manner, and be compiled, and easily de-
ployed, on whatever BPEL application server chosen for the mon-
itored BP. In existing monitoring tools, however, the monitoring
tasks are written in proprietary languages and are not portable[11].

The BP-Mon (BP Monitoring) system presented here addresses
these three problems, making the following contributions.
Query language We present a high-level intuitive graphical query
language that allows for simple description of the execution pat-
terns to be monitored. A tight analogy between the graphical in-
terface used by commercial vendors for the specification of BPEL
BPs and the graphical query interface that we use for monitoring
allows natural and intuitive design of monitoring tasks.
Evaluation and optimization We provide a dedicated efficient automata-
based algorithm to identify occurrences of monitored patterns. We
present a novel optimization technique that speeds up computa-
tion, by pruning redundant monitoring, based on an analysis of the
process BPEL specification.
Implementation and deployment To support flexible deployment, our
system compiles a BP-Mon query q into a BPEL process specifi-
cation S, whose instances perform the monitoring task. As for all
standard BPEL specifications, S can now be automatically com-
piled into an executable code to be run on the same BPEL appli-
cation server as the monitored BP. We describe experiments that
indicate that the resulting monitoring is very efficient and incurs
only very minimal overhead.

In summary, BP-Mon offers a high-level, intuitive design of
monitoring tasks. It compiles these tasks into efficient and stan-
dard BPEL processes, thus providing easy deployment, portability,
and minimal overhead.

Discussion. In a previous paper [4] we proposed to use a graph-
ical query language for querying BP specifications. There, the goal
was to be able to retrieve specifications with certain properties (e.g.
where an execution path from activity A to activity B is possible),
and the solution relied on modeling specifications and queries as
graph grammars. In contrast, our work here is concerned with
querying the actual execution of process instances (e.g. to find
when an actual execution path that started at activity A arrives to
activity B), and the solution is based on automata construction. The
two works are complementary: The query language of [4] can be
used to discover parts of BPs that require monitoring, while mon-
itoring can be used to check at runtime properties that cannot be
statically determined by querying the specification.

As mentioned above, events are sent to monitoring systems in
XML format. A natural question is why not use XQuery, cou-
pled with some XML stream-processing engine [22], to process
this stream? A key observation is that the XML elements in this
stream describe individual events. To express any non-trivial query
about a process execution flow, one needs to write a fairly complex
XQuery query, that performs an excessive number of joins, and can
hardly (if at all) be handled by existing streaming engines. Further-
more, standard XML stream processing would still be inadequate
for the task, even if a more query-friendly nested XML represen-
tation, that reflects the flow, had been chosen for the data. XML
stream engines manage tree-shaped data, expect to receive the tree
elements in document order, and process siblings sequentially, as
they arrive. However, a BP execution is essentially a nested set
of DAGs. In a DAG, some activities may run in parallel and in-
terleave, hence the events flow in BPs does not necessarily follow
document order. Nesting of DAGs in BPs follows from the fact
that processes contain composite activities with complex internal
execution flow, itself represented by a DAG. Interleaving of events
from different DAGs of a BP is another aspect of parallelism. Here,
parallel processing, that processes each event according to its posi-
tion/nesting in the flow is called for. This is provided by BP-Mon .
Paper organization. Section 2 provides an overview of BP-Mon,
and Section 3 briefly describes the underlying formal model. Sec-
tion 4 deals with query evaluation and optimization. Extensions
to the model are considered in Section 5. Section 6 describes our
implementation and the experiments preformed to measure the per-
formance of the system. We conclude in section 7.

2. MONITORING BUSINESS PROCESSES
We start by presenting an informal overview of BP-Mon via

a running example that extends the Web auctioning BP scenario
introduced in the Introduction.

2.1 Underlying technology
Let us first briefly describe some of the underlying technology;

what BPEL BPs are and what data is available for their monitoring.

BPEL. As mentioned in Section 1, BPEL is essentially a high
level specification language with an XML-syntax that allows to de-
scribe a process’ execution flow and interaction with other processes.
A BPEL specification describes a process as a DAG consisting of
activities (nodes), and links (edges) between them that detail the ex-
ecution order of the activities. (Cycles are captured by a particular
while node, described below.) An activity is either atomic or com-
pound. The atomic activities that can be used in a BPEL specifica-
tion include operations such as invoke, for invoking an operation of
some web service; receive, for waiting for a message from an ex-
ternal source; reply, for replying to an external source; and assign,
for copying data from one variable to another. Compound activities
are typically composed of several (atomic or compound) activities.



Figure 1: An Auction business process.

Figure 2: The seller flow.

Their types include sequence, where the component activities have
sequential execution order; flow, where partial order is specified on
component activities (possibly with parallelism), switch, for condi-
tional execution; while, for looping; etc.

The BPEL XML-syntax is complex. Hence, commercial ven-
dors offer systems that allow users to design BPEL specifications
via an intuitive graphical interface, (with the graphical design being
automatically converted to BPEL syntax). Figures 1 and 2 illustrate
such an interface. The circle at the top of a BP (see Figure 1) is its
entry point; the square at the bottom is its exit point. In the BP of
Figure 1, users register to the system by invoking the register activ-
ity (whose details are not shown here). As part of this activity, they
choose to play a seller or a buyer role. Depending on their choice,
they are directed in the following switch activity to one of the two
compound activities: seller process and buyer process. Figure 2 is
a zoom-in into the seller process, that shows its internal flow.

Different icons, with activity names attached to them, denote dif-
ferent activity types. Each activity has associated data variables
whose values can be tested and/or passed to other activities. For
conciseness we omit these from the figures here. Activities that are
invoked by (resp. invoke) other activities/users are marked by small
incoming (outgoing) arrows. The BPEL switch, while, and flow
constructs are represented by diamond shaped nodes that contain a
question mark, a circular arrow, and two parallel lines, respectively.
The switch icon in Figure 1 was explained above. The while icon at
the top of Figure 2 indicates that the seller can repeat the described
activity any number of times. At each round she can either manage
her existing auctions (e.g. decide to cancel an auction, or to cancel
some specific bid, etc.) or add new items for sale. New items are
added to the database by the add item to db activity. Once the up-
date is confirmed the track auction process is invoked to wait until
the auction ends and declare the winner. The internal structure of
this process is depicted in Figure 3. The flow construct here al-

Figure 3: Auction notifier process.
〈actionData〉
〈header〉
〈processName〉 auctionHouse 〈/processName〉
〈instanceId〉 517 〈/instanceId〉
〈sensor target=”add item request”/〉
〈timestamp〉 2006-05-31T11:32:46.510+00:00 〈/timestamp〉

〈/header〉
〈payload〉
〈activityData〉
〈activityType〉 receive 〈/activityType〉
〈evalPoint〉 completion 〈/evalPoint〉
〈durationInSeconds〉 0.1 〈/durationInSeconds〉

〈/activityData〉
〈variableData〉
〈target〉 $itemVar 〈/target〉
〈data〉 〈addItemRequest〉

〈category〉 MP3 player 〈/category〉
〈description〉 iPod mini 4GB 〈/description〉
〈price〉 50 〈/price〉

〈/addItemRequest〉
〈/data〉 〈/variableData〉 〈/payload〉

〈/actionData〉
Figure 4: BPEL event.

lows to handled the winner and the seller in parallel. The process
notifies them about the auction results and awaits their approval.

BPEL events. An instance of a BPEL specification is an actual
running process that follows the logic described in the specifica-
tion. BP Management systems allow to trace instance executions.
For each activity issued, two events are generated, at its activation
and completion, respectively. Events are reported in XML format.
Figure 4 shows a completion event for the add item request activ-
ity of Figure 2 (with some data omitted for brevity). The header
includes identification information for the event: the BP name, the
instance ID, the activity name, and a time-stamp. The provided data
includes the activity type (e.g. invoke, receive, sequence etc.), the
reporting point (activation or completion of the activity), the activ-
ity duration, and variables information (variable names and values).

For a compound activity, the events corresponding to its inter-
nal flow are reported between its activation and completion events.
The events stream of an instance can be viewed as a (nested) DAG
(see Figure 5). The nodes for an activity represent its activation
and completion events, resp. Flow edges (represented in the figure
by solid arrows) connect activation and completion nodes of the
same activity and record causal dependencies between distinct ac-
tivities of a process. Zoom-in edges (represented by dashed arrows)
connect the activation (resp. completion) node of each compound
activity to the the start (rep. end) nodes of the DAG that describes
the activity’s internal flow. Note that the edges in the DAG connect
nodes with increasing time stamps. Recall that some activities may
run in parallel (e.g. notify winner and notify seller). At any given
time t, the DAG represents the execution up to point t.

2.2 BP-Mon
In the auction scenario, the system supervisor may want to be no-

tified when a seller cancels bids or auctions too often, or when buy-
ers attempt to confirm bids without first giving their credit details.
She may also want to be informed when the average response time



Figure 5: Execution Trace as DAG.

Figure 6: Too many cancels.

of the database server for a given service passes a certain threshold,
and to gather statistics about the response time. BP-Mon monitor-
ing queries can be used to accomplish these tasks.

For monitoring process instances, BP-Mon uses execution pat-
terns (abbr. EX-patterns). Intuitively, these extend string regular
expressions to (nested) DAGs. The patterns look much like the
specifications. In addition to standard BPEL constructs, such as
while, switch, etc., they may include two additional new constructs,
denoted or and rep, describing, resp., alternative patterns and rep-
etitions. The patterns also allow to navigate in the activities flow
along two axes: path-based and zoom-in-based. Following the use
of / and // in XPath to denote single and multiple step navigation,
our patterns use edges with single and double heads to denote sin-
gle and multiple edge paths, resp. Similarly, compound activities
may have singly or doubly bounded boxes, the latter denoting an
unbounded zoom-in into the activities internal flow.

The activities and edges of EX-patterns can be associated with
variables, which can be used in selection conditions on the values
of the associated attribues/data variables and in reports. To issue a
report, a reporting icon, depicted as a page with two small arrows,
can be connected to a reporting point in the pattern (an atomic or
a compound activity). A BP-Mon query may include several such
reporting icons/points. Two reporting modes are available: local,
where an individual report is issued for each process instance, and
global, that considers all the BP instances. For each report, one
can specify when should it be issued (e.g. at the first time that the
reporting point is reached, at periodic time interval, or when certain
conditions are satisfied) and what should be the structure of the
output (in XML format) or the actions triggered at this point. The
following examples illustrate the features available for monitoring.

Figure 7: Average response time.

EXAMPLE 2.1. The query in Fig. 6, monitors auctions to guar-
antee fair play. It looks for users that register as sellers, and re-
peatedly cancel bids or auctions. The ‘or’ here denotes that we
are looking for an occurrence of one of the two cancel activities.
The ‘rep’ denotes repetitions of this pattern, with the ≥ 5 indicat-
ing that at least 5 occurrences are required. The double headed
arrows indicate that the activities may occur at any distance from
the beginning of the seller process, and also at any distance from
each other (in the given instance). The double bounding of the
seller process box denotes unbounded zoom-in; we look for can-
celation activities in this process and (transitively) the compound
activities that it includes/invokes. A report, with the name of the
corrupt auctioneer, is issued as soon as the pattern is matched, i.e.
when five cancelations are identified. If we want to get re-notified
if/when cancelations are further repeated, a Report* command can
be used instead. Finally, to trigger corrective activity, an Invoke
command is used.

EXAMPLE 2.2. The query in Figure 7 may be used to guaran-
tee service quality. The datastore service is in charge of interaction
with the database and is used massively in the auctioning process
to store and manage items and bids. To monitor its response time,
we look for a pattern of an invoke activity, immediately followed
by a receive operation. (The partnerlink attribute identifies the tar-
get/source service). Note that the single headed arrow here indi-
cates consecutive operations. Also note that we use here a global
reporting mode that aggregates the data of all the BP instances. Let
us now consider some types of reports. The following is an example
for a time-based sliding window report, where we request to get an
hourly report of the average response time and standard deviation
in the last couple of hours:

Report* Every 1 hrs Range 2 hrs
<response-time>
<avg>avg($y.startTime-$x.endTime)</avg>
<std>std($y.startTime-$x.endTime)</std>

</response-time>

BP-Mon also supports match-based windows where the window
slides over the previous matches of the pattern in the given instance
(if the report is local) or in all the running instances of the given BP
(if it is global). For example, to issue a report, every 100 matches,
that provides the average response time and standard deviation of
the last 200 calls to the database, we could use in the above report

Every 100 entries Range 200 entries

Grouping may also be employed. For instance, we can group the
database calls according to the type of the requested operation and
report response time only for operations with frequency ≥ 10. For
that we add at the bottom of the above command

Group by $x.operation having count()>10

EXAMPLE 2.3. Assume that, to promote sales, we wish to pe-
riodically give prizes to our users, for example, to credit the seller
and buyer pairs in the 10000th sell, 20000th sell, 30000th sell, etc.
The query in Figure 8 reports the names of the winners. Since no-
tifications for each buyer-auctioneer pair are processed in parallel
(recall the flow construct in figure 3), so is their monitoring.



Figure 8: x10,000 buyer.

Figure 9: No registration.

EXAMPLE 2.4. Finally, the query in Figure 9 monitors illegal
access. It identifies instances where a user attempts to submit bids
without first registering to the system, and reports the instance ID
and the corrupt execution path. We use here a path predicate (es-
sentially a subquery) that is attached to the transitive edge connect-
ing the start node to the bid request node and restricts the assigned
paths to those that do not include registration.

We may furthermore want to combine run-time monitoring with
specification analysis, and identify execution paths that do not com-
ply with the BP specification. The query in Figure 10 compares a
bidder’s run-time execution flow (the $x on the left) to what is al-
lowed according to the specification (the $y on the right). In this
simple example the two query patterns, on the run and the speci-
fication, are similar, but in general one can use different patterns,
e.g. one pattern on the specification to identify what needs moni-
toring, and another pattern on the run to perform this monitoring.

The queries so far all have a single reporting point. We also
support queries with multiple reports.

EXAMPLE 2.5. Assume that we wish to obtain weekly statistics
about the the average age of the users that register to the system at
different times of the day. We can attach to the register node of the
query in Figure 6 the following report request.
Report Every 1 week Range 1 week
<age-by-hour>
<avg>avg($x.age)</avg>

</age-by-hour>

Group by $x.startTime.hour()

Here is a comment about the semantics of such report points (a
full account is given in Sections 3 and 5). As mentioned earlier, a
user may request a report to be issued as soon as a match for the
pattern is identified. In order not to block reporting, only the nodes
and edges in the pattern that precede a report point are considered

Figure 10: Static and dynamic analysis.

relevant to it. For a report to be conditional on the occurrence of the
full pattern it needs to be attached to the last node in the pattern or to
the outermost box, as in all the previous examples. Thus, the report
here will include information about all registered users, regardless
of whether they had later canceled bids or not. To get the same
reports only for corrupt users, the same report should have been
connected to the rep or the auctionHouse boxes.

3. THE FORMAL MODEL
BP-Mon queries consist of two main ingredients: (1) EX-patterns

that are matched to execution traces and (2) reports generated from
these matches. Reports are discussed in Section 5; we focus here on
BP-Mon’s pattern matching. We first explain how execution traces
are modeled and then consider EX-patterns and their semantics.
(An efficient algorithm to identify pattern occurrences is presented
in section 6). To simplify the presentation we consider in this and
the next section a basic data model. We then enrich it in Section 5
to obtain the full fledged model.

Event traces. As mentioned earlier, the execution trace of a
process instance can be viewed as a DAG. Each activity is rep-
resented by a pair of time-stamped nodes, corresponding to its ac-
tivation and completion. For a compound activity, the DAG that
represents its internal flow appears (time-wise) between its activ-
ity activation and completion nodes, and is connected to them by
zoom-in edges. This is formalized below.

We assume the existence of three domains, N of nodes, L of
node labels, and an ordered domain T of time stamps. We first
define the auxiliary notion of activation-completion labeled DAGs.

DEFINITION 3.1. An activation-completion labeled DAG is a
tuple G = (N, E, λ, τ) in which N ⊂ N is a finite set of nodes,
E is a set of edges with endpoints in N , λ : N → L is a labeling
function on the nodes, and τ : N → T is a time-stamp function on
the nodes. We assume G satisfies the following:

1. The edges in E are of two types: flow, and zoom-in.
2. The nodes in N are partitioned into pairs, called activity

pairs. Each pair n1, n2 shares a label, i.e., λ(n1) = λ(n2).
In such a pair, one node is designated as an activation, the
other as a completion; they are denoted by act(l) and com(l),
resp., where l is their shared label. There is precisely one
flow edge from act(l) to com(l); no other flow edges leave
act(l), and no other flow edges enter com(l).

3. τ assigns distinct time stamps to nodes of G s.t. if there is an
edge from n1 to n2, then τ(n1) < τ(n2).

We assume the graph has a single start node without incoming
edges, and a single end node without outgoing edges, denoted by
start(G) and end(G), resp.

DEFINITION 3.2. The set EX of execution traces (abbr. EX-
traces) is the smallest set of graphs that satisfies the following.

1. [flat trace] If G is an activation-completion labeled DAG
without zoom-in edges, then G ∈ EX .

2. [nested trace] If G1, G2 are in EX , and (act(l), com(l)) is
an activity pair of G1, then the graph G consisting of G1,
G2, and two new zoom-in edges (act(l),start(G2)) and
(end(G2),com(l)), is in EX , provided the combined time-
stamp function τ on G1 ∪G2 satisfies constraint 3 of Defin-
ition 3.1 above.

A prefix of an EX-trace is defined in the standard way, as any graph
obtained by removing some nodes, all their descendent nodes, and
all edges into and out of deleted nodes.

In the sequel, we call a subgraph G2 that is connected, as in Item
2 above, by zoom-in edges to an activity pair (act(l),com(l)),



Figure 11: Execution pattern.
an internal trace of the pair. Such a subgraph, omitting the internal
traces of its own activities, is called a direct internal trace. Observe
that in general a given activity pair may have several internal traces
connected to it. This happens when the activity implementation
includes several parallel processes.

Execution patterns. Queries are modeled by execution pat-
terns (abbr. EX-patterns), that generalize EX-traces similarly to
the way tree patterns generalize XML trees. EX-patterns are EX-
traces without time stamps (since they are not real executions but
just patterns) where node labels are either specified, or left open
using a special ANY symbol, and where two additional new label
symbols can be used: or and rep. or describes alternative pat-
terns and rep describes one or more repetitions of a given pattern.
Edges in a graph are either regular edges, interpreted over edges, or
transitive, interpreted over paths. Similarly, activity pairs may be
regular or transitive, for searching only in their direct internal trace
or zoom-in transitively inside it.

DEFINITION 3.3. An execution pattern (EX-pattern) is a pair
p = (ê, T ) where ê is an EX-trace without time stamps1, whose
nodes are labeled by labels from L ∪ {any, rep, or}, and T is a
distinguished set of activity pairs and flow and zoom-in edges in
ê, called transitive activities and edges, resp. The nodes in p with
labels other than rep and or are called concrete nodes. We say that
p is concrete if it contains only concrete nodes.

Graphical BP-Mon queries are naturally mapped to EX-patterns:
Each activity icon labeled l is mapped to a pair of nodes act(l),
com(l), that inherit properties like double bounding. Addition-
ally, nested activities are connected by zoom-in edges (simple or
double-headed) to these two nodes in the obvious manner. For ex-
ample, Figure 11 depicts the EX-pattern corresponding to the query
of Figure 6. (The reporting part is omitted for now and will be con-
sidered in Section 5). The transitive edges are double headed and
the transitive activity pairs are double bounded. The ≥ 5 that was
attached to the rep node on the query is a shorthand for a sequence
of 4 occurrences of the pattern followed by a regular rep node.

Intuitively, EX-patterns with or and rep nodes extend string reg-
ular expressions to concrete EX-pattern expressions. Namely, each
EX-pattern defines a (possibly infinite) set of concrete EX-patterns,
denoted concrete(p), obtained from p by replacing each rep pair
by a sequence of one or more copies of its internal trace and each
or pair by one of its possible internal traces. (We omit the formal
definition for space constraints).

To evaluate a query, the patterns in concrete(p) are matched to
a given EX-trace. A match is represented by an embedding.
1An EX-trace without time stamps is defined as in Definitions 3.1
and 3.2 above, by dropping the time-stamp function τ , and the cor-
responding constraints.

DEFINITION 3.4. Let p = (ê, T ) be a concrete EX-pattern and
let e be an EX-trace. An embedding of p into e is a homomorphism
ψ from the nodes and edges in p to nodes edges and paths in e s.t.

1. [nodes] an activation (resp. completion) node is mapped to
an activation (completion) node. Node labels are preserved;
however, a node labeled by any can be mapped to any node.

2. [edges] each (transitive) edge from node m to node n in p
is mapped to an edge (path) from ψ(m) to ψ(n) in e. If the
edge [n, m] belongs to a direct internal trace of a transitive
activity, the edge(s on the path) from ψ(m) to ψ(n) can be
of any type (flow, or zoom-in) and otherwise must have the
same type as [n, m].

The start and end of ψ, denoted by start(ψ) and end(ψ), are the
earliest and the latest time stamps of nodes in ψ(p), respectively.

A pattern may have many matches in a given EX-trace. In some
cases, users are satisfied by one match. In other cases, they may
want to be informed on all (or some) matches. When one match
suffices, it is desirable to find an early one. In the next section, we
present an algorithm that is guaranteed to find a match, if one exists,
and that can also find all matches, if so desired. The algorithm
works in a greedy manner, matching pattern nodes to the earliest
possible events. We next formally define the property of the first
match it finds. We use the following auxiliary notations. Given a
concrete EX-pattern p, and an embedding ψ′ on a prefix p′ of p, we
say that an embedding ψ of p extends ψ′, if ψ agrees with ψ′ on
p′. If S is a set of embeddings of p, we denote by S↓ψ′ the set of
embeddings in S that extend ψ′, restricted to nodes(p)\nodes(p′).
When S is a singleton {ψ}, we write ψ↓ψ′ .

DEFINITION 3.5. Let p be an EX-pattern, e an EX-trace, and
S a set of embeddings of patterns in concrete(p) into e. An em-
bedding ψ ∈ S is greedy (in S) if the following holds:
(1) start(ψ) is minimal in the set {start(φ) | φ ∈ S}.
(2) Let n be the node with minimal time stamp in ψ, i.e. τ(ψ(n)) =
start(ψ), and denote ψ restricted to n by ψ′. Then, inductively,
ψ↓ψ′ is greedy in S↓ψ′ .

It is easy to show (by induction on the pattern size) that
PROPOSITION 3.6. For every EX-pattern p and every EX-trace

e, if the set S of embeddings of p into e is not empty, then an em-
bedding that is greedy in S exists.

Assume given an algorithm that given an EX-pattern p and an
Ex-trace e, finds an embedding φ that is greedy w.r.t the set of
all embeddings of p in e. The following observation, that follows
easily from the proposition, implies that the algorithm can easily
be extended to find all embeddings of p into e.

OBSERVATION 3.7. If the set S of embeddings of p contains
more than one embedding, and ψ is a greedy embedding in S, then
S \ {ψ} is a non-empty set of embeddings, hence it contains an
embedding φ that is greedy in it, such that start(ψ) ≤ start(φ).

Note that since EX-patterns may contain choices (e.g. or) sev-
eral greedy matches with the same start time may exist. Indeed,
even for some concrete EX-patterns more than one greedy match
exist, e.g. due to symmetry in the EX-pattern. If several such
greedy matches exist, one can be chosen arbitrarily.

4. MATCHING AND OPTIMIZATION
We next explain how pattern matches are detected. We start by

describing a simple pattern matching algorithm, then propose an
effective optimization technique that exploits the BP specification
to speed up computation, by focusing on the relevant parts of the



events trace. It should be noted, however, that already the simple
initial algorithm exploits knowledge about the common structure of
BP traces, i.e. their nested DAG shape, to optimize the processing.
In particular, when searching for an occurrence of a subpattern in
the internal trace of a compound activity, if a completion event for
the activity occurs, the algorithm immediately infers that the pat-
tern can no longer occur in this internal trace and backtracks. (See
details below). While this may remind the reader of XML stream-
engines (which, when encountering an end-tag of an element, infer
that the matching of a subpattern inside the element failed), there
are two important differences which make the processing of BP pat-
terns more intricate. First, BP patterns contain two navigation axes:
the standard path-based navigation and the novel zoom-in naviga-
tion that allow users to query about activity flows that are nested
at any depth inside the internal traces of compound activities. Sec-
ond, unlike XML streams, where tree elements arrive in document
order and siblings can be processed sequentially, in BPs the events
of parallel sibling activities interleave. Here, a parallel processing
of events according to their position in the flow is called for.

4.1 Pattern Matching
We assume that the execution of processes, and matching of pat-

terns, start at time 0. We are given an EX-pattern p and our goal
is to find the matches for p in an (incrementally discovered) EX-
trace e. At a time t, what is known from an EX-trace e is only a
prefix consisting of the nodes with time-stamp ≤ t and the edges
between them. Each arriving new event is appended to the prefix,
with incoming edges of the two kinds described in Section 3.

To simplify the presentation, we first assume that p is a concrete
EX-pattern. After presenting the algorithm for this restricted case,
we explain how it extends naturally to general EX-patterns.

Concrete patterns. The algorithm works in a greedy manner,
trying to incrementally extend a greedy embedding for a prefix of
p (initially empty), to a greedy embedding for a larger prefix. On
failure it backtracks, refines the prefix embedding and retries to
proceed again. Given an EX-pattern p we construct an automaton
A whose states are the nodes of p. Its start (resp. end) states cor-
respond to the start (end) nodes of p. A state can be active or
inactive. Initially, only the start state is active. Other states become
active once they get activation messages from all their respective
parents, or due to the backtrack operator described below.

We maintain two data structures for backtracking. The first,
an (initially empty) list called the events-list, contains trace
nodes that may need to be (re)processed. Each new event (node) is
appended to its end. The second, called tested, is a map from
a subset of the states to events in events-list, representing
the embedding computed thus far for some prefix of the pattern.
Initially the mapping of all states is set to null. Each state (pat-
tern node) maintains a current-event variable that points to
an event in the events-list that the state needs to process. If
it points to the place after last in the list it means that the state
awaits the arrival of a new event. Initially the current-event
of the start state points to the beginning of events-list and the
current-event of all other states are set to null.

Each active state executes the algorithm depicted in Fig. 12. We
assume that every iteration of the algorithm (the body of the while
loop), which involves reading and possibly writing in the data struc-
tures and (in)activating some states, is executed atomically (our im-
plementation uses for that a simple locking mechanism.)

Each active state s reads iteratively events from events-list
(line 2) and processes them. This processing stops when s becomes
inactive, and restarts when s becomes active again. If an event
matches the conditions on the state and on its incoming edges (line

Automaton state s
1 While s is active do:
2 n = current-event.
3 Advance current-eventto next event in events-list.
4 If match?(s, n)
5 (a) Set s’s entry in tested to point to n.
6 (b) Inactivate s.
7 (c) Send an activation message to the children states of s,

setting their current-event to that of s.
8 Else % not matched %
9 If n is a completion event, s is a completion state, and the

activation event of n’s activity is assigned in tested to the
activation counterpart of s,

10 backtrack(s)
11 Else, if n is a completion event for one of s’s ancestors in the

zoom-in hierarchy, or a completion event for the end activity,
12 backtrack′(s)
13 End While

Figure 12: Processing events.
match?(state s, event n): boolean

1 If (a) n’s labels satisfies the label conditions of s, and
2 (b) for every parent ŝ of s, tested contains some assignment

n̂ to ŝ and the trace path from n̂’to n satisfies the conditions
on the edge (ŝ, s) in the pattern,

3 return True
4 Else return False

Figure 13: Matching an event.

4), it is added to tested (line 5). The state is then inactivated
(line 6) and we proceed with (i.e. sends activation message to) its
children2 (line 7). The match? predicate is depicted in Figure 13.
It tests whether, given a state s, an event n, and the tested entries
of the parents of s, n is a potential assignment for s.

If a match of an activation node fails, the event is skipped, and
the algorithm proceeds to the next event. For a failure of a com-
pletion event, we consider two cases: First (line 9), if the state
represents activity completion whose activation counterpart was
matched in tested with the activation counterpart of the given
event (but the given state and event nevertheless don’t match), this
implies a failure for the part of the pattern involving the imple-
mentation of the activation-completion pair. The algorithm then
backtracks (line 10), trying to find another match for this part. The
backtrack operator is described in Figure 14. It finds the last
point where a decision was made on the matching of a previous
relevant activity ŝ and retries from there.3 A second type of failure
that needs treatment (line 11) is when the event is a completion for
an activity whose activation is assigned in tested to an ancestor
s′ of s (or similarly, if the event is the last event of the trace). This
implies a failure to match the part of the pattern from s′ to its com-
pletion (resp. from the beginning of the pattern to its completion).
Here, the algorithm backtracks (lines 12), trying to find another
match for this part, using a different version of backtrack, de-
noted backtrack’, that considers for backtracking only ancestors
in the same or higher level in the zoom-in hierarchy.

A match for the pattern is identified if&when the final state of
the automaton is inserted into tested. On success, tested con-
tains the match for the pattern nodes. The mapping for the edges
consists of the edges/paths that were used to qualify these assign-
ments in line (2) of the match? procedure. To find consecutive
matches, if requested, a backtrack operation is applied to the final
state and the matching process continues to find the next match.
The matching fails if all active states read the end event of the trace
before a successful match is found. An earlier detection of failure
is considered below.

2A child becomes active after receiving messages from all its par-
ents. It then starts reading events from the last current-event
it received.
3The reactivated ŝ now begins to read events starting from its
current-event.



backtrack(state s)
1 Choose an ancestor ŝ of s, whose event in tested is an activation

event with maximal timestamp (among s’s ancestors).
2 Clear, in tested, the entries of ŝ and its descendant states.
3 Inactivate the descendants of ŝ and set their current-event to null,
4 Reactivate ŝ.

Figure 14: Backtrack.
The correctness of the algorithm is proved by induction on the

size of the pattern (omitted here). The worse case time complexity
of the algorithm is polynomial in the size of the trace (with the
exponent determined by the size of the pattern). The intuition is that
the algorithm exhaustively checks all relevant embeddings, and the
upper bound on their number is polynomial in the size of the trace
(with the exponent determined by the pattern size).

Before extending the algorithm to work with general patterns, let
us comment about some of its properties.
Remark 1 The algorithm works greedily, in a deterministic man-
ner, attempting to match events as early as possibly and backtrack-
ing on failure. Two possible alternatives could be (1) to use a
non-deterministic automaton that checks simultaneously all pos-
sible embeddings, thus avoiding backtracking, and (2) to construct
some deterministic variant of that non-deterministic automaton. Just
like for standard regular expressions, a disadvantage of the first ap-
proach is the need to manage simultaneously a large number of
active states[18]. A disadvantage of the second approach is the po-
tential exponential growth in the size of the automaton[17]. Our
algorithm provides a hybrid solution. We use a small automaton
with the same size as the pattern, and since states are inactivated
as soon as a matching event is assigned to them, only relatively
few states are simultaneously active. The price paid for this is the
need for backtracking. An optimization technique that allows to
identify failures early and thus to avoid some redundant work and
backtracking is presented below. Our experiments, presented in
Section 6, show the optimized algorithm to be extremely efficient.
Remark 2 The events of the trace are recorded in events-list
for backtracking. It is easy to see that an event n will never be re-
processed if n and its preceding events are not pointed by tested
or any of the current-event variables of the states. Such an
event can be removed from the list. We show below that the opti-
mization technique mentioned above is also useful for identifying
such redundant events.

It is possible to build (rather artificial) scenarios where all events
must be retained in events-list “for ever”. For example, con-
sider a BP with an activity A that invokes itself (recursively) and
may also, arbitrarily later, invoke some other activity B. Assume
that our query searches for an A activity that invoked both A and
B. If the given BP trace contains a long sequence of A’s, we need
to keep them all since we do not know in advance which of them
(if any) will invoke a B later on. The problem here is that all the
A activities remain ”alive” for an unbounded time, hence may in-
voke new children activities arbitrarily late. In practice, in a typical
BP, the number of individual activities that are kept alive unbound-
edly is bounded, so such phenomena are unlikely to occur. Indeed,
in all the real life examples we examined, the number of events
that needed to be retained was fairly small and proportional to the
pattern size. Finding bounds on the number of events needed to
be recorded, for various fragments of BP-Mon, is an on-going re-
search.

Handling or and rep. We briefly sketch below the adjustments
needed to handle or and rep.

[or] Consider an activity pair (act(or),com(or)) in p. When the
automaton state s of act(or) (resp. the state s′ of com(or))
is activated it does not read any events but immediately sends
activation messages to all its children (with its current event).

For s′ to get activated it suffices that it receives an activation
message from one of the activity internal traces. The children
of s (resp. s′) check match? w.r.t their grandparents rather
than their parents (or great grandparents if the grandparents
are also or nodes). For the children of s′, a more lenient ver-
sion of match? is employed, where condition (b) needs to
be satisfied only for the grandparent that activated s′.
Since s′ may now be activated several times, due to sev-
eral branches of the or, and consequently its children may
be matched to several events, we maintain in tested a set
of events for each state, corresponding to the various possi-
ble matches. The context of each matching (i.e. to which
choices of or branches it corresponds) is recorded with the
events, and all consequent tests/operations take into consid-
eration only assignments relevant to the given context. We
omit the details for space constraints.

[rep] The processing of rep follows similar lines. It is based on
the observation that an activity pair (act(rep),com(rep)) in
p, which stands for one or more repetitions of some subpat-
tern p′, can be viewed as an or between the pattern p′ and the
pattern containing one occurrence of p′ followed by another
rep of p′. This “virtual” or is treated as above, recursively.

4.2 Optimization
So far, our algorithm ignored the BPEL specifications of the

monitored processes. Let us now see how to use them to avoid
redundant processing and to record only useful history.

As a simple example, consider the query in Figure 6, that moni-
tors corrupt sellers, and the auctionHouse BP in Figure 1. If the
process trace reports an invocation of the buyer process com-
pound activity, we immediately know that this activity, as well as
all the events in its internal trace, are irrelevant to the query pat-
tern and can be ignored. Furthermore, since the BP specification
indicates that only one of buyer process and seller process can
occur in a given process instance, we can infer that the invocation
of buyer process is inconsistent with the pattern and a match for
the pattern is impossible. These notions are now formally defined.

DEFINITION 4.1. Let S be a BPEL specification and o an ac-
tivity in S. Given an EX-pattern p and a node n (resp. an edge e)
in p, we say that the activation/completion of o is irrelevant to n
(resp. e) if there is no embedding of p into an EX-trace of S where
o’s activation/completion event is assigned to n (resp. appears on
a path assigned to e).

We say that o is inconsistent with p if p cannot be embedded into
any EX-trace of S that contains an activation event of o.

We explain below how irrelevancy and inconsistency are deter-
mined. For now, assuming that such a detection algorithm is given,
we show how it can be used to refine the algorithm described above.

• When an active state reads events from the events-list,
it can ignore the events that are irrelevant to the correspond-
ing pattern node. This prevents event assignments that will
for sure be detected later as unfit.
Events that are irrelevant to all the pattern nodes and edges
need not be recorded in the events-list. An event n that
is relevant to some of the states/edges may be removed from
the events-list as soon as it is not pointed by tested
or any of the current-event variables of the states, and
is also irrelevant to all states with current-event point-
ing to a preceding event and their descendent states and edges
(as it will never be useful for backtracking).

• When an active state reads an activation event for an activity
that is inconsistent with the query pattern it can immediately
declare failure and stop the query processing.



• Similarly, if an active state reads an activation event for an
activity that is inconsistent with the internal trace of some of
the state’s ancestors trough the zoom-in relationship (w.r.t the
specification of the activity currently assigned to that ances-
tor), a backtrack operation to the ancestor can be issued. This
early backtracking eliminates future redundant matchings.

Testing irrelevance and inconsistency. To conclude the
discussion, we need to explain how irrelevance and inconsistency
are tested. To check the irrelevance of the activation/completion of
an activity o to a node n (edge e) in the pattern p, one needs to test
if an instance of the given BP may contain a subtrace of shape sim-
ilar to p where the activation/completion of o represents n (resp.
appears on the path that represents e). If not, the activity is irrele-
vant to the pattern node (edge). To check inconsistency one needs
to check if a BP instance that contains both an activation of o and
a subtrace of the shape p may exist. Again, if not, the activity is
inconsistent with the pattern.

The key difficulty here is that analyzing the possible runs of a
BP is essentially a verification problem [15] and is typically of
very high complexity (from NP-hard for very simple specifications
to undecidable in the general case [26]). To overcome this, and
nevertheless provide an algorithm of tractable complexity, we have
decided to rely on a safe, rather than exact, detection of irrele-
vance and inconsistency. Namely, our algorithm may miss some
cases of these properties, but those that are identified as irerel-
evant/inconssitent are indeed such. Optimization-wise this only
means that some optimization opportunities may be missed, but the
correctness of the matching algorithm is not compromised.

To detect irrelevance and inconsistency in a safe manner we rely
on a query language, called BP-QL, which we have developed in
a previous work [4], for analyzing BP specifications. BP-QL is a
graphical query language with syntax very similar to that of BP-Mon .
The key difference between the two languages is in the semantics
of the queries: BP-Mon is given as input an execution trace and
checks whether the specified pattern appears in the trace; BP-QL,
on the other hand, is given a BP (BPEL) specification and checks
whether the pattern may appear in some possible instance of the
specified BP. If so, it retrieves, for each pattern node (edge), the set
of activities relevant to it. To guaranty query evaluation of poly-
nomial time complexity, BP-QL ignores the run-time semantics of
certain BPEL constructs such as conditional execution and variable
values. So query answers may be a superset of the actual answers
(see [4] for details).

The (safe) detection irrelevance and inconsistency works as fol-
lows: To find irrelevant activities, we interpret the BP-Mon pat-
tern as a BP-QL query over the BP specification. Activities that
are not returned for given pattern node (edge) are all irrelevant
for it. To check for inconsistency of an activity o with the given
BP-Mon pattern, we add o to the pattern and interpret the aug-
mented pattern as a BP-QL query. If query the result is empty the
activity is inconsistent with the pattern. Observe that since query
answers are supersets of the exact answers we may not identify the
irrelevance or inconsistency of some activities, but all those that are
identified as irerelevant/inconssitent are indeed such.

It is important to note that since we are querying the BP spec-
ifications, all the decisions regarding the potential inconsistency
(irrelevance) of activities with (to) the pattern (pattern nodes) can
be made statically, at compile time, before the monitoring starts,
hence cause no delays in the actual monitoring processes.

5. THE FULL LANGUAGE
For simplicity, we used so far a very simple data model and ig-

nored report generation. We now briefly consider useful extensions

that enhance the expressive power, and facilitate the monitoring of
real life business processes.

Data values and predicates. In practice, an execution trace
carries additional information about the performed activities, such
as the names and values of data variables. This is modeled by la-
beling the nodes in both EX-traces and EX-patterns with this ad-
ditional data, requiring the embeddings to respect these labels too.
EX-patterns may also use label or path predicated. For instance,
rather than searching specifically for cancel auction request and
cancel bid request, one may ask for all the activities whose name
contains the string “cancel”. One can also use predicates on the
activity time-stamps to focus the search on certain time intervals.

Variables and joins. Ex-patterns can be extended by attaching
variables to concrete activities and edges, and by (in)equality con-
ditions on variables. Pattern activities attached to (un)equal vari-
ables are mapped to trace activities all having (distinct) identical
labels, and pattern edges labeled by (un)equal variables are mapped
to paths whose sequences of labels are all (different) equal words.

Querying specifications. In some cases we want to relate mon-
itoring to the BP specification. See, e.g., Example 2.4 in Section 2.
To query specifications, we rely again on BP-QL [4], whose graph-
ical interface resembles ours. Queries then consist of two parts, that
query the specification and the execution trace, respectively. (See,
e.g. Figure 10). Join conditions between variables attached to the
nodes/paths of the two parts provide the glue between them.

Distributed systems and queries. In a distributed setting,
each peer holds a set of BPs and may provide (resp. use) activi-
ties to (of) remote peers. Users may wish to monitor these remote
components as well, (provided access is allows by the respective or-
ganizations). The data model and query language extend naturally
to this setting, associating peer ids with activity pairs in execution
traces/patterns. When an activity pair s, s′ in a query is annotated
by a peer id P , the search for its internal EX-pattern is restricted
to traces supplied by P . The pattern matching algorithm presented
in Section 4 extends naturally to this distributed setting. To avoid
shipping events between sites, the (sub)automaton Â, correspond-
ing to the internal EX-pattern of an activity pair s, s′ annotated by
P is installed on the peer P . When s is matched, it notifies the
start node of Â; a matching for Â is computed on P (as described
in Section 4). On success, s′ is informed (and is activated). If the
matching fails, s in notified (and consequently backtracks).

Reports. We conclude by briefly considering report generation.
Assume first that a report is attached to the end node of an EX-
pattern p. A match (pc, ψ) for a concrete EX-pattern pc ∈ concrete(p)
can be viewed as an XML document (tree), that records the ψ
assignment for the activities (activation-completion pairs) and the
edges in pc. Each match found by the algorithm of Section 4 gen-
erates one such XML entry. The Report command is applied to
this stream of matches. The syntax and semantics resembles that
of previous proposals for such reports [25, 13]; we only mention
here the main constructs. By default a report is issued for each en-
try. To issue a report only when certain conditions are satisfied a
When cond statement can be used, where cond is a boolean con-
dition on the value of attributes or aggregate functions (described
below). Periodic reports may be generated by the Every time com-
mand, where time may be a time interval or the number of entries
generated since last report. A sliding window describing the en-
tries relevant for the generation of the report can be defined using
the Range time command. The structure of the report - an XML
document - is described in a manner similar to that of the return
clause of XQuery and may include grouping of entries and aggre-



Figure 15: Architecture.
gations like average, max, min, count, sum. Two reporting modes
are available: A local report is issued for a given process instance
and uses only entries of that instance. A global report is issued per
BP and uses entries of all the BP instances.

In general, report commands may be attached to any node in the
pattern. The portion of the execution pattern relevant to such a
report consists of the prefix of the pattern including the report node
and its predecessors. The report generated for such a (sub) pattern
ignores the rest of the pattern, and is processed in the same way as
described above.
Remark: A naive, and very inefficient, approach to process a query
with several report nodes is to compute, separately, the matches of
each of their respective pattern prefixes. Recall however that our
algorithm works in a greedy manner by matching pattern prefixes,
then expanding them to matches for larger prefixes. This can natu-
rally be exploited to factorize the common processing, computing
matches for reports of “shorter” prefixes and then expending them,
when possible, to the reports of larger prefixes.

6. IMPLEMENTATION AND EXPERIMENTS
The query language and algorithms presented above have been

implemented and tested in the BP-Mon monitoring system. A
demo of the system will be given in the upcoming SIGMOD [5]. To
support flexible deployment, the system compiles BP-Mon queries
into BPEL specifications. The specification S(p) generated for a
query pattern p describes a process (essentially the automaton de-
scribed in the previous section) that will perform the monitoring
task for p. S(p) is then automatically compiled into an executable
code to be run on the same BPEL application server as the mon-
itored BP. The system architecture is depicted in Figure 15. We
describe below the various components.

Visual editor. BP-Mon queries are written via a visual editor,
in one of two modes: The user can draw the patterns from scratch,
using a drag-and-drop items palette. Or, starting from a specifi-
cation of a BP p, use a wizard to create queries to monitor p, as
follows: The user marks the nodes of p that she wishes to include
in the query. Then by one click a query draft is created, where non
selected nodes are omitted and the selected nodes are connected
with transitive edges that reflect their flow and zoom-in relation-
ship in p. The user can then add conditions on node values, add
report points, make final adjustment, and click a button to finish.

Query translator. The query translator compiles a query on p
to a BPEL process - the Query Process (QP) in Fig. 15 – that imple-
ments the automaton of Section 4. Each state is implemented as a
compound activity consisting of two components, one in charge of
reading the incoming events, the other in charge of events process-
ing and backtracking. The QP is deployed onto the BPEL server
where the instances of p are executed. Several QPs, monitoring the
same or different processes, may be deployed on a server.

Dispatcher. For each query, our system generates one QP in-
stance per monitored BP instance. Processes and instances in BPEL

servers have id’s, and these are used by the dispatcher module to
dispatch the BP instances events to the right QP instances. It sub-
scribes to relevant events of the queried BPs when a query is de-
ployed, and receives the relevant events generated by instances of
these BPs (as described in Section 2). The first event from a new BP
instance causes the dispatcher to create a new instance of relevant
QPs. Further events are delegated to the running QP instances.

Report generation. The final step is generating the reports. As
explained in Section 5, a successful matching for the query pattern
associated with a report node generates an XML entry recording the
embedding, and the Report command is applied to this stream of
matches. Observe that from this point and on, since all the special
BPEL-related issues have already been treated by the BP-Mon en-
gine, we are back to standard XML stream processing, and can use
a standard such engine to generate the report. In our implemen-
tation we support two alternatives for report generation. The first
uses the streaming system of [25].4 The second uses a lightweight
in house reporting tool based on XQuery and XSLT. But in prin-
ciple any XML streaming tool that supports the needed reporting
features can be plugged into our architecture.

6.1 Experiments
The implementation by translation of queries into BPEL processes,

then running them on the same server as the queried processes,
has two main advantages: Portability of queries between BPEL en-
gines; and a great simplification of the software devolvement, ex-
ploiting the infrastructure provided by such engines for parallel and
distributed process management, and software composition. The
price payed for this is the extra load on the BP server who now
needs to also run query instances. To estimate the overhead in-
curred by running the query on the same server, the performance
impact on the queried processes, the scalability of the solution, and
the effectiveness of the optimizations, we ran several experiments.

We considered BPs with varying number of activities, where
the monitoring involves different percentage of the activities in the
BPs. We varied the ratio of processes vs. queries, and also varied
the type of the monitored processes, from I/O bounded BPs, to CPU
bounded ones.5 Since the generation of reports is fairly standard,
we focused on the parts specific to BP-Mon, i.e. the matching of
patterns; our measurements do not include report generation time.

In the experiments, we used a family of processes consisting of
sequences of nested while constructs, with atomic activities that
each invokes a given Java class, some run in parallel, and with an
optional wait activity between them. By configuring the number
of while iterations and the properties of the Java class we could
vary the size of the process, the characteristics of the activities (I/O
or CPU bounded), and the percentage of queried process activities
(our queries queried activities appearing only in some of the loops).
The queries use the Report* option that requires matching of con-
secutive occurrences of the searched pattern in the EX-trace (as this
requires more processing than a single Report). We measured ex-
ecution time (in seconds) of processes and queries. The tests were
performed on Pentium4 3.0GHz, dual core with 1GB RAM mem-
ory, running Windows XP Professional, JBoss AS 4.0.4. Oracle
BPEL Process Manager 10.1.2. with Oracle 9i database.

A representative sample of results is shown in Figures 16 - 19.
Figure 16 demonstrates the very minimal overhead of our solution

4This streaming system is actually relational, but the fairly simple
structure of the BP-Mon XML allows for natural translation to
relational format and back to XML.
5Since our experiments showed no significant difference between
I/O bound and CPU bound BPs, the results discussed below use
activities with a uniform mix of I/O and CPU load.



Figure 16: Queries overhead.

Figure 17: Varying number of queried processes.
as well as its scalability. Each BP here consists of 200 activities; the
monitored patterns involve about 40% of the activities. The graph
shows, for a varying number of BPs, four measurements of total ex-
ecution time for an entire workload. The first (left-most) column in
each set shows the execution time of the BPs, with events genera-
tion, but without monitoring. The second column shows the execu-
tion time of the BPs when monitored, with one query per process.
Clearly, the overhead on process execution due to monitoring is
very low. The third column shows the execution time of the queries.
As should be expected, their execution time is slightly higher than
the processes themselves – a query is invoked with the process,
but lags behind a bit when processing its events. (Recall that the
queries here report consecutive occurrences of the searched pat-
tern in the EX-trace, hence continue the monitoring till the process
ends. Queries that report just one occurrence stop as soon at it is
detected and thus entail even lesser overhead). Obviously, all the
results are affected by the scalability of the BPEL server itself. We
can see that the execution time grows linearly with the number of
concurrent processes.

The queries that we show here have 3 reporting points. Recall
that one of our optimizations is factorizing the common pattern
matchings for the reports. To illustrate the reduction in process-
ing time that this achieves, the forth column shows what would be
execution time for the three matches if computed separately.

In the above experiment all process instances are monitored,
each by one query. To measure the effect of changing these pa-
rameters, we varied the overall number of queries, assigning to
each process a subset of random size, with uniform distribution.
Figure 17 illustrates representative results, for 50 process instances
with parameters the same as above (200 activities, of which 40%
occur in the monitored patterns), and the average number of queries
per process varying from 0 to 2. We can see that the growing num-
ber of queries has only minimal effect on execution time. Indeed
as already seen in the previous experiment, the execution time is
mostly affected by the running time of the monitored processes and
the overhead due to query processing is marginal.

Figure 18 illustrates the effect of monitoring different percent-
age of the BP activities. We ran the experiment with the same 50
instances as above, and query patterns involving 10% to 100% of
the BP activities. The execution time grows moderately with the
percentage of monitored activities. In practice the common case
is likely to be close to the lower left part of the curve, as typical
BP specifications are large with only small part being relevant for
a particular monitoring task.

We conclude by considering the effect of our optimization tech-
nique of pruning redundant monitoring based on an analysis of the
BPEL process specification. Figure 19 illustrates the improvement

Figure 18: Varying number of queried activities.

Figure 19: Impact of Optimization.

achieved by applying this method. The scenario here is similar to
what we have seen in Example 2.1: the BPEL specification has a
switch construct, and only one branch is relevant to the query. The
process instances choose randomly one of the branches. We mea-
sured the execution time of optimized and non-optimized queries,
varying the number of process instances. The experiments shows a
performance gain of almost 50%, reflecting the 50% of the process-
ing, that involves non interesting branches, that was avoided. Of
course, performance improvement in general will depend on the
mix of processes, queries, and their properties.

7. CONCLUSION AND RELATED WORK
This paper presents BP-Mon, a novel query language and sys-

tem for monitoring BPs. BP-Mon offers a high level intuitive de-
sign of monitoring tasks. A novel optimization technique exploits
available knowledge on the BP structure to speed up computation.
BP-Mon queries are compiled into standard BPEL processes, thus
providing easy deployment, portability, and minimal overhead. We
conclude by discussing some of the language design and imple-
mentation challenges with respect to related work.
Visual query languages. The design of BP-Mon was inspired
by previous works on visual query languages for XML and graph-
shaped data, such as XQBE [7] and Graphlog [10]. While all these
languages consider only flat graphs, BP-Mon supports nested graphs
and, correspondingly, enriches the standard path-based navigation
with a novel (transitive) zoom-in, that allows to query process com-
ponents at any depth of nesting. BP-Mon’s syntax resembles that
of the BP-QL language [4] which we have developed for querying
BP specifications. The two languages are complementary - BP-QL
can be used to focus on parts of BPs that require monitoring, while
BP-Mon is used to check at runtime properties that cannot be stat-
ically determined by querying the specification. Together they pro-
vide a uniform framework for static and dynamic BP analysis.
Composite events. BP monitoring entails the detection and process-
ing of composite events. Event detection is at the core of sev-
eral related application domains, such as active databases, publish-
subscribe and production systems[32, 16, 31]. A variety of for-
malisms have been proposed for the specification of composite events,
including event algebras, situation calculus, temporal languages,
process algebra, transaction logic and computation tree logic (see
[28] for an overview), allowing to define composite events based
on the time stamps and casual dependencies of individual (or other
composite) events. As explained in the Introduction, a key differ-
ence of the present work is the higher abstraction level employed
here. Following the BPEL philosophy, BP-Mon users need not be
aware of the underlying implementation details of the monitored



BP and the type of run-time events generated by the system. The
specifications of monitoring tasks is performed on the same (high)
level of abstraction as that of the BPs specification.
Runtime monitoring. A vast amount of work was performed
on verification of concurrent and distributed systems using speci-
fication languages such as LTL. Recently, this approach has been
applied to Web service composition, using the BPEL framework
[21]. Runtime monitoring based on LTL, Statecharts, and related
formalisms has also received a lot of attention recently (see [30]
and [24]). These works are mainly focused on error detection, e.g.
concurrency related bugs. Our approach is different in that it relies
on the BPEL model for the visual language used to specify moni-
toring requests, and on execution on a BPEL engine for the moni-
toring itself. These points contribute to the ease of deployment and
the efficiency of execution of our monitoring tool.
Optimization. A variety of methods have been proposed for op-
timized processing of (composite) events, employing relation and
object-oriented database technology [32, 16], petri nets, finite state
automata, event graphs, and storage minimization (See [29] for
a survey) . These methods are generic, that is they can be em-
ployed in a variety of application domains. To our knowledge the
present work is the first to propose a BP-specific optimization that
exploits knowledge about the BP structure, and is complementary
to the above works. The use of schema knowledge is an important
XML query optimization technique [14, 12, 18]. In our case, the
“schema” is the BP specification and the optimization goal is to
reduce computation time and memory requirements for the BPEL
processes implementing a query. The key differences from XML
schema-based optimization are the two navigation axes considered
here, the inherent higher complexity of BP specifications analysis
and the need to resort to safe, rather than exact, analysis. Further
optimization to be studied may include pattern simplifications, e.g.
replacing non-transitive edges with transitive ones and reducing
pattern nesting by eliminating unnecessary compound activities.
DFA vs. NFA. Many XML filtering engines are based on finite
automata, either deterministic (DFA) or non-deterministic (NFA).
Some works support path sharing, converting large numbers of
XPath queries into a single NFA [12, 9]. Other are based on DFA
[17, 18]. NFA-based approaches are space efficient, requiring a rel-
atively small number of states to represent complex queries. DFA-
based approaches are time efficient since their state transitions are
deterministic, but the conversion from an NFA to a DFA increases
the number of states exponentially. To avoid this exponential blow
up, works like [17] compute the states lazily, at run-time. Follow-
ing this principle we use a DFA, auto-generated as a BPEL process,
which instantiates the required states (activities) as it progresses.
Memory requirements. Lower bounds on the space required
for the evaluation of continuous select-project-join queries over re-
lational streams are considered e.g. in [1, 2]. The challenges en-
countered in our work are similar, but the queries are inherently
more complex. We are currently investigating syntactic restrictions
on EX-patterns and BP specs to provide bounds for memory needs.
BP management. In the introduction we reviewed BAM (Busi-
ness Activity Monitoring) systems. Software runtime analysis tools
like Purify, Quantify and PureCoverage [19] closely follow the ex-
ecution of applications and allow to create extensive reports about
memory usage, memory leaks, memory and performance bottle-
necks, and code coverage. Unlike BP-Mon these tools are very
low level and are targeted at developers. Complementary to this
line of work is the post-analysis of traces that were gathered and
stored in databases [8]. We are currently examining the extension
of BP-Mon with facilities for querying stored logs.
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