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ABSTRACT
A Business Process (BP for short) consists of a set of ac-
tivities that achieve some business goal when combined in a
flow. Among all the (maybe infinitely many) possible execu-
tion flows of a BP, analysts are often interested in identifying
flows that are “most important”, according to some weight
metric. This paper studies the following problem: given a
specification of such a BP, a weighting function over BP ex-
ecution flows, a query, and a number k, identify the k flows
with the highest weight among those satisfying the query.
We provide here, for the first time, a provably optimal algo-
rithm for identifying the top-k weighted flows of a given BP,
and use it for efficient top-k query evaluation.

1. INTRODUCTION
A Business Process (BP for short) consists of a set of activ-

ities which, when combined in a flow, achieve some business
goal. BPs are typically designed via high-level specifica-
tions (e.g. using the BPEL standard specification language
[3]) which are compiled into executable code. As the BP
logic is captured by the specification, tools for querying and
analyzing possible execution flows (EX-flows for short) of a
BP specification are extremely valuable to companies [6].

A single BP typically induces a large (possibly infinite,
for recursive BPs) set of possible EX-flows. Among all these
EX-flows, analysts are often interested only in a subset that
is relevant for their analysis. This subset is described via a
query. Since the number of query answers (qualifying EX-
flows) may itself be extensively large (or even infinite), it
is important to identify those that are “most important”,
where the notion of importance is captured by some weight-
ing metric that depends on the analysis goal. This paper
considers the problem of finding, given a BP specification, a
weighting metric over EX-flows, and a number k, the top-k
weighted EX-flows of the specification. We provide here, for
the first time, a provably optimal algorithm for identifying
the top-k weighted EX-flows of a given BP; this algorithm
is utilized for efficient top-k query evaluation.
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For some intuition on the kind of BP analysis that one
may be interested in, and the corresponding queries and
weighting metrics, let us consider a simple example. Assume
we are given a BP of a Web-based shopping mall with virtual
shops of various vendors. A customer of the mall may be
interested in buying a Toshiba TV and a DVD player of low-
est overall price. Suppose that among the possible EX-flows
containing a purchase of two such appliances [query], the
lowest-priced one [weighting] is achieved when the user first
subscribes to the Toshiba customers club. Such a result may
suggest that subscription is beneficial even if it entails some
registration fee. Alternatively, suppose that the same user
is interested in minimal shipping time [another weighting].
In this case, the preferred flows may have both products
purchased at the same store.

As another example, the Web-site owner may be inter-
ested to identify the most profitable/popular EX-flows [weight-
ing] that lead to a TV purchase [query]. The answer here
may be used, for instance, to target relevant personalized
advertisements to users. Several weighting functions of in-
terest may be combined to form a single weighting metric.

To formally study top-k query evaluation, we first propose
a generic model for weighted EX-flows. To weigh EX-flows,
we assume that each choice taken during the EX-flow bears
some weight (denoted cWeight, for choice weight), and that
cWeights of choices throughout the EX-flow are aggregated
to obtain the EX-flow weight (denoted fWeight, for flow
weight). For example, cWeight may be the price of the
product chosen at a given point of the EX-flow, or the likeli-
hood of a user clicking on a given store link. In the first case,
summation may be used for aggregation; for likelihoods we
may use multiplication. Following common practice [11], we
require the aggregation to be monotonic w.r.t. the progress
of the flow. This captures most practical scenarios, e.g., the
total price of a shopping cart subset does not exceed the
price of the full cart, even in the presence of discount deals.

It is important to note that the cWeight of a given choice
may vary at different points of the EX-flow and may depend
on the course of the flow so far and on previous choices. For
instance, the price of a given product may be reduced if
the user had previously subscribed to a customers club or
bought over two products from the same vendor; the likeli-
hood of clicking on a certain store link may depend on stores
previously visited. Thus cWeight is modeled as a function
whose input includes not only the choice itself but also infor-
mation about the history of the EX-flow thus far. We derive
an equivalence relation equiv that captures how much the
cWeight of a given choice is affected by preceding choices,



and provide a top-k algorithm whose worst-case complexity
is polynomial in the count of classes in equiv and the size of
the BP specification, and linear in the size of the output.

We then study the optimality properties of top-k algo-
rithms in this setting. Following common practice [11], we
employ the notions of optimality and instance optimality,
that reflect how well a given algorithm performs compared
to all other possible algorithms in its class. We show that
the properties of the fWeight function dictate the optimal-
ity of top-k algorithms in this setting: for general monotone
fWeight function, we show that no algorithm is optimal or
even instance optimal. However, we further consider a class
of semi-strongly monotone functions that arise frequently in
practice. We show that still no optimal algorithm exists for
such functions, but we show instance optimality for our algo-
rithm. Finally, we show that for the further restricted class
of strongly monotone, our algorithm is in fact optimal.

We conclude with an experimental study of our algorithm
performance. Our experiments show that in all realistic sce-
narios, including when the conditions that guarantee opti-
mality are not met, our algorithm outperforms the worst-
case bound, as well as previously proposed algorithms, by
an order of magnitude.

Difficulties and novelty. A first difficulty here is the in-
finite search space. While each individual EX-flow is finite,
a single BP may have an infinite number of possible EX-
flows (analogous to how a grammar defines an infinite set of
words), due to the possibly recursive nature of BPs. More-
over, even for non-recursive BPs, the size of a single EX-
flow may be exponential in the specification size. Indeed,
standard A∗-style [5] search algorithms may fail to halt in
this context and, moreover, become prohibitively inefficient,
even for non-recursive BPs. Our previous work ([7]) has at-
tempted to overcome these difficulties. As we show in this
work, the performance of the solution proposed in [7] is un-
satisfactory for several realistic scenarios. In contrast, the
novel top-k algorithm presented here is provably optimal,
and outperforms the algorithm of [7] by over 90% in real-
life scenarios (see Section 5). Furthermore, the algorithm
of [7] was tailored to probabilistic BPs and thus has lim-
ited applicability comparing to the novel algorithm which is
generically applicable to any weight metric.

Paper organization Section 2 presents our model for weighted
BPs and EX-flows. Section 3 presents our top-k algorithm,
and Section 4 discusses its optimality. Section 5 describes
our experiments. Section 6 concludes with related work. For
space constraints, proofs are deferred to the Appendix.

2. PRELIMINARIES
We start by recalling the standard basic model for BPs

and EX-flows [6], then extend it to support weighted BPs.
As a running example, we will use the web-based Shopping
Mall BP from the Introduction.

2.1 BP Specifications
At a high-level, a BP specification encodes a set of activ-

ities and the order in which they may occur. A BP spec-
ification is modeled as a set of node-labeled DAGs. Each
DAG has a unique start node with no incoming edges and a
unique end node with no outgoing edges. Nodes are labeled
by activity names and directed edges impose ordering con-
straints on the activities. Activities that are not linked via

Figure 1: Business Process Specification

a directed path are assumed to occur in parallel. The DAGs
are linked through implementation relationships; the idea is
that an activity a in one DAG is realized via the activities in
another DAG. We call such an activity compound to differ-
entiate it from atomic activities having no implementations.
Compound activities may have multiple possible implemen-
tations, and the choice of implementation is controlled by a
condition referred to as the guarding formula.

We assume a domain A = Aatomic∪Acompound of activity
names and a domain F of formulas in predicate calculus.

Definition 2.1. A BP specification s is a triple (S, s0, τ),
where S is a finite set of node-labeled DAGs, s0 ∈ S is a
distinguished DAG consisting of a single activity, called the
root, τ : Acompound → 2S×F is the implementation func-
tion, mapping each compound activity name in S to a set of
pairs, each consisting of an implementation (a DAG in S)
and a guarding formula in F .

Example 2.2. Figure 1 shows an example BP specifica-
tion. The root s0 has precisely one activity named ShoppingMall.
The latter has as its implementation the DAG S1, which de-
scribes a group of activities comprising user login, the in-
jection of an advertisement, the choice of a particular store,
and the user exit (possibly by paying). The directed edges
specify the order in which the activities may occur, e.g., a
user has to login first before a store can be chosen. Some of
the activities are not in a particular order, e.g., the injection
of an advertisement and the choice of a store, which means
that they occur in parallel.

Within S1, we observe that Login and chooseStore are
compound activities; the Login activity has two possible im-
plementations S2 and S3 that are guarded by respective for-
mulas. The idea is that exactly one formula is satisfied at
run-time, e.g., the user either chooses to login with a Visa
or a Mastercard credit card, and thus Login is implemented
either by S2 or S3 respectively. A similar observation can
be made for chooseStore, which has several possible im-
plementations, but exactly one will be chosen at run-time
depending on which guarding formula is satisfied. Note that
the specification is recursive as S4 may call S1.

We note that satisfaction of guarding formulas is deter-
mined by external factors, e.g. choices of the user or envi-
ronment parameters. We assume that exactly one guarding
formula can be satisfied when determining the implementa-
tion of a given compound activity occurrence. We observe
that satisfaction of guarding formulas can change if activi-
ties occur several times. For instance, a user may choose to
buy a “DVD” product the first time she goes through the
activities of S4, and a “TV” product the second time.

2.2 EX-Flows
An EX-flow is modeled as a nested DAG that represents

the execution of activities from a BP. We model each oc-
currence of an activity a by two a-labeled nodes, the first



Figure 2: Example execution flow

standing for the activity activation and the second for its
completion point. These two nodes are connected by an
edge. The edges in the DAG represent the ordering among
activities activation/completion and the implementation re-
lationships. To emphasize the nested nature of executions,
the implementation of each compound activity appears in-
between its activation and completion nodes. Of course, the
structure of an EX-flow DAG must adhere to the structure
of the corresponding BP specification, i.e., activities have to
occur in the same ordering and implementation relationships
must conform to function τ .

Definition 2.3. Given a BP specification s = (S, s0, τ),
e is an execution flow (EX-flow) of s if:

• Base EX-Flow: e consists only of the activation and
completion nodes of the root activity s0 of s, connected
by a single edge, or,

• Expansion Step: e′ is an EX-flow of s, and e is ob-
tained from e′ by attaching to some activation-completion
pair (n1, n2) of an activity a in e′ some implementation
ea of a, through two new edges, called implementation
edges, (n1, start(ea)) and (end(ea), n2), and annotat-
ing the pair with the formula fa guarding ea.

We require that this (n1, n2) pair does not have any
implementation attached to it already in e′, whereas
all its ancestor compound activities in e′ do have one.

In the attached implementation ea, each activity node
is replaced by a corresponding pair of activation and
completion nodes, connected by an edge.

We call e an expansion of e′, denoted e′ → e.

Example 2.4. An example EX-flow of the shopping mall
BP is given in Figure 2. Ordering edges (implementation
edges) are drawn by regular (resp. dashed) arrows. The EX-
flow describes a sequence of activities that occur during the
BP execution. The user logins with a Visa Credit Card, then
chooses to shop at the BestBuy store. There, she chooses
to look for a DVD player and selects one by Toshiba, then
continues shopping at the same store, looking for a TV, and
selects one also by Toshiba (this last part is omitted from
the figure). Finally she exits and pays.

We use e′ →∗ e to denote that e was obtained from e′ by
a sequence of expansions. An activity pair a in an EX-flow
e is unexpanded if it is not the source of any implementation
edge, implying that a can be used to further expand e. We
say that an EX-flow is partial if it has unexpanded activities,

and full otherwise, and denote the set of all full flows of a
BP specification s by flows(s). For a graph e, we say that
e is an EX-flow if it is a (partial or full) flow of some BP
specification s.

Clearly, a given EX-flow may be obtained via different ex-
pansion sequences varying in the order of parallel activities
expansion. To simplify the presentation, we impose a total
order among unexpanded activities of any given partial flow,
and assume that at each step, the first unexpanded activ-
ity according to this order is expanded. (This order can be
achieved by a topological sort of the EX-flow DAG.) Thus,
any partial EX-flow corresponds to a unique sequence of ex-
pansion steps from the base EX-flow. We stress that this
assumption is made solely for presentation considerations–
all our results extend to a general context where multiple
expansion orders are possible (see Appendix C).

2.3 Weighted EX-flows
We assume an ordered domain W of weights. We use

three functions: (1) cWeight that describes the weight of
each implementation choice, given a preceding sub-flow, (2)
aggr that aggregates cWeight values, and (3) fWeight that
uses cWeight and aggr to compute flow weight.

The cWeight function. Given a BP specification s, cWeight
is a partial function that assigns a weight w ∈ W to each pair
(e, f) where e is an EX-flow of s and f guards the compound
activity node of e that is next to be expanded. Intuitively,
the value cWeight(e, f) is the weight of the implementation
guarded by f , given that e is the flow that preceded it.

Example 2.5. Re-consider the EX-flow in Fig. 2, and a
cWeight function assigning, to each implementation choice,
the additional cost that it incurs to the customer. In this
case W is the set of all positive numbers. The cWeight
of the choice $brand = “Toshiba”, given that the preceding
flow indicates that the product being purchased is a DVD, the
shop is BestBuy and the user has identified herself as a Visa
card holder, may be the Visa discounted price of a Toshiba
DVD at BestBuy. The cWeight of a Toshiba choice, given
that the product is a TV and that the preceding flow already
includes a purchase of a Toshiba product (the DVD), may
reflect, e.g., a 20% discount for the second product. The
cWeight of other choices (like the store or the product type)
may be zero, as they incur no additional cost to the user.

The Aggregation function. The weights along the EX-
flow are aggregated using an aggregation function aggr :
W ×W → W . The first input is intuitively the aggregated
weight computed so far, and the second is the new cWeight
to be aggregated with the previous value. For instance, when
computing purchase cost aggr = + and W = [0,∞); when
computing likelihood, aggr = ∗ and W = [0, 1]. We con-
sider here aggregation functions that are associative, com-
mutative, continuous and monotone (either increasing or de-
creasing). Observe that the aggregation functions + and ∗,
for cost and likelihood, satisfy the constraints.

The fWeight function. Finally, the fWeight of an EX-flow
is obtained by aggregating the cWeights of all choices made
during the flow, and is defined recursively: if e is an EX-flow
consisting only of the root s0, fWeight(e) = 1aggr. Other-
wise , if e′ → e for some EX-flow e′ of s, then fWeight(e) =



aggr(fWeight(e′), cWeight(e′, f)), where f is the formula
guarding the implementation that is added to e′ to form e.

Example 2.6. Assume that a Toshiba TV and DVD, which
individually cost 250$ and 150$ resp., are sold together with
20% discount (i.e. for 320$). The cWeight for the first
choice of Toshiba TV (DVD) is 250$ (resp. 150$). The
cWeight for the next choice, of DVD (TV), is 70$ (170$),
computed as 320$ minus the cost already incurred for the
first product. Using + for aggregation, cWeights along the
flow are summed up, yielding the total 320$ deal price.

Observe that when aggr is monotonically increasing (de-
creasing), so is fWeight, in the sense that the weight of
an EX-flow increases (resp. decreases) as the execution ad-
vances. Generally, when fWeight is increasing (as, e.g.,
for the overall price of purchases), we are interested in the
bottom-k full flows (e.g. the cheapest overall price). When
fWeight is decreasing (as, e.g., for the likelihood of EX-
flows), we are interested in top-k (e.g. the most likely) ones.
Since all definitions and algorithms presented below apply
symmetrically to both cases, we consider from now on only
monotonically decreasing functions and top-k EX-flows.

Top-k EX-flows. Given a BP specification s, a monoton-
ically decreasing fWeight function for s and a number k,
we study the problem of identifying the top-k weighted EX-
flows in flows(s) 1. We refer to this problem as TOP-K-FLOWS.
One may further queries, that select EX-flows of interest and
in this case we retrieve the top-k out of the EX-flows match-
ing the query. The common practice in such cases (see e.g.
[7, 2]) is to employ a two-steps algorithm. In the first step
we “intersect” the query q with s, obtaining a new BP s′

whose flows are exactly those flows of s that also match q.
The second step is then to perform a top-k analysis over s′.
An efficient algorithm for the first step was suggested in [6],
and we thus focus here on the second step, i.e. TOP-K-FLOWS.
The formal study of queries and matches was provided in [6],
and repeated in Appendix B for ease of reading.

3. OPTIMAL TOP-K ALGORITHM
When devising an algorithm for TOP-K-FLOWS, one encoun-

ters two main difficulties. First, recall that BPs may be re-
cursive, in which case the number of EX-flows to consider
may be infinite. Second, even without recursion, the size of
a single EX-flow may be exponential in the BP size, as a
single graph may appear as the implementation of multiple
compound activities in the flow. A naive search algorithm,
such as A∗ [5] traverses, in the worst case, the entire search
space (i.e. all possible EX-flows), thus may fail to halt in the
general case, and is inefficient even for non-recursive BPs.
To observe that, consider the following simple example.

Example 3.1. Consider the following recursive BP spec-
ification, with cWeights ranging in [0, 1], and aggr = ∗. Its
root activity A has two possible implementations: the first,
S1, guarded by a formula F1 with cWeight of 0, consists of
a single atomic activity a. The second, S2, guarded by F2
with cWeight of 0.5, consists of a recursive invocation of A.
The algorithm will keep considering recursive expansions of
A, each time obtaining EX-flows with decreasing weight, but
nevertheless higher than 0, and will never terminate.
1Certain EX-flows may have equal weights, which implies
that there may be several valid solutions to the problem, in
which case we pick one arbitrarily.

To overcome this, we use the following two observations.

Observation 1. We first observe that some distinct nodes
n, n′ may be in fact equivalent, in the sense that every sub-
flow that may originate from n may also originate from n′,
having the same fWeight. For instance, consider a weight
function standing for product prices. If no deals are pro-
posed, every two nodes n, n′ standing for the purchase of
the same product P , are equivalent. If there are deals, then
price of P may depend on the flows histories preceding n
and n′. If these histories are the same in terms of purchas-
ing the same products specified in the combined deal with P ,
then n and n′ are equivalent. Equivalence is thus a relation
between two pairs of (EX-flow,next-to-be-expanded-node).
Before formally defining this relation, we introduce the aux-
iliary notion of (isomorphic) sub-flows: given an EX-flow e
and an activity n of e, the sub-flow of e rooted at n consists
of all nodes and edges appearing on some path in-between
the activation and completion nodes of n. An isomorphism
between two (sub-)flows e and e′ is a one-to-one and onto
matching between the nodes and edges of e and e′, respect-
ing node labels, guarding formulas and the edge relation.

Definition 3.2. Given two pairs of (EX-flow,next-to-be-
expanded-node), (e, n) and (e′, n′), we say that (e, n),(e′, n′)
are equivalent if:

1. n and n′ are labeled by the same activity name.

2. For all EX-flows ê, ê′ s.t. e →∗ ê, e′ →∗ ê′, and in
which the sub-flows rooted at n and at n′ (denoted ên

and ˆe′n′ ) are isomorphic, fWeight(ên) = fWeight( ˆe′n′).

We denote the set of such equivalence classes, for the given
BP specification, by equiv. We assume in the sequel that
equiv is known and its size is finite, and explain below how
to generate it.

Observation 2. We observe that the monotonicity of fWeight
facilitates incremental-style computation.

Lemma 3.3. For every equivalence class eq ∈ equiv and
a compound activity node n ∈ eq, the following hold:
(1) there exists a best ranked (top−1) EX-flow originating
at n that contains no occurrence of any other node n′ ∈ eq.
(2) for j > 1, there exists a j’th ranked flow originating at
n such that for any occurrence of a node n′ ∈ eq in it, the
sub-flow rooted at n′ is one of its top j−1 flows.

Let us illustrate the implications of this Lemma.

Example 3.4. Re-consider example 3.1, and recall that
while trying to retrieve the top-1 EX-flow rooted at A, the
naive algorithm has encountered a recursive invocation of
A, and has examined possible EX-flows of the latter, thus
resulting in an infinite loop. Following Lemma 3.3, this is
redundant: to compute the top-1 EX-flow one may avoid
considering flows that contain a recursive calls to A. The
top-2 flow may contain a recursive invocation of A, but the
only sub-flow that needs to be considered as potential expan-
sion for this occurrence of A is the (already computed) top-1
flow, and so on.

TOP-K Algorithm. Following the above observations, we de-
fine an EX-flows table, FTable, (compactly) maintaining the
top-k (sub)flows for each equivalence class. It has rows cor-
responding to equivalence classes, and columns ranging from



1 to k. Each entry contains a pointer to the correspond-
ing sub-flow. In turn, every implementation of a compound
activity node in this sub-flow is not given explicitly, but
rather as a pointer to another entry in FTable, and so on.
This guarantees that the size of each flow representation is
bounded by the table size, avoiding the blow-up of EX-flow
sizes. In what follows, every EX-flow is represented via a
single pointer to an entry at FTable (we discuss the explicit
construction of flows below).

The algorithm then operates in two steps. First, it calls
a subroutine FindFlows which computes a compact repre-
sentation of the top-k EX-flows within FTable, then it calls
EnumerateFlows that uses the table to explicitly enumerate
the EX-flows from this compact representation. We next
explain the operation of these two subroutines.

FindFlows. The FindFlows procedure maintains two prior-
ity queues Frontier and Out of (partial) EX-flows, ordered
by fWeight. At each step, Frontier contains all flows that
still need to be examined. Upon termination, Out will con-
tain the top-k flows. Initially, Out is empty and Frontier
contains a single partial EX-flow, containing only the BP
root. At each step, we pop the highest weighted flow e from
Frontier. If e is a full (partial) flow, the algorithm invokes
HandleFull (HandlePartial) to handle it.

HandlePartial. HandlePartial, depicted in Algorithm 1,
is given a partial flow e and considers all possible expan-
sions e′ of e. To that end, we assume the existence of an
AllExps function that allows to retrieve, given a partial flow
e, all of its expansions (i.e. all e′ s.t. e → e′), along with
their weights. The algorithm first retrieves the next-to-be-
expanded node v of e (line 1), and looks up its equivalence
class in FTable (line 2). If no entry is found, it means that
we haven’t encountered yet an equivalent node during the
computation. We thus create a new row in FTable for this
equivalence class (line 4). Entries in this row will be filled
later, when corresponding full flows are found. Then, we ob-
tain all expansions of e (Line 5), and for each such expansion
we compute its fWeight value, and insert it to the Frontier
queue for processing in the following iterations (Lines 6-9).
Otherwise, if the appropriate row already exists in the table,
we consider the partial EX-flows that appear in this row but
were not yet considered for expanding e (line 12). If no such
EX-flow exists, (although the table entry exists), it means
that e was previously reached when expanding some other
node v′ (which appears in e as well). Following observation
2, we may compute the next best EX-flow without comput-
ing further expansions of e. Thus, we put e on hold (line
14). It will be released only later, upon finding a full flow
originating in v′ (see below). Else (i.e. an unused EX-flow
does exist), we take the highest ranked such EX-flow and
simply “attach” it to v, that is, we make v point to this flow
(lines 17-18). Finally, we now compute the weight of the
obtained EX-flow (line 19) and insert it into Frontier, for
further expansions (line 20).

HandleFull. HandleFull is depicted in Algorithm 2. First,
the given full EX-flow e is inserted into Out (line 1). If Out
already contains k flows, then we terminate. Otherwise,
every node appearing in e, along with its preceding sub-
flow (lines 7-9) define an equivalence class, used as entry at
FTable. The sub-flow rooted at the node is then inserted

Algorithm:HandlePartial

Input: e
v ← getNext(e) ;1

TableRow = FTable.findEquivClass([e, v]) ;2

if TableRow = NULL then3

insert [e, v] into FTable ;4

Expansions ← AllExps(e) ;5

foreach (e′, F ′) ∈ Expansions do6

re′ ← aggr(re, cWeight(e, F ′)) ;7

insert (e′, re′) into Frontier;8

end9

end10

else11

UnhandledExp ← {e′v ∈ TableRow | e′v was not12

chosen for (e, v)} ;
if UnhandledExp = NULL then13

insert ((e, we), v) into OnHold ;14

end15

else16

e′′v ← top(UnhandledExp) ;17

e′ ← expand e by pointing v to e′′v ;18

we′ ← aggr(we, fWeight(e′′v )) ;19

insert (e′, we′) into Frontier;20

end21

end22

Algorithm 1: HandlePartial

into the table at that entry, if it does not appear there al-
ready (lines 10-11). Last, all EX-flows that were put by
HandlePartial “on hold” due to a node participating in e,
are returned to Frontier (lines 13-14).

Explicit enumeration. When FindF lows terminates, the
top-k flows are compactly represented in Out via pointers to
entries in FTable; implementations of compound activities
within the graphs appearing in these entries are possibly rep-
resented by pointers to other entries, etc. EnumerateF lows
follow these pointers to materialize EX-flows in Out. This
pointer chasing terminates, following observation 2.

We may prove the following theorem.

Theorem 3.5. Given a BP s (with cWeight and aggr)
and a number k, if |equiv| is finite, the time complexity of
Algorithm FindFlows is polynomial in |s|, k and |equiv|.

Generating equiv. Recall Def. 3.2, and observe that equiv
is dictated by the fragment of the partial flow preceding a
given choice, that in fact affects its cWeight. This fragment
is termed as memory. For instance, if cWeight stands for
product prices, then the memory for a given product choice
P includes the choice of shop, and the previous purchase of
products suggested in a combined deal with P . Similarly,
when cWeight stands for choices likelihood, the memory in-
cludes all choices that the given choice is probabilistically
dependent upon. Thus, in practice, equiv may be derived
e.g. from a database of product prices and proposed deals,
or from a probabilistic distribution of the choices (including
dependencies), etc. |equiv|, and consequently the complex-
ity of TOP-K, is then polynomial in |s|, with the exponent
depending on the required memory size. Using a similar
construction to that of [7], we may show the necessity of the



exponential dependency on memory size (unless P = NP ),
and that the problem becomes undecidable when the mem-
ory size is unbounded (see Appendix A). In practice, the
memory size for navigation choices in a web-site is typically
not only bounded but also very small (approx. 4 [17]).

Algorithm:HandleFull

Input: e, we

insert (e, we) into Out ;1

if |Out| = k then2

Output Out;3

end4

else5

foreach node n ∈ e do6

epre
n ← the sub-flow of e preceding n ;7

erooted
n ← the sub-flow of e rooted at n;8

wrooted
n ← fWeight(frooted

n ) ;9

if not (erooted
n ∈ FTable) then10

FTable.update([n, epre
n ], erooted

n ) ;11

end12

foreach (e′, n) ∈ OnHold do13

insert e′ into Frontier ;14

end15

end16

end17

Algorithm 2: HandleFull

4. OPTIMALITY PROPERTIES
We next consider the optimality of TOP-K. We start by

defining our optimality measures, then analyze TOP-K’s op-
timality for weight functions with different properties.

4.1 Optimality Measures
We introduce the class of algorithms against which we

compare TOP-K, the cost metric used for comparison, and
the notions of optimality and instance-optimality.

Competing algorithms. We define the class A of all de-
terministic correct top-k algorithms operating on the same
input as TOP-K and having no additional information. An
algorithm in A may retrieve an EX-flow by multiple calls
to AllExps. It may obtain the cWeight of each expansion
choice and can apply aggr to compute fWeight of EX-flows,
but cannot use information not obtainable in this manner.

Cost metric. We consider the number of calls to AllExps
as the dominant computational cost factor, as it indicates
the number of distinct (sub-)flows generated and examined
by the algorithm. The cost of an algorithm A, when exe-
cuted over an input instance I (denoted cost(A, I)) is thus
defined as the number of calls it makes to AllExps.

Optimality and Instance Optimality. Following [11], we
use two notions of optimality (within the class A): A ∈ A is
optimal if for each algorithm A′ ∈ A and an input instance I
cost(A, I) ≤ cost(A′, I). A is instance-optimal if there exist
constants c, c′ such that for each A′ ∈ A and instance I,
cost(A, I) ≤ c ∗ cost(A′, I) + c′.

4.2 Optimality Results
We show next that the (instance) optimality of our algo-

rithm is influenced by properties of the fWeight function.

Strongly monotone fWeight. We say that fWeight is
strongly monotone if for every two distinct (partial or full)
flows e, e′, we have fWeight(e) 6= fWeight(e′). In partic-
ular, this implies that the weight strictly decreases as the
flow advances. We prove the following.

Theorem 4.1. For strongly monotone fWeight functions,
TOP-K is optimal within A.

Proof sketch. The proof works by contradiction and is
based on the following lemma (proved in the Appendix):

Lemma 4.2. Given some input I, let eterm be the worst
solution in Out upon termination. Whenever an e 6= eterm

is popped from Frontier, fWeight(e) > fWeight(eterm).

Now, if an algorithm A expands, on some input I, less
nodes than FindFlows, there exist a flow e and a node v ∈ e
s.t. FindFlows expanded v but A has not expanded any node
equivalent to v (FindFlows expands at most a single node of
each equivalence class). Denote fWeight(eterm) by wterm.
fWeight(e) > wterm by the lemma. Consider some w∗ s.t.
aggr(fWeight(e), w∗) > wterm (such w∗ exists as aggr is
continuous), and design an input I ′, similar to I but with a
new implementation of v’s activity with cWeight of w∗. A
is wrong on I ′: it acts on I ′ as on I, never seeing v, thus
missing an EX-flow having a better weight than wterm.

Semi-Strongly Monotone fWeight. In a realistic setting,
some choices do not incur any change to fWeight. (For
instance, in our shopping mall example, the choice of store or
product type induce a zero added cost). Consequently, some
flows may share the same fWeight value. Still, the number
of such flows sharing any specific fWeight value, is typically
bounded. To model this we define, for each constant c, the
notion of c-strongly monotone fWeight:

Definition 4.3. For a constant c, an fWeight function
is c-strongly monotone for a BP specification s, if for every
weight w, |{e ∈ flows(s) | fWeight(e) = w}| ≤ c.

The following theorem holds.

Theorem 4.4. For every constant c, and every BP speci-
fication along with a c-strongly monotone fWeight function,
TOP-K is instance optimal within A.

The proof is similar to that of Theorem 4.1, and is given
in Appendix A. Note that no optimal algorithm is possible
here, as follows:

Theorem 4.5. No algorithm within A is optimal for all
c-strongly monotone fWeight functions.

Proof sketch. The proof assumes the existence of an
optimal algorithm A, then defines an algorithm A′ with a
different order for the expansion of equally weighted EX-
flows, and constructs an input for which the order chosen
by A′ yields less expansions before finding the top-1 flow.
The full details are given in Appendix A.

Weakly monotone fWeight. Finally, we consider the (not
so common in practice) case of weakly monotone fWeight
functions. Here users may perform an unbounded number
of consecutive choices that incur no change to the EX-flow
weight. Unfortunately, in this case our algorithm is not
(instance) optimal, but we can show that in this case no
(instance) optimal algorithm exists.

Theorem 4.6. No algorithm within the class A is (in-
stance) optimal for all weakly monotone fWeight functions.



5. EXPERIMENTAL STUDY
We present an experimental study of our algorithm based

on synthetic and real-life data. The study evaluates the per-
formance of the algorithm in practice relative to the worst-
case bounds implied by our analysis, examining cases where
optimality is guaranteed as well as cases where it is not.

Note that TOP-K gradually fills in FTable, and halts once
it discovered the top-k flows (starting from the BP root).
In the worst case, it fills in all entries of FTable before ter-
minating. To asses this execution time we implemented a
variant of TOP-K, called WC (for worst-case), that always con-
tinues the processing until the table is full, and compared the
performance of TOP-K to WC. Performance-wise, WC is similar
to the algorithm in [7] which also computes the top-k flows
rooted at every activity. A comparison of TOP-K to WC thus
provides a comparison to [7], demonstrating the significant
performance gains achieved by our new algorithm.

We have implemented the algorithm in C++ and ran our
experiments on a Lenovo T400 laptop, with Intel Core2 Duo
P8600 processor and 2GB RAM. We ran two series of ex-
periments. First, we used synthetic data to vary the main
parameters that may affect the relative performance of the
algorithm. Second, we used real data, in the context of the
Yahoo! Shopping Web-site, to evaluate how the performance
compares in a real life setting.

Experiments with Synthetic Data. We generated our syn-
thetic input by varying a number of different parameters.
The ranges of values were chosen based upon surveys on the
structure of typical Web Applications [13, 17]. We examined
values that are in fact significantly greater than the typical
values, as explained next.

BP Specifications. The total number of activities in our
BP specifications varied from 1000 to 40000; we note that
[13] states that a typical number of activities in a given Web-
site is 4000, meaning that we have studied here application
that are up to 10 times larger than a typical application.
As for the BP structure, it was randomly generated, with
number of implementation choices for each activity ranging
from 2 to 1000, with uniform distribution, the number of
activities in each implementation chosen correspondingly in
[100,1000], and the identity and (partial) order relation of
the activities randomly chosen. Such specification induces a
search space that is exponential in depth of the BP, and is
infinite in presence of recursion.

Weight functions. We considered bounded-history cWeight
functions with bounds ranging from 0 to 10. We note that
[17], analyzing the behavior of Web Surfers, concluded that a
user choice is typically affected by at most 4 previous choices
(implying a typical memory bound of 4). The cWeight val-
ues for the activities implementation choices followed vari-
ous distributions. In particular, we considered uniform and
normal distributions with varying standard deviations. We
used addition and multiplication for aggregation functions,
and since the choice of aggregation function did not affect
the results we show below only the results for multiplication.

Equivalence classes. Recall that the number of activi-
ties in the BP together with the size of the history bound
determine the number of equivalence classes, and thus also
the size of the FTable. The values above yielded BPs with
1K-260K different equivalence classes.

Monotonicity strength We varied the percentage of cWeights
that are equal to the neutral value of the aggregation func-
tion. This percentage determines how strongly/weakly-monotone
is the fWeight function, and in turn, to what extent condi-
tions that guarantee optimality hold.

Number of results Finally, we varied the number k of
requested results from 1 to 500.

A representative sample of the experimental results is pre-
sented below. Figure 4(a) examines the execution times (in
seconds) of TOP-K and WC for increasing number (in thou-
sands) of equivalence classes. (The scale for the time axis
in all graphs is logarithmic). Since our experiments showed
that the shape of the BP graphs and the history bound do
not affect the performance (given a fixed number of equiva-
lence classes), we show here one representative sample where
the history bound is 5. The number k of requested results
here is 100. (We will consider varying k values below). The
figure shows the performance of TOP-K for cWeight values
in the range [0,1] with different distributions. This includes
uniform and normal distributions with average value of 0.5
and varying standard deviation of 0.2, 0.1, and 0 (the lat-
ter corresponding to all-equal cWeight values). WC always
fills in all entries of the FTable, thus is not sensitive to the
cWeight distribution, and we show only one curve for it.

We can observe that TOP-K generally shows 90-99% im-
provement over WC, and that the greater the variance in
cWeight values, the better the performance of TOP-K is.
This is because variance in cWeights implies variance in the
EX-flows fWeight, exploited by the greedy nature of TOP-K
which quickly separates the top-k results from the rest. As
we shall see below, such variance of cWeights is indeed com-
mon in real-life BPs. In the extreme (unrealistic) case where
all cWeight values are identical, i.e. standard deviation 0,
the performance of WC and TOP-K became the same (as the
early stop condition does not hold, and the flows table must
be fully filled), thus we show only the WC curve.

Figure 4(b) examines the execution times of WC and TOP-K

for a growing number k of requested results (for the same
distributions of cWeights as above). The number of equiv-
alence classes here is 200K and the history bound is 5. We
can see that the running time increases only moderately as k
grows, with TOP-K steadily showing significantly better per-
formance than WC and exhibiting similar behavior to what
have been described above. (The increase for WC is less visi-
ble in the graph due to the logarithmic time scale).

Figure 4(c) examines the effect of the monotonicity strength
of the weight function, on TOP-K’s execution time. We fix
k, the number of equivalence classes, and the history bound
(to 100, 40K, and 5, resp.), and vary the percentage of neu-
tral weights, with the non-neutral weights uniformly dis-
tributed. At the left-most end, there are no neutral weights
and TOP-K is guaranteed to be optimal; at the right-most
(very unlikely) case all weights are neutral, and TOP-K and
WC exhibit the same execution times (as the flows table must
be fully filled). We see that the performance of TOP-K is sig-
nificantly superior even when the conditions for optimality
do not necessarily hold. In particular, in all realistic scenar-
ios where less than 90% of the weights are neutral, TOP-K

improves over WC by more than 75%.

Experiments with Real Data. Our second set of experi-
ments was performed using over (part of) the Yahoo! Shop-



ping Computer Store [20]. We used real data – products de-
tails, pricing information (including deals, reductions, etc.),
and more – obtained from the site through a Web interface
offered by Yahoo!. The obtained BP specification consists of
5976 activities with an average of 2.6 implementation choices
per compound activity and a history bound of 4, yielding ap-
prox. 840K equivalence classes. The variance in cWeight
values (costs) of choices for each compound activity (prod-
uct type) is high, e.g. the average RAM price is 192$, with
a standard deviation of 510$.

We considered increasingly large parts of the BP specifi-
cation (corresponding to the outcome of evaluating decreas-
ingly selective queries in the evaluation process depicted at
the bottom of Section 2). Fig. 4(d) depicts results for 15
representative such subsets, involving increasing counts of
equivalence classes–the leading factor in the performance of
the TOP-K algorithm. At the extreme right, all equivalence
classes participate in the computation. Observe that TOP-K

outperforms WC by a factor of over 98%, demonstrating scal-
ability and good performance.

We note that this is also an example for the case where
the naive, A∗-like top-k algorithm does not halt: the BP
specification contains a mutual recursion that is due to the
back button facilitated by the web-site. As pressing the back
button incurs no cost, this recursive choice has a 0 weight,
leading to a case similar to that depicted in Example 3.1.
Our experimental results thus indicate the effectiveness of
TOP-K in such cases as well.

6. CONCLUSION AND RELATED WORK
We considered in this paper top-k query evaluation in the

context of weighted BPs. We analyzed different classes of
weight functions and their implications on the complexity of
query evaluation, and have given, for the first time, a prov-
ably optimal algorithm for identifying the top-k EX-flows
of BPs. We showed that our algorithm outperforms pre-
vious work [7] by an order of magnitude. The algorithm
of [7] was used in [8] as a sub-component, for evaluation
of projection queries over probabilistic BPs. Replacing this
sub-component by the optimal algorithm given here may
similarly accelerate the evaluation of projection queries.

Top-k queries were studied extensively for relational and
XML data [12]. Notably, [11] presented an instance-optimal
algorithm for top-k queries that aggregate individual scores
given to joining tuples. In our context, one may think of
the cWeight as the equivalent of an individual score, and of
fWeight as the aggregation of cWeight values along a given
EX-flow. Difficulties specific to our settings are that (1) the
size of a given flow, thus the number of aggregated scores, is
unbounded (2) the particular properties of the cWeight func-
tions are unique to EX-flows and (3) the number of items
(EX-flows) that are ranked is infinite. Note that while an
infinite setting also appears in streamed data analysis [16],
such works aggregate over a bounded size sliding window,
whereas we study aggregation over flows of unbounded size.

Ranking by likelihood was also studied in for Probabilis-
tic Databases (PDBs) [18] and Probabilistic XML [1, 15],

extending relational databases and XML, resp., to a proba-
bilistic setting. For example, [18] and [15] study top-k query
evaluation over PDBs and Probabilistic XML, resp. In con-
trast to relational data and XML, our model for BP flows
allows representation of an infinite number of items, out of
which the top-k are retrieved. Works on Probabilistic pro-
cess specifications (e.g. [14, 10, 4]) either suffer from low
expressivity or incur infeasibility of query evaluation. Anal-
ysis of non-weighted processes in the context of verification
(rather than top-k analysis) was discussed in e.g. [9].

Finally, we note a complementary line of works (e.g. [19])
on the optimization of ETL processes, that allow to con-
struct a repository of execution flows that occurred in the
past (and consequently, to derive weight functions such as
choices likelihoods to be used within our model), comple-
mentary to our analysis of possible future executions.

Extending our algorithms to more powerful models and
query features, including e.g. value-based joins, projection,
negation and non-monotone weight functions, while preserv-
ing low complexity is a challenging future research.
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APPENDIX
A. ADDITIONAL PROOFS

Proof. (Lemma 3.3)

1. Let e be a top-1 flow rooted at n ∈ eq. If e contains no
other node n′ ∈ eq, we are done. Otherwise, consider
the sub-flow e′ of e that is the implementation of n′ (i.e.
e′ appears in between the activation and completion
nodes of n′). Since n′ and n are equivalent, we may e′ is
also an implementation of n. Furthermore, the weights
appearing along e′ stay the same when e′ is rooted at
n′ intact (again, due to the equivalence of n and n′).
Now, e′ is a sub-flow of e, and thus fWeight(e′) ≥
fWeight(e) due to monotonicity. Thus, e′ is also a top-
1 flow rooted at e. If there are additional nodes n′′ ∈ eq
still appearing in e′, we may repeat this process to omit
them.

2. As for part (2) of the theorem, assume by induction
that it holds for the i’th ranked flow rooted at n, for
every i < j (part (1) is the base case for this induction).
Specifically it means that there exists some set of top-
(j-1) flows rooted at n for which no node n′ ∈ eq in
it is the root of a sub-flow that its j − 1-ranked flow.
Now, if e is a j’th ranked flow originating at n bearing
a node n′ ∈ eq in it, such that the sub-flow rooted at
n′ is not one of its top j−1 flows, we may replace the
sub-flow rooted at n′ by by its j−1 ranked flow, without
decreasing weight of e.

Proof. (Theorem 3.5)
The number of entries in FTable is k∗ | equiv |. Now,

for each flow node v considered during the course of the
algorithm execution, either it already appears in FTable, or
it does’nt. The case where the sub-flow requested for v does
not appear in the table may only happen k∗ | equiv | times,
while computing the top-k flows rooted at v. the cost of
computation for such cases is O(| equiv |) for searching the
table, (assuming that we have an index that allows, in O(1)
time, to get the last (worst ranked) entry for a given row;
otherwise there may be an additional factor of k) and then
O(1) of further computation - considering direct expansions
of v, a total of O(k∗ | equiv |2).

If the sub-flow considered for v does already appear in
FTable, we only need to point the implementation of v to
the sub-flow that were already computed (O(1)). We next
consider the number of times that this scenario may occur.

We start by considering the computation of top-1 flows.
Now, consider some equivalence class e. Say that we’ve en-
countered some node n ∈ e, and then, before we are done
computing the top-1 flow rooted at n, we have encountered,
at another point of the search tree, another node n′ ∈ e .
The course of the algorithm execution follows Observation 2
of Section 4: it suspends the computation for the top-1 flow
of n′, until computation of the top-1 flow of n is done (by
putting n′ “on hold”, line 14 of Algorithm HandlePartial.
The number of such suspensions, while computing the top-
1 flow of n, is bounded by the size of the specification s,
for each such n ∈ e and for each e. The number of such
equivalence classes is | equiv |. The same argument holds
for computation of the i’th highest weighted flow, for each

i = 1, ...k, leading to a total bounded by | s |2 ∗ | equiv | ∗k
for this case. The total complexity is thus polynomial in
| equiv |, k, and | s |.

Undecidability. We may show that TOP-K-FLOWS is unde-
cidable in general (if |equiv| may be infinite), as stated in
the text following Thm. 3.5.

Proof. The proof is by a reduction from the halting prob-
lem. Given a Turing Machine M, the idea is to “encode” M
using the BP specification. The states of M are represented
by activity names; implementations model the transitions
between states, as well as changes to the tape and to the
head location; and the history of flow is utilized to allow
“read” operations from the tape.

More formally, given a Turing Machine with a set of states
Q, an initial state q0 ∈ Q, an accepting state qF ∈ Q, a tape
alphabet Γ and a transition function delta, we generate a
BP specification whose set of compound activity names is
Q, and additionally it contains an atomic activity a .The im-
plementation set of each compound activity corresponding
to a state s, contains a single-node implementation for each
activity name s′ (possibly = s) such that there is a transition
from s to s′ according to δ. The cWeight of such transition
is intuitively 1 if the transition is legitimate, according to δ
and to the current symbol under the head, and 0 otherwise.
As cWeight function is unbounded-history, it is allowed to
determine its value according to the entire preceding flow:
this flow determines uniquely the tape state and the head
location. For the accepting state, its single implementation
consist of the atomic activity a, with cWeight of 1. We use
multiplication for aggregation, and seek for full flows with
cWeight higher than 0.

NP-hardness. We may further show that TOP-K-FLOWS is
NP-hard in the required memory size, may not be solved in
PTIME, as stated in the text following Thm. 3.5.

Proof. We use a reduction from Set Cover. For simplic-
ity, we consider here a monotonically increasing fWeight
function and bottom-k computation. (aggr is the + func-
tion, and W are positive numbers). But the proof works
symmetrically for monotonically decreasing fWeight and
top-k. (Simply take negative cWeights instead of the pos-
itive ones we use below). Given an instance of set cover,
namely a set X = {X1, ..., Xn} of items, a set of subsets
S = {S1, ..., Sm} and a bound B, we construct a BP as
follows: its activity names are R (root), S1, ..., Sm (com-
pound) and a (atomic). Each Si (i = 1, ...m) bears 2 ∗m+1
implementations: for each j = 1, ...m, Si has two implemen-
tations, each consisting of a single node whose activity is Sj :
the first is guarded by a formula “$Si = chosen”, and the
second by “$Si = not chosen”; the last implementation of
Si, guarded by “$Si = done”, consists of a. The cWeight
of “$Si = chosen” and “$Si = not chosen” is 0, and that
of “$Si = done” depends on the last B choices: it is 1 if
and only if the set of Si’s for which “$Si = chosen”, within
this set of B choices, covers X. Otherwise, its cWeight is 3.
We use addition for aggr. There exists a flow of fWeight
smaller than 2 if and only if there exists a set cover of size
smaller than B.



Proof of Theorem 4.1. We give here a full proof of Theo-
rem 4.1 (a sketch of which appears in the paper body).

In the following, we use we to denote the fWeight of a
flow e.

Proof. (Theorem 4.1)
We start by showing an invariant satisfied by Algorithm

FindFlows.

Lemma 4.2. Given some input I, let eterm be the worst so-
lution that appears in Out upon termination. Whenever an
e 6= eterm is popped from Frontier (in Line 4 of Algorithm
refinedFindFlows), fWeight(e) > fWeight(eterm).

Proof. Denote fWeight(eterm) by wterm. Also, for a
flow e 6= eterm, denote fWeight(e) by we. By the defini-
tion of strong monotonicity, there exists a unique flow eterm

with weight wterm. If this flow eterm already appear in the
frontier when e is popped from it, then clearly we > wterm.
If it does not appear yet in Frontier, then Frontier must
contain at least some “prefix” e′ of eterm, (i.e. some flow e′

s.t. e′ →∗ eterm). Here too we > we′ , since e was popped
out and not e′, and by the strong monotonicity, we also have
we′ > wterm. Thus, we > we′ > wterm.

We next use the lemma to prove Theorem 4.1 assume that
there is a sample instance I and an algorithm A such that
cost(A, I) is less , i.e. A calls AllExps a smaller number
of times. Since A and our algorithm produce the correct
solution on input I, it must hold that they output the same
weight for the last (worst weighted) result in Out.

It is easy to show that for each equivalence class E, Algo-
rithm FindFlows calls AllExps at most once for any node
v ∈ E. As assumed, Algorithm A invokes AllExps less.
Thus, there exists at least one equivalence class E such that
Algorithm FindFlows expanded some node v ∈ E, but Algo-
rithm A did not expand v or any node equivalent to it. Say
that v ∈ e, where e is some specific flow. As e was consid-
ered by Algorithm FindFlows, Lemma 4.2 guarantees that
we > wterm. Thus, there exists at least one partial flow f
for which expansion of some of its nodes were considered by
Algorithm FindFlows and were not considered by Algorithm
A. Define w∗ such that aggr(we, w

∗) > wterm.
As aggr is continuous, and we > wterm, there exists such

w∗. We construct another input instance I ′ as follows. The
AllExps function is the same for all the nodes expanded
by A, as well as the cWeight function and the aggregation
function.

For a node v, the AllExps function returns a single imple-
mentation e′ consisting of a single atomic activity, and the
corresponding cWeight is w∗. As for the subsequent m com-
pound activities in e if exists, we design w1, ..., wm such that
given e as history, aggr(we, w

∗, w1, ...wm) > wterm. Now
the corresponding flow has a weight higher than wterm and
should have been added to Out. But Algorithm A did not,
and thus commits a mistake. This contradicts our assump-
tion that A is a correct algorithm, and thus it must hold that
Algorithm FindFlows is optimal for input I. Given that I
is an arbitrary input, it follows that Algorithm FindFlows

is optimal.

Proof. (Theorem 4.4)
The proof works by contradiction. Let c be the bound on

the number of consecutive expansions of any flow e that

lead to a flow e′ with fWeight(e) = fWeight(e′). As-
sume that A is better than Algorithm FindFlows by a fac-
tor greater than c. Let wterm be as defined in the proof
of Theorem 4.1 above. Note that for every flow e consid-
ered by FindFlows, fWeight(e) ≥ wterm. There are at
most c flows e such that fWeight(e) = wterm. Other than
these c flows, for all other flows e′ considered by FindFlows,
fWeight(e′) > wterm. Consequently, there exists at least
one flow e that was inserted by FindFlows to frontier, such
that fWeight(e) > wterm, and f was not considered by A.
The proof then proceeds similarly to the proof of Theorem
4.1 above.

Proof. (Theorem 4.5) By contradiction, let us assume
the existence of some optimal algorithm A. Given a number
n, we construct a BP specification s as follows: its activities
are A1, ..., An (compound) and a (atomic). A1 is the root
activity.

Again, we construct the BP gradually, each time obtain-
ing an intermediate BP, executing A on it, and changing
the BP according to the prior execution of A. A1 has two
possible expansions, one containing only A2 and the second
containing only A3. We continue to construct the specifica-
tion according to the behavior of A. If A chooses to expand
A2 (resp. A3), then A3 (resp. A2) will have as implemen-
tation the single activity A4. A3 (A2) and A4 have a single
implementation, consisting of A5; for i = 5, ..., n Ai a sin-
gle implementation, consisting of Ai+1, and An has a single
implementation consisting only of a.

We use multiplication for aggr, and a cWeight function
that assigns 1 to every guarding formula, apart from that
guarding the implementation of A4, which is weighted 0.5.
The induced fWeight is semi-strongly monotone. When
executed over s, A expands n− 1 nodes (it expands 3 nodes
out of the first 4: A1, either A2 or A3, and A4, then the
rest n − 4 nodes). In contrast, a different algorithm that
chooses a different order of expansion for this instance, will
only expand here n− 2 nodes (not going through A4) while
still being always correct.

Proof. (Theorem 4.6)
Given an algorithm A, we construct a BP s as follows: its

activities are r (root), A1, ..., An (compound) and a (atomic).
We use multiplication for aggr, and a cWeight function that
assigns 1 to every guarding formula. Clearly, aggr is weakly
monotone. We construct the BP gradually, each time ob-
taining an intermediate BP, executing A on it, and changing
the BP according to the prior execution of A.

The root activity r has two implementations, the first con-
sisting of only A1 and the second of only A2. At first, we
set the implementations of both A1 and A2 to be a, and
execute A on this (partial) BP. We then examine which ac-
tivity was expanded first by A - A1 or A2. Since A ∈ A,
this choice does not depend on the implementations of A1

and A2. Thus, we change s as follows: if A chose to expand
A1 first, we set the two implementations of A1 to consist of
A3 and A4 respectively, while the implementation of A2 still
consists of a. Next, A has three choices for the next expan-
sion: A2, A3, and A4. For the chosen activity, we set its two
implementations to consist of A5 and A6 respectively, while
these of A2 and A3 consist of a. We repeat this process until
obtaining a BP with n compound activities, then allow the
implementation of An to consist of a as well. We denote the
obtained BP by s.

Clearly, when A is executed over s, it expands n nodes,



because each activity Ai that it chose, such that i < n,
only led to implementations containing further compound
activities. In contrast, we claim that there exists an opti-
mal algorithm A′ that, when executed over s, expands only
log(n) activities.

To observe that this is true, we show two lemmas, as fol-
lows:

Lemma A.1. There exists a flow eshort in flows(s) (with
fWeight = 1, same as the fWeight of any flow of flows(s)),
that is obtained by log(n) expansions.

Proof. Assume by contradiction that every flow in flows(s)
consists of more than log(n) expansions of activities. Since
every compound activity in s has two implementations, each
containing a distinct activity name, we obtain that there are
over 2log(n) = n distinct activities in s, in contradiction to
the way s was constructed.

Lemma A.2. There exists a correct algorithm A′ that, when
executed on s finds eshort as the top-1 flow, while expanding
exactly the activity nodes appearing in eshort.

Proof. First, note that all cWeight values within s are
identical; thus, for every order of expansion over the activi-
ties of s (that comply with the specification), there exists a
correct algorithm A′ (that is, A′ is correct for every input)
that, when executed over s, follows this expansion order.
Specifically, there is a correct algorithm that expands ex-
actly the activities participating in eshort.

As a corollary of these two lemmas, when evaluated over s,
A′ expands at most log(n) nodes, while A expands n nodes.
A′ is thus better by a factor of n

log(n)
. n may be chosen as

we wish, and given a constant c we may choose n such that
n

log(n)
> c + c′. Thus A′ is better than A by a non-constant

factor, and A is not instance optimal.
This concludes the proof of Theorem 4.6.

B. QUERIES
We quote here the formal definitions for queries and their

matches. These definitions appear also in [6]. We then con-
sider top-k query evaluation.

Definition B.1. We say that a DAG e is an abstract
flow if there exists some BP s′ s.t. e ∈ flows(s′). An exe-
cution pattern, abbr. EX-pattern, is a pair p = (ê, T ) where
ê is an abstract EX-flow whose nodes are labeled by labels
from A ∪ {any} and may be annotated by guarding formu-
las. T is a distinguished set of activity pairs and edges in ê,
called transitive.

Example B.2. An example query (EX-pattern) is given
in Fig. 3. The double-lined edges (double-boxed nodes) are
transitive edges (activities). The query looks for EX-flows
where the user chooses a DVD of brand Toshiba (possibly
after performing some other activities, corresponding to the
transitive edges), then chooses also a TV (of any brand).
The ShoppingMall activity is transitive indicating that its
implementation may appear in any nesting depth; chooseProduct
is not transitive, requiring the brand choice to appear in its
direct implementation.

Figure 3: Example query (EX-pattern)

Given a BP specification s, a query (EX-pattern) p selects
the EX-flows e ∈ flows(s) that contain an occurrence of p.
Intuitively, nodes and edges of the EX-pattern are matched
to nodes and edges of EX-flows, respecting activity names,
ordering and implementation edges. Formally,

Definition B.3. Let p = (ê, T ) be an execution pattern
and let e be an EX-flow. An embedding of p into e is a
homomorphism ψ from the nodes and edges in p to nodes,
edges and paths in e s.t.

1. [nodes] activity pairs in p are mapped to activity pairs
in e. Node labels and formulas are preserved; a node la-
belled by any may be mapped to a node with any activity
name.

2. [edges] each (transitive) edge from node m to node n
in p is mapped to an edge (path) from ψ(m) to ψ(n) in
e. If the edge [n, m] belongs to a direct internal flow of
a transitive activity, the edge (edges on the path) from
ψ(m) to ψ(n) can be of any type (flow, or zoom-in) and
otherwise must have the same type as [n, m].

An EX-flow e belongs to the query result if there exists
some embedding of p into e. We then say that e satisfies p

B.1 Query Evaluation
We name TOP-K-ANSWERS as the problem of finding, given

a BP specification s, weight function over its flows, an EX-
pattern p, and a number k, the top-k flows of s satisfying p.
The following theorem holds:

Theorem B.4. TOP-K-ANSWERS may be solved in time poly-
nomial in |s|,k, and |equiv| (with the exponent depending on
|p|) and linear in the output size.

Proof. We combine two algorithms, as follows:

1. The first algorithm is the query evaluation algorithm of
[6] that, given a BP specification s and an EX-pattern
p, constructs a BP specification s′, including only those
EX-flows of s that matches p. Intuitively, s′ is the “in-
tersection” of s with p, obtained by considering all pos-
sible splits of the query into sub-queries, then matching
these sub-queries to the DAGs in s.

2. The second algorithm is our TOP-K algorithm, that re-
trieves the top-k EX-flows of the constructed s′.

The complexity of the first algorithm is |s||p| [6], and so
is the maximal size of the resulting BP s′. The second step,
as shown above, is then polynomial in the size of its input
s′, and in k and |equiv|, and is linear in the output size.

To show that this exponential dependency on the size
of the query is inevitable, we define the decision problem
BEST-ANSWER, which tests, given a weighted BP specifica-
tion s, a query q, some k > 0, and a threshold t, whether
the top-1 flow in TOP-K-ANSWERS is of weight higher than t.
The following theorem holds.



Theorem B.5. BEST-ANSWER is NP-hard in |q|.
Proof. We prove the NP-hardness using a reduction from

3SAT, as follows.
Given a Conjunctive Normal Form formula F , with vari-

ables {X1, ...Xn} we generate a specification and a query
(s, q), as follows: the idea is to create a compound activity
associated with each variable of the formula. This activity
has two different implementations: for all i, the implemen-
tations of Xi are BPiTrue and BPiFalse. The former con-
tains all clauses that Xi satisfies, and the latter contains all
clauses that ¬Xi satisfies. The query requires all clauses of
the formula F to appear.

To formally prove that the reduction is valid, we give the
following lemma.

Lemma B.6. There exists an EX-flow in flows(s) satis-
fying the query q if and only if the formula F is satisfiable.

Proof. Let e be an EX-flow in flows(s) satisfying q. e
was obtained by choosing a subset of compound activities
for which BPiTrue is chosen as implementation, and an-
other subset for which BPiFalse was chosen. These choices
correspond exactly to a satisfying assignment - For every
variable whose corresponding compound activity has as im-
plementation the ’false’ (’true’) graph, assign ’false’ (’true’).
This is indeed an assignment, as every compound activity
can only have exactly one of the ’true’ or ’false’ graphs as
an implementation in e, and it is satisfying as every clause
node appears in e. The truth value assigned to the variable
corresponding to this compound activity thus satisfies this
clause.

Conversely, let A be a satisfying assignment. The EX-flow
obtained by choosing as implementation for each compound
activity, its “true” graph if A assigns “true” to the corre-
sponding variable, and its “false” graph if A assigns “false”
to it. This is indeed an EX-flow in flows(s), since A is an
assignment. This EX-flow satisfies q as every node clause
appears at least once. This is due to the fact that the as-
signment A is satisfying, thus for each clause, there is at
least one variable whose truth value causes the clause to be
true.

C. MULTIPLE EXPANSION SEQUENCES
We have assumed above (see the text following Example

2.4), for simplicity of presentation, the existence of a total
order over the expansion of activities. We next withdraw
this assumption, and explain the needed adjustments to our
definitions and algorithms.

• The cWeight function, previously defined as cWeight(e, f)
for an EX-flow e and a formula f should now be defined
as cWeight(e, n, f) with n being a node of e and f be-
ing a guarding formula of an implementation of λ(n).
cWeight(e, n, f) is the weight of f , given that n was
chosen for expansion in e

• fWeight is now defined as
fWeight(e) = maxe′|e′→e aggr(fWeight(e′), cWeight(e′, n′, f))
where n′ is the node of e′ expanded to form e and f is
the guarding formula on the corresponding expansion
of n′

• Given a partial flow e, Algorithm TOP-K now examines
the expansions of each node of e, rather than just those
of a single node that is next-to-be-expanded in e.

Our results all extend to the settings of multiple expansion
sequences.


