
Querying Business Processes with BP-QL∗

Catriel Beeri
Hebrew University

Anat Eyal
Tel Aviv University

Simon Kamenkovich
Tel Aviv University

Tova Milo
Tel Aviv University

1 Introduction

A business process consists of a group of business activities
undertaken by one or more organizations in pursuit of some
particular goal. It usually depends upon various business
functions for support, e.g. personnel, accounting, inven-
tory, and interacts with other business processes/activities
carried by the same or other organizations. Consequently,
the software implementing a business processes typically
operates in a cross-organization, distributed environment.

Standardsfacilitate the design, development and de-
ployment of software for such processes. It is common
practice to useXML for data exchange between business
processes, andWeb servicesfor interaction with remote
processes [10]. The recently emerging BPEL standard
(Business Process Execution Language [3], also identified
as BPELWS or BPEL4WS) takes standardization a big step
forward. Developed jointly by BEA Systems, IBM, and
Microsoft, BPEL combines and replaces IBM’s WebSer-
vices Flow Language (WSFL) and Microsoft’s XLANG.
It provides an XML-based language to describe not only
the interface between the participants in a process, but also
the full operational logicof the process and itsexecution
flow. A BPEL specification, once written, can be compiled
into executable code that implements the described busi-
ness process [7].

Declarative BPEL specifications greatly simplify the
task of software development for business processes. More
interestingly from an information management perspective,
they also provide an important newmine of information.
Consider for instance a user who tries to understand how a
particular business, say a travel agency, operates. She may
want to find answers to questions like the following:
Can I get a price quote without giving first my credit card
details? What should one do to confirm a purchase? What
kind of credit services are used by the agency, directly or
indirectly, (i.e. by the other processes it interacts with)?

∗The research has been supported by the Israel Science Foundation.

Permission to copy without fee all or part of this material isgranted pro-
vided that the copies are not made or distributed for direct commercial
advantage, the VLDB copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Very Large Data Base Endowment. To copy otherwise, or to republish,
requires a fee and/or special permission from the Endowment.

Proceedings of the 31st VLDB Conference,
Trondheim, Norway, 2005

Obviously, such queries are of great interest to both indi-
vidual users and to organizations interested in using or an-
alyzing business processes. Answering them is extremely
hard (if not impossible) when the business process logic is
coded in a complex program. It is potentially much eas-
ier given adeclarative specificationlike BPEL. While the
BPEL specifications of a travel agency may not be publicly
available, those of an organization are available inside the
organization. If it cooperates with other organizations, then
their relevant BPEL specifications may be available to it as
well. Thus, being able to answer such queries, in a possibly
distributed environment, is of great practical potential.

To support such queries, one needs a data model,
an adequate query language, and an efficient execution
engine for it. In this demonstration we present BP-QL,
a new query language which allows for a GUI-based
intuitive query formulation of business processes speci-
fications, and query execution in a distributed environment.

Demonstration highlightsTo illustrate the features of BP-
QL we will consider a set of business processes used by
a consortium offering traveling-related services. The pro-
cesses include flight and train reservation, car rental, and
credit and accounting services. The processes, and their
BPEL specifications, reside and operate on three peers
(three computers, in our demo). The specifications include
the interactions between the various processes.

We will show how the intuitive graphical BP-QL query
interface is used to query and analyze processes specifica-
tion at different levels of granularity:Fine-grainedqueries
allow to “zoom in” on all the process components (local as
well as remote ones);coarse-grainqueries consider pro-
cess components as black boxes and allow for higher level
abstraction. The ease of query formulation will be illus-
trated by comparing our graphical query interface to that
used by commercial vendors for thespecificationof busi-
ness processes (e.g. [7]); there is a tight analogy between
how processes are specified and how they are queried.

The BP-QL prototype system is implemented in Active
XML [2] (AXML for short). In AXML documents, some
of the XML data is explicit, while other parts are presented
intentionally, by means of Web service calls. Such calls
are used in our implementation of BP-QL to access process
components provided by remote peers. We will show in the
demo how BPEL specifications are wrapped and modeled
as AXML documents, and how BP-QL queries are com-



piled into XQuery-like queries over such documents. Ser-
vice call invocations will be tracked and displayed to illus-
trate query optimization and execution.

The remaining of this paper is structured as follows.
Section 2 describes the main principles that guided the de-
sign of BP-QL. Section 3 presents the data model and il-
lustrates the BP-QL query language via the demo scenario
example. Section 4 considers the system implementation.

2 Design principles

Before presenting BP-QL, let us first highlight two of the
main issues that influenced its design.
Querying specifications vs. possible runs.BP-QL users
formulate queries about processspecifications(e.g. “does
the specification include these two activities”) and not
aboutpossible runs(e.g. “can there be a run of the sys-
tem where both activities take place”).

This is for two main reasons. First, querying the possi-
ble runs of a system is inherently averification problem[4]
and is typically of very high complexity (NP-hard even for
very simple specifications and undecidable in more general
cases [6]). Second, the analysis of runs requires the spec-
ification to have a well defined semantics. Unfortunately,
BPEL is not based on a formal model [6].

In contrast, as we show below, queries on specifications
have a well defined semantics, and can be efficiently per-
formed. Note that querying of specifications in fact “ap-
proximates” the querying of runs (e.g. only specifications
that contain two given activities may potentially have runs
where both occur). Hence, even when runs verification is
desired, BP-QL can be used as an efficient means to narrow
the search space for the more costly, interpretation depen-
dent verification. It can also be used to select the process
parts whose runs should be monitored at execution time [8].
A dedicated language vs. XQuery.A BPEL specification
is essentially an XML document. Thus, a natural question
is why not simply use XQuery to query it? A key observa-
tion is that the BPEL XML format was designed with ease
of automatic code generationin mind; however, it is ex-
tremely inconvenient as far asqueryingis concerned. To
express even a very simple inquiry about a process exe-
cution flow, one needs to write a fairly complex XQuery
query that performs an excessive number of joins. Essen-
tially, ease of querying requires a data model that allows to
naturally and easily represent the main features and com-
ponents of an entity. For business processes, XML cannot
serve this role. Furthermore, when querying business pro-
cesses, users are often interested to retrieveexecution paths
as answers (as for instance in the query “What should I do
to confirm my purchase?”). But, XQuery is targeted to re-
turn documentselements, but not thepathsleading to them.

In contrast, BP-QL is based on an intuitive model of
business processes, an abstraction of the BPEL specifica-
tion that hides the tedious XML details, along with a graph-
ical user interface that allows for simple formulation of
queries over this model. In a sense, it follows the same de-
sign principles that guided commercial vendors in the de-

velopment of graphical editors for business processes spec-
ification (e.g. [7]). Execution paths are considered first
class objects and can be retrieved, even when involving ac-
tivities performed on distinct peers.

3 Data model and query language
We informally describe our data model and the BP-QL
query language via an example from the demo scenario.

Data Model A process specification includes:
1. the list of activities/services of which the process is

composed, including their types and properties,
2. the data used in the process (referred in the sequel as

the processdatabase), namely the process variables
and the input and output parameters for the participat-
ing activities/services,

3. a description of the process operational and data flow.

A UDDI [9] style specification is used for (1) and XML
for (2). We model the process operational and data flow us-
ing a an extended notion ofstatechart[5]. A statechart (see
[5]) consists of (possibly nested) states, with transitions be-
tween states represented by directed edges labeled by event
names. State nesting allows to zoom in on a particular state
and describe its internal structure and flow, also as a state-
chart. Our extensions allow to capture some of the partic-
ular aspects of business processes. In particular, to model
the operational flow of business processes, we distinguish
two particular types of states, which we callprovided op-
erationandrequested operation. These describe, resp., the
services offered by a process to other processes, and the ex-
ternal services requested by the given process. We also use
particular nodes to representdata elements, anddata-flow
edgesto describe how data are passed around.

Consider for instance the business process depicted in
Figure 1. It represents a travel agency. Its two compo-
nents are the database, and the statechart that specifies its
flow. The small circle at the top of the statechart is its en-
try point. The processes consists of two composite states,
namelyplanTrip andreserveTrip. Customers of
the agency start with the first and can then continue to
the second. Inside each composite state, the titles below
the icons are the substates names. InplanTrip, a cus-
tomer may either search a for rental car or for a flight. The
searchFlights state is a requested operation, (as indi-
cated by the icon’s shape), since to search for flights one
needs information about flights from one or more reser-
vation services; these are external to this process. The
input to these reservation services, namely the set of air-
lines that the agency works with, is imported from the
airlines table in the database when a customer enters
thesearchFlights state. This is indicated by the dou-
ble arrow (indicating data flow) from the table to the op-
eration. After a customer has selected some flights, these
are stored in the database, insearchResults. They are
thus available for use inreserveTrip (this is not de-
tailed in the Figure here). The same holds for selected car
rentals (omitted from the Figure). Note that the database



Figure 1: A Travel Agency business process.

Figure 2: Flights reservation business process.

represents both the agency general data, and a customer’s
data generated in an execution of the process.

The process in Figure 2 represents a flight reservation
service. Here,searchFlights is a provided opera-
tion (as indicated by the icon’s shape), that matches the
requested operation of the same name in the agency state-
chart. A similar relationship holds between thelogin and
thereserveFlights states, in the two processes.

The BP-QL query languageFor querying business pro-
cesses, BP-QL offersstatechart patterns. Intuitively, these
patterns play for statecharts a role analogous to the one that
tree pattern queriesplay for XML trees. They describe the
pattern of execution/data flow that is of interest to the user.

In addition to standard statechart notation, our patterns
use the following special notation: Following the use of “/’
and “//” for one and multiple step navigation in XPath and
XQuery, we use arrows withsingle/doubleheads to denote
paths in a statechart of length one or more. Similarly, dou-
ble bounding boxes in a state denote an unbounded “zoom
in” into the state’s internal specification.Selection condi-

Figure 3: Find provided operations.

Figure 4: No login.

tions can be attached to query nodes and edges. Finally,
dashed states and edges represent negation.

Four example queries are depicted in Figures 3-6. In
each query, the statechart pattern describes the process pat-
tern that a user is looking for. The small check boxes next to
the states and edges mark selected states and paths, resp.,
that the user wants to to retrieve as the query result. The
first query, in Figure 3, asks for all the provided opera-
tions of theTravelers service, at any depth of nesting.
The double arrow indicates that operations at any distance
from the start state may qualify, the double bounding box
denotes unbounded zoom-in, while the shape restricts the
query to provided operations. Note that the zoom-in im-
plies that remote operations invoked by this service also
qualify. The result (indicated by the small check box) is
the set of all qualifying operations. The second query, in
Figure 4, asks whether a user of theTravelers service

Figure 5: Finding a sequence of operations.



Figure 6: Querying the data flow.

needs to login for performing a search. Formally, this is ex-
pressed by asking: Is there a path of any length that leads
to asearch, and doesnot pass through alogin request.
Thedashedpath here denotes negation. It states that a path
to the search activity that passes through a login state, does
not exists. The double boundary of the login box indicates
that we refer to requests issued by this process or any of
the (possibly remote) services it calls, at any dept of nest-
ing. Observe that the same query, without double-boundary
boxes, would provide instead a coarse-grained analysis that
considers only local requests and views remote services as
black boxes. The query in Figure 5 finds the sequences
of operations required to buy a flight ticket in processes in
thetravelAgent category. Here, the edge marked by a
check-box is bound to any path that leads to a provided op-
eration whose effect includes “hasTickets”. The full path,
including the start state, the path bound to the edge, and the
pointed state are returned as a result. Finally, the query in
Figure 6 checks which service data affects the value of the
searchResults variable.
Query semanticsWhen a query is evaluated, its nodes
and edges are viewed as variables and are assigned state
(or data) nodes and execution (or data flow) paths, resp.,
matching the pattern constraints. These are then used to
construct the query result. Note that when a process flow
contains cycles, the number of paths that may match a
given query edge (path variable) may be infinite. BP-QL
overcomes this problem by providing a concise finite rep-
resentation for a possibly infinite set of paths my means of
a statechart that may contain cycles.
Partial evaluation In a distributed, cross-organization en-
vironment, not all the parties participating in a business
process may be willing to expose their BPEL spec. We will
show thatpartial query evaluationcan still be conducted in
such environments, exploiting the available information.

4 Implementation
BP-QL uses the Active XML system [2] as an implementa-
tion platform. As mentioned, in AXML documents, some
of the XML data is given explicitly, some only intentionally
by means of Web service calls. When a query is evaluated
over such documents, the calls relevant to the query exe-
cution are dynamically invoked, recursive calls are tracked,
and only the required data is materialized[1]. In BP-QL we

Figure 7: AXML tree.

use the AXML services calls to (1) retrieve, when needed,
the specifications of remote processes, thus supporting dis-
tributed processing, and (2) account for the graph structure
of the specification (service calls play here role similar to
XML idrefs, with the advantage that they are “traversed”
automatically in query evaluation). To see an example con-
sider the (A)XML tree in Figure 7, representing (part of)
the BPEL statechart from Figure 1. Theaxml:scelements
represent service calls that retrieve the pointed data.

BP-QL queries are compiled into XQuery queries over
these documents. While one could believe that a trans-
lation to XQuery should be relatively easy, this turns out
not to be the case. First, XQuery does not support path
variables. Additionally, it seems to lack features (such as
regular path expressions) that are necessary for expressing
(/zoom−in)∗, and(/zoom−out)∗. Our strategy (details
omitted) uses certain structural ids in the AXML represen-
tation, and uses XQuery for initial processing, followed by
post-processing for obtaining the desired results.

Each peer has a graphical interface that allows to specify
business processes and query them. We will demonstrate
how BPEL specs are wrapped and represented by AXML
documents, how they are represented with our data model,
and how BP-QL queries are compiled and evaluated.

References
[1] S. Abiteboul, O. Benjelloun, B. Cautis, I. Manolescu, T.Milo, and

N. Preda. Lazy Evaluation of Active XML Queries. InProc. of ACM
SIGMOD, 2004.

[2] Active XML. http://activexml.net/.

[3] Business Process Execution Language for Web Services, May 2003.
http://www.ibm.com/developerworks/library/ws-bpel/.

[4] X. Fu, T. Bultan, and J. Su. Analysis of Interacting BPEL Web
Services. InProc. of the Int. WWW Conf., 2004.

[5] D. Harel. Statecharts: A visual formalism for complex systems.
Science of Computer Programming, 8:231–274, 1987.

[6] S. Narayanan and S. McIlraith. Analysis and simulation of web
services.Compute Networks, 42:675–693, 2003.

[7] Oracle BPEL Process Manager 2.0 Quick Start Tutorial.
http://www.oracle.com/technology/products/ias/bpel/index.html.

[8] D. M. Sayal, F. Casati, U. Dayal, and M. Shan. Business Process
Cockpit. InProc. of VLDB, 2002.

[9] Universal Description, Discovery and Integration (UDDI).
http://www.uddi.ord.

[10] The World Wide Web Consortium.http://www.w3.org/.


