
Querying DAG-shaped Execution Traces Through Views

Maya Ben-Ari Tova Milo Elad Verbin
Tel Aviv University

{mayaben,milo,eladv}@cs.tau.ac.il

ABSTRACT
The question whether a given set of views, defined by queries,
can be used to answer another query, arises in several con-
texts such as query optimization, data integration and se-
mantic caching [24, 10, 12]. This paper studies a specific in-
stance of this problem, where the queried data has the shape
of a DAG (Directed Acyclic Graph) and the query language
uses DAG patterns to retrieve portions of the data graph
that are of interest. Our study is motivated by a particu-
lar application domain concerning the analysis of Web-based
Business Processes (BPs for short). Such DAGs / DAG pat-
terns are the standard way to model / query BP execution
traces [3].

Previous research considered tree-shaped XML data and
(general) graph-shaped Semi-Structured data. We show that
the particular DAG shape of BP execution traces makes the
problem easier than for general graphs, yet harder than for
XML trees. Specifically, we show which combinations of
DAG classes and query features allow for PTIME query an-
swering algorithms and which lead to NP-complete prob-
lems.

1. INTRODUCTION
The question whether a given set of views, defined by

queries, can be used to answer another query, arises in sev-
eral contexts such as data integration, query optimization
and semantic caching [24, 10, 12]. In this work we study a
specific instance of this problem, where the queried data has
the shape of a DAG (Directed Acyclic Graph) and the query
language uses DAG patterns to retrieve portions of the data
graph that are of interest.

Our study is motivated by a particular application do-
main concerning the analysis of Web-based Business Pro-
cesses (BPs for short). A BP is a collection of logically
related activities that, when combined in a flow, achieve a
business goal. An execution flow of a BP can be viewed
as a DAG, containing nodes that represent the business ac-
tivities that took place and edges that describe their flow

Copyright is held by the author/owner.
Twelfth International Workshop on the Web and Databases (WebDB 2009),
June 28, 2009, Providence, Rhode Island, USA.

and causal relationship [3]. As a simple example, consider
the BP of an on-line Web-based travel agency. The execu-
tion DAG here may include activities (nodes) such as login,
flight/hotel search, reservation and payment, and edges that
describe their (possibly parallel) execution order.

The analysis of execution flows is extremely valuable for
companies. It allows to optimize business processes, reduce
operational costs, and ultimately increase competitiveness.
Execution flows are thus often traced, and the recorded exe-
cution traces are stored in repositories. In a typical BP anal-
ysis, the repository is first queried to select portions of the
execution traces that are of particular interest. These then
serve as input for a finer analysis that further queries and
mines the subtraces to derive critical business information
[11]. The subtraces of interest are selected using DAG pat-
terns, an adaptation of the tree- and graph-patterns offered
by existing query languages for XML and graph-shaped data
to execution DAGs.

As usual in query processing, good performance is critical.
The reuse of previously computed query answers has proved
to be useful for query optimization in general, and for the
optimization of queries of XML and graph-shaped Web data
in particular [12, 23, 19]. To enable such reuse, one needs to
determine whether the given query can be answered based
on the set of answers to previous queries. This paper studies
this problem, for the first time, for an important class of
DAG-shaped data that describes execution traces of BPs.
Particular attention is payed here to a family of DAGs, called
series-parallel DAGs [15], which captures execution traces of
BPs defined using the BPEL (Business Process Execution
Language) standard [5, 3].

The question whether a set of query answers (views) can
be used to answer another query has been extensively stud-
ied previously for relational data [20, 17, 14], tree-shaped
XML data [2, 19, 23], and (general) graph-shaped semi-
structured data [8, 6]. We show here that the DAG shape of
execution traces makes the problem easier than for general
graphs, yet harder than for XML trees. Specifically, we con-
sider queries with and without projection. For queries with-
out projection, we prove that the problem is NP-complete
for arbitrary DAGs, (in contrast to the PTIME complex-
ity of the analogues problem for XML trees). Nevertheless,
we show that it can be solved in PTIME for the class of
series-parallel DAGs. Our solution is based on a syntactic
characterization of answerable queries, along with a dedi-
cated dynamic programming algorithm that allows to effi-
ciently test the fulfillment of the syntactic requirements. For
queries with projection, we show that the above syntactic

characterization no longer holds and the problem becomes
NP-hard even for series-parallel DAGs. However, we present
a stricter syntactic characterization of answerable projection
queries, and use it (1) to present an algorithm (of Σ2 time
complexity) for the case of general DAGs, and (2) to show
that, under plausible restrictions on the queries, PTIME
complexity may still be achieved for series-parallel DAGs.

Paper organization. Section 2 describes our data model
and query language. Section 3 considers queries without
projection and Section 4 queries with projection. We con-
clude in Section 5 with an overview of related work.
For space constraints, the proofs are omitted and can be
found in the full version of the paper [4].

2. PRELIMINARIES
In this section we present the data model and query lan-

guage that we consider, and formally define the problem
studied in the paper. To get a handle on the difficulty of
the problem we start by considering a very simple query
language, then extend it in the following sections.

DAGs and DAG patterns. A BP execution trace describes
a set of activities and the order in which they occurred, and
is abstractly modeled as a labeled DAG [3]. In the sequel,
let N be an infinite domain of graph nodes, each having a
unique id, and let A be an infinite domain of activity names.

Definition 2.1. A labeled Directed Acyclic Graph (abbr.
DAG) is a triplet (N, E, λ) where N ⊂ N is a finite set of
nodes, E ⊆ N ×N is a non empty set of directed edges, and
λ : N → A is a labeling function for the nodes. The graph
is required to be acyclic.

A DAG pattern (abbr. PDAG) is a pair (D, Et) where
D = (N, E, λ) is a DAG and Et ⊆ E is a subset of the edges
of D called transitive edges. The remaining edges in E are
called direct.

A PDAG describes partial information about the execu-
tion trace. A transitive edge between two nodes n1, n2 of a
PDAG d represents knowledge about the existence of a path
from n1 to n2, without details on which specific nodes are on
the path. Note that if d contains some other path between
n1 and n2, then such a transitive edge is redundant as it
brings no additional information. We assume in the sequel
that the PDAGs contain no redundant transitive edges (if
such edges exist they are automatically removed).

Example 2.1. The DAG in Figure 1(a) describes a pos-
sible execution trace of the Web-based travel agency from the
Introduction. The user logins and then searches (in parallel)
for flights and for combined deals that include a flight and a
hotel reservation. She pays (separately) by credit card for the
flight and the combined deal, and the full reservation is con-
firmed. The ai labels represent the node ids (to be used in the
sequel). The PDAG in Figure 1(b) details part of this exe-
cution trace. (Ignore for now the darker/lighter background
of the nodes). The solid (resp. dashed) arrows are direct
(transitive) edges. We can see here that after login, the user
performs (at some point) hotel and flight search. Then, (pos-
sibly after a sequence of other operations) she pays and the
reservation is next confirmed.

We will pay here particular attention to a family of (P)DAGs,
called series-parallel [15], which captures execution traces of

Figure 1: DAG and PDAGs

BPs defined using the BPEL (Business Process Execution
Language) standard [5, 3]. The definition is standard:

Definition 2.2. A (P)DAG d is series-parallel if it has a
single start node without incoming edges, a single end node
without outgoing edges, and one of the following holds.

1. [base] d consists of a pair of nodes connected by a
single (direct or transitive) edge.

2. [series composition] d1, d2 are two series-parallel
(P)DAGs where the end node of d1 and the start node
of d2 have the same label, and d is obtained from d1, d2

by merging the two nodes into a single one.

3. [parallel composition] d1, d2 are two series-parallel
(P)DAGs whose start (resp. end) nodes have the same
label and d is obtained from d1, d2 by merging their two
start (end) nodes into a single start (end) node.

For example, the DAG in Figure 1(a) is series-parallel.
The same DAG with an additional edge from node a1 to a4
is no longer series-parallel.

Queries and answers. PDAGs will play two roles here.
First, they are used as queries, to select parts of the execu-
tion traces (DAGs) whose shape matches that of the query
PDAG. Thus, whenever we use in the following the term
query we mean a PDAG. Second, they are used to model
the partial information about the execution traces that is
retrieved by queries.

To optimize the processing of a new query, it is useful
to reuse the (partial) information obtained by previously
computed queries [12, 23, 19]. In our setting this means
evaluating the query on the PDAGs obtained by previous
queries, rather than on the original full DAG. To define this
formally, we define below the semantic of queries when eval-
uated on (P)DAGs. We use for that an auxiliary notion of
query embedding.

Definition 2.3. For a (P)DAG d and a query q, an em-
bedding of q into d is a homomorphism ψ from the nodes
of q to the nodes of d, that (1) preserves the node labels and
(2) for each direct (transitive) edge in q from a node m to
a node n, there exists a direct edge (path consisting of direct
or transitive edges) in d from ψ(m) to ψ(n).

Definition 2.4. For a (P)DAG d and an embedding ψ
of q into d, the answer defined by ψ is the image of q under
ψ. Namely, each node n in q is assigned the id of ψ(n), and
if a node id occurs several times in the image, its multiple
occurrences are merged into a single node having the same
id as the original one.

For a (P)DAG d, the answer of q on d, denoted q(d),
consists of the set of answers defined by all the possible em-
beddings of q into d.

Example 2.2. For example, the answer of the query in
Figure 1(c) on the DAG in Figure 1(a) consists of the sin-
gle PDAG depicted in Figure 1(f). (Ignore for now the
darker/lighter background of some of the query nodes). The
answer of the query in Figure 1(d) on the same DAG con-
sists of two PDAGs, depicted in Figure 1(g). In each of
the two embeddings that yielded these PDAGs, the two Ser-

achFlight nodes of the query were mapped to one node (a1
and a4 respectively). Thus the two answers consist each of
a single (merged) occurrence of SearchFlights.

Answerable queries. Given the answers of a set of queries,
the partial information that they reveal, together, about the
structure of the original DAG, is realized by gluing together
nodes with identical ids. Formally,

Definition 2.5. Given a set Q of queries and a (P)DAG
d, the partial view of d (given by Q), denoted Partial(Q, d),
is the PDAG obtained from ∪qi∈Qqi(d) by merging multiple
occurrences of nodes having the same id into a single node
with that id.

Example 2.3. Continuing our example, for Q consisting
of the two queries in Figures 1(c) and 1(d), and the DAG d
in Figure 1(a), Partial(Q, d) is the PDAG in Figure 1(e).
It is obtained from the query answers in Figures 1(f) and
1(g), by merging the multiple occurrences of the a0 nodes
(Login) and the a8 nodes (CreditCard).

We are now ready to formally define when a query q is
answerable, for every PDAG d, using the partial information
obtained by a given set Q of queries.

Definition 2.6. A query q is answerable by a set Q of
queries iff for all PDAGs d, q(d) = q(Partial(Q, d)).

Given a set Q of queries and a query q, we call the problem
of testing whether q is answerable by Q the query answering
problem.

3. QUERY ANSWERING
We next consider the complexity of the query answering

problem. We first present a syntactic criterion that allows
to solve the problem, then use it for complexity analysis.

Onto Embedding. Given a set Q of queries and a query q,
we consider a particular class of embeddings of queries in Q
into q which we call an onto embedding. We then show that
the existence of such an embedding provides a necessary and
sufficient condition for q to be answerable by Q.

We have defined in the previous section (Definition 2.3)
an embedding of a single query q to a (P)DAG d. The
definition naturally extends to a set of queries, with the
homomorphism ψ now applying to the nodes of all queries,
satisfying the same requirements as before. We use this
extended notion of embedding below.

Definition 3.1. An onto embedding ψ from a set Q of
queries to a query (PDAG) q is an embedding of Q to q
s.t. for each direct (resp. transitive) edge [n, m] of q there
exists a direct (transitive) edge [n′, m′] of some q′ ∈ Q s.t.
ψ(n′) = n and ψ(m′) = m.

Example 3.1. The set Q consisting of the two queries in
Figures 1(c) and 1(d) has an onto embedding to the query
in Figure 1(b): It maps each node in 1(c) and 1(d) to the
(unique) node in 1(b) of the same label. On the other hand,
a set Q consisting of just one of these queries does not have
such an onto embedding as it cannot “cover” all of 1(b).

An onto embedding requires that each edge in q has a cor-
responding edge in Q of the same type (direct or transitive).
Note that Q may contain multiple isomorphic copies of the
same PDAG (differing only in their node ids) which can be
used to “cover” distinct parts of q having similar shapes.

The notion of onto embedding is utilized to provide a
necessary and sufficient condition for query answerability.
Given two sets of queries Q, Q′, we use below Q′ ⊆ Q to
denote that every query q′ ∈ Q′ has some query q ∈ Q that
is identical to it up to node isomorphism. (A query q ∈ Q
may have several such isomorphic copies in Q′.)

Theorem 3.1. Given a set Q of queries and a query q, q
is answerable by Q iff there exists a set of queries Q′ ⊆ Q
that has an onto embedding to q.

For space constraints we omit the proof (see [4] for details)
and illustrate the theorem with an example.

Example 3.2. We saw above that the set Q consisting
of the two queries in Figures 1(c) and 1(d) has an onto
embedding to the query q in Figure 1(b). q is thus answerable
by Q. E.g., q’s answer, for the DAG d in Figure 1(a), is the
same as its answer for Partial(Q, d) in Figure 1(e).

We can now use this theorem to provide an NP algorithm
for the query answering problem. First note that to “cover”
all the edges of q it suffices to consider a set Q′ of queries
whose size is bounded by the size of q. Thus the NP algo-
rithm simply guesses |q| queries from Q (possibly with mul-
tiple choices of the same query), as well as a homomorphisms
from their nodes to those of q, and checks if it satisfies the
onto embedding requirements. We next show that, unless
P=NP, a PTIME algorithm is unlikely to exist.

Theorem 3.2. The query answering problem is NP-hard
even when Q and q contain no transitive edges.

The proof is by reduction from the clique problem, known
to be NP-complete [18].

Series-parallel PDAGs. While query answering is NP-complete
in general, it turns out to be solvable in PTIME for the class
of series-parallel PDAGs.

Theorem 3.3. If the queries in Q are series-parallel, the
query answering problem for a (not necessarily series-parallel)
query q is solvable in time polynomial in the size of Q and q.

Algorithm. [Sketch] Our PTIME algorithm is based on a
subroutine called FindEmbeddings. Given a series-parallel
query q̂, a (general) query q and an edge e in q, FindEmbed-
dings returns (1) all pairs of nodes n, m in q s.t. there exists
an embedding of q̂ to q, mapping the start and end nodes of
q̂ to n and m, resp., and (2) annotates each such n, m pair
by “true” if any of its corresponding embeddings “covers” e
(in the sense of Definition 3.1), and “false” otherwise. We
first describe how FindEmbeddings works, then explain how
it is used to solve the query answering problem.

FindEmbeddings. As shown in [22, 25], one can deter-
mine whether a given graph is series-parallel in linear time,
and a tree describing its series-parallel construction steps
may also be built in linear time. We denote this tree for
q̂ by q̂tree. FindEmbeddings is a dynamic programming al-
gorithm that works on this tree bottom up. Each node in
the tree represents a series-parallel sub-query q′ of q̂. For
every such node it computes a boolean matrix Aq′ of size
|q| × |q| s.t. Aq′ [n, m] = 1 if there exists an embedding
of q′ to q mapping the start and end nodes of q′ to nodes
n and m in q, resp., and 0 otherwise. For the leaves of the
tree (representing the base single-edge queries) the matrix is
computed by simply matching the edge into q. The matches
that cover the edge e are annotated by “true”. For higher
tree nodes, the matrix Aq′ is computed (using boolean ma-
trix multiplication) from the matrices of the node’s children
(representing the sub-queries from which q′ is composed),
and the “true” values are propagated. We omit the details.

In total, FindEmbeddings works in time O(|q̂||q|ω), where
ω = 2.376 is the matrix multiplication constant [9].

Query answering. Given a set Q of series-parallel queries
and a general query q, we can solve the query answering
problem by running FindEmbeddings for each query q̂ ∈ Q
and each edge e of q. q is answerable iff each of its edges is
covered by (at least) one of the embeddings of the queries
in Q. In total, FindEmbeddings is invoked here |Q||q| times,
yielding an overall time complexity of O(|Q|2|q|1+ω).

4. PROJECTION QUERIES
We next consider queries with projection. We will see that

the query answering problem becomes harder here.

Definitions. We first extend the definition of queries by
denoting some of the PDAG nodes as output nodes.

Definition 4.1. A PDAG (query) with projection is a
pair (d, O) where d is a PDAG and O is a subset of the
nodes of d called the output nodes. The remaining nodes of
d are called non-output nodes.

Definition 2.4 of query answers is naturally adapted to
this context: When a projection query q is applied on a
PDAG d with projection, only embeddings that map the
output nodes of q to output nodes of d are considered. When

q’s answer, for an embedding ψ, is constructed, only the
output nodes of q are assigned the id of their image in d.
Non-output nodes are assigned arbitrary new ids which only
record the fact that some nodes of d were matched to them
in the embedding (but not which ones). Two answers here
are considered identical if they are isomorphic up to the new
ids assigned to the non-output nodes.

The (P)DAGs from the previous section can be thought
of as projection ones with all nodes being output nodes.

Example 4.1. The PDAGs in Figures 1(b)-1(d), with the
darker background denoting the output nodes, are projection
queries. The answers of the projection queries in Figures
1(c) and 1(d), on the DAG d in Figure 1(a), are depicted
in Figures 1(i) and 1(j) resp. The ai nodes (with darker
background) come from d, whereas the ni’s are fresh new
ids. Note that the two distinct embeddings of query 1(d)
into d yield here just one answer, as they differ only in the
mappings of non-output nodes.

As before (Definition 2.5), given a set Q of queries and
a (P)DAG d, the partial view of d given by Q, denoted
Partial(Q, d), is the PDAG obtained from the query answers
by merging multiple occurrences of nodes having the same
id. Note that here only output nodes may be merged (since
non-output nodes all have distinct new ids).

Example 4.2. Continuing with our example, for Q con-
sisting of the two projection queries in Figures 1(c) and 1(d),
and the DAG d in Figure 1(a), Partial(Q, d) is the PDAG
in Figure 1(h) (obtained from the answers in Figures 1(i)
and 1(j)).

Answerable projection queries are now defined using the
above refined definitions of query answer and Partial(Q, d):

Definition 4.2. A projection query q is answerable by
a set Q of projection queries iff for all PDAGs d, q(d) and
q(Partial(Q, d)) are the same up to isomorphism on the new
node ids not appearing in d.

Minimal queries. To solve the query answering problem
for projection queries, we introduce the notion of minimal
queries. Given a query q, our algorithm will first compute a
minimized version q′ of q, then test for the answerability of
q′. We will show that this suffices to solve the problem for
the original query q. For brevity, we omit from now on the
word ‘projection’ and, unless stated otherwise, whenever we
use the term query we mean a projection one.

To define minimal queries we use an auxiliary notion of
query containment.

Definition 4.3. A query q′ is contained in a query q,
denoted q′ ¹ q, if there exists an embedding ψ from q′ to q
s.t. (1) each output node of q′ is mapped to an output node
of q and (2) each output node of q has at least one output
node of q′ that is mapped to it. Two queries q′ and q are
equivalent (denoted q′

.
= q) if q′ ¹ q and q ¹ q′.

A query q is minimal if there is no query q′
.
= q which

can be obtained from q by removing one or more edges or
non-output nodes and possibly replacing previously existing
paths by transitive edges.

Example 4.3. The query q′, obtained from the query q
in Figure 1(d) by removing one SearchFlights node and
its incoming/outgoing edges, is contained in q. q is also
contained in q′ (with ψ mapping each node in q to the unique
node in q′ of the same label). Thus q′

.
= q. q′ is minimal.

Observe that given a query q, one can obtain an equivalent
minimal query by, iteratively, trying to remove non-output
nodes (replacing then by corresponding transitive edges) and
edges, and testing for equivalence to the resulting query. The
complexity of such a minimization process is determined by
the following proposition.

Proposition 4.1. Given a query q, the problem of testing
if q is minimal is coNP-complete. For series-parallel queries,
the problem can be solved in PTIME.

To conclude, the following proposition guarantees that to
determine whether a query q is answerable by a set Q of
queries it suffices to examine a minimized version q′ of q.

Theorem 4.1. For every two equivalent queries q, q′ and
a set Q of queries, q is answerable by Q iff so is q′.

Query answering. We now show how the query answering
problem is solved for minimal queries. In Section 3 we saw
a syntactic characterization that allowed to decide whether
a query is answerable by a given set of queries. We start
by showing that for queries with projection this syntactic
characterization no longer holds. We then present a stricter
characterization and use it to solve the problem.

First let us illustrate that Theorem 3.1 no longer holds for
projection queries.

Example 4.4. Consider the set Q consisting of the two
projection queries in Figures 1(c) and 1(d). We saw in Ex-
ample 3.1 that Q has an onto embedding to the query q in
Figure 1(b). However the answer of q when evaluated (as
projection query) on the DAG d in Figure 1(a) differs from
its answer when evaluated on Partial(Q, d) in Figure 1(h).

There are two reasons for the difference here. The first is
caused by the fact that the SearchFlights output node of q
does not have a corresponding output node in Q. Thus the
relevant node ids of d do not appear in Partial(Q, d). But
even if the SearchFlights nodes had been output nodes in
Q, the answers would still be different: to merge properly
the results of the two queries, the common CreditCard nodes
must retain a common id. Hence the corresponding query
nodes must be output nodes (which is not the case here).

Following the above discussion we define a stricter notion
of strong onto embedding, which assures that the answers of
the queries in Q contain all the information required by q
and can be assembled properly together.

Definition 4.4. An onto embedding ψ from a set Q of
queries to a query q is called strong if there exists a homo-
morphism ψ̂ that is a restriction of ψ to a subset of the nodes
in Q, satisfying the following.

• Each direct (resp. transitive) edge e = [n, m] in q has
exactly one corresponding direct (transitive) edge e′ =

[n′, m′] in Q s.t. ψ̂(n′) = n and ψ̂(m′) = m, and if n
(m) is an output node so is n′ (m′).

• For every pair e1, e2 of adjacent edges in q with com-
mon endpoint n, in their corresponding edges e′1, e

′
2 in

Q the two endpoints that are mapped to n are either
the same node (i.e. e′1, e

′
2 are also adjacent in Q) or

are both output nodes.

The following theorem shows that the existence of a strong
onto embedding provides a necessary and sufficient condition
for query answerability of minimal queries.

Theorem 4.2. Given a set Q of queries and a minimal
query q, q is answerable by Q iff there exists a set of queries
Q′ ⊆ Q that has a strong onto embedding to q.

We omit the proof for space consideration and only illus-
trate things with an example.

Example 4.5. The set Q consisting of the two queries in
Figures 1(l) and 1(m) has a strong onto embedding to the
query q in Figure 1(b): For Q′ = Q, the embedding ψ maps
the nodes in Q′ to the nodes of q having the same label, and
ψ̂ simply ignores one of the SearchFlights nodes. Indeed
the result of q when evaluated on the DAG d in Figure 1(a)
is the same as its result when evaluated on Partial(Q, d)
depicted in Figure 1(k). In contrast, the set Q consisting of
the queries in Figures 1(c) and 1(d) does not have a strong
onto embedding to q. Indeed we saw above that in this case
q’s answer differs for d and Partial(Q, d) of Figure 1(h).

Complexity. The above theorem, together with Proposi-
tion 4.1 and Theorem 4.1, yields an algorithm for the query
answering problem: Given Q and q, guess a minimal equiv-
alent query q′ of q, then guess an onto embedding from Q to
q′ (as done for queries without projection), and check if it is
a strong one. The complexity class is Σ2 (an NP algorithm
with a coNP oracle).

Let us consider now series-parallel queries. While mini-
mization can be done for them in PTIME, the search for
strong onto embedding cannot. Indeed, we can show:

Theorem 4.3. The query answering problem for projec-
tion queries is NP-hard even if only series-parallel queries
are considered.

The proof is by reduction to the Perfect 3-Dimensional
Matching (P3DM) problem [18].

Intuitively, this high complexity is caused by the large
number of possible embeddings from Q to q that need to
be examined (an exponential number in the worst case). In
practice, their number is unlikely to reach this worst case up-
per bound. For instance, if each label appears in a query at
most once, the possible embedding is uniquely determined.
We next show that if the number of embeddings is bounded,
the problem becomes tractable. The crux is to avoid exam-
ining, for each embedding ψ, each of its possible restrictions
ψ̂ individually (since there is an exponential number of such
possible restrictions) and instead factorize their analysis.

Theorem 4.4. Given a set Q of series-parallel queries,
a series-parallel query q, and a bound b on the number of
possible embeddings of queries from Q into q, the query an-
swering problem can be solved in time polynomial in the size
of Q, q, and b.

Algorithm. [Sketch] W.l.o.g. assume that q is minimal (oth-
erwise it can be minimized in PTIME). The algorithm first
computes all the possible embeddings ψ of queries q̂ ∈ Q
into q. (We show that for series-parallel queries this can be
done in time polynomial in the queries size and the number
of embeddings). For each embedding ψ, we construct an
isomorphic copy q̂ψ of q̂, and denote the new set of queries

by Q̂. To solve the problem it suffices to determine if there
exists a subset Q′ of Q̂ that satisfies the conditions of the
strong onto embedding w.r.t. q.

We construct, as in the algorithm of Theorem 3.3, a series-
parallel decomposition tree for q, denoted qtree. Each node

in the tree represents a series-parallel sub-query q′ of q. Our
algorithm works on this tree bottom up. It computes for
each node a boolean matrix Aq′ of size (N + 1) × (N + 1),

where N is the number of non output nodes in Q̂. Intu-
itively, an entry Aq′ [n, m] = 1, for n, m ≤ N , represents the

fact that there exists a strong onto embedding from Q̂ to
q′, mapping n (m) to the start (end) node of q′; an entry
Aq′ [n, m] = 1, n ≤ N , m = N +1, (resp. n = N +1, m ≤ N)
represents the fact that there exists such a strong onto em-
bedding with n (m) being mapped to the start (end) node
of q′ and where some output node is mapped to the end
(start) node of q′; an entry Aq′ [n, m] = 1, n = m = N + 1
represents the fact that some strong onto embedding to q′

exists with the nodes mapped to the start and end nodes of
q′ both being output nodes.

For the leaves of the tree (representing the base single-
edge queries) the matrix is computed by simply matching

the edges in Q̂ to the edges of the corresponding base queries.
For higher nodes in the tree, Aq′ is computed from the ma-
trices of the node’s children. (We omit the details). At the
end of the computation we return ‘true’ iff some entry in the
matrix Aq, of the root of qtree, is marked by 1.

5. RELATED WORK AND CONCLUSION
This paper studies the question whether a given set of

views, defined by queries, can be used to answer another
query, for a particular case where the queried data has the
shape of a DAG and the query language uses DAG patterns.
We showed which combinations of DAG classes and queries
allow for PTIME algorithms and which lead to NP-complete
problems. DAGs and DAG patterns are the standard way
to model and query BP execution traces [3]. Specifically, the
(P)DAGs that are used here are a simplified abstraction of
the data model and query language employed by the BPQL
system [3, 11] for BP analysis. BPQL further allows to use
nested DAGs to model compound BP activities, and queries
may zoom-in, recursively, inside them. Queries may also test
data values used in activities. Extending our results to the
full-fledged BPQL model is a challenging future research.

The reuse of previously computed query answers (views)
has been studied extensively in the literature and proved
useful in many contexts such as query optimization, data
integration and semantic caching [24, 10, 12]. The closest
to our setting are works on tree-shaped (XML) data and
general graph-shaped (semi-structured) data.

Relative to XML, our model and query language are a
generalization, to DAGs, of the XPath fragment denoted
XP {/,//,[]}, which contains child-axis (/), descendants-axis(//),

and branching ([]) [1, 21]. While for XP {/,//,[]} the prob-
lem can be solved in PTIME, we proved it to be NP-hard
for arbitrary DAGs and in PTIME only for series-parallel
DAGs and queries without projection. As for XP {/,//,[]},
it is easy to show that extending the language with wild-
cards (*) makes the problem NP-hard even for series-parallel
DAGs. Recall that our algorithm employs query minimiza-
tion. Here too, while XP {/,//,[]} queries can be minimized in
PTIME [1], we showed coNP-hardness for general PDAGs,
and PTIME complexity for series-parallel ones.

Relative to works on general graph-shaped semi-structured
data, our query language is a restriction of Conjunctive Reg-
ular Path Queries (CRPQ) [16, 13] that enrich the classic
conjunctive queries by regular path expressions. The prob-
lem in this general setting is EXPSPACE complete [7, 16]

(and NP-complete even for classical conjunctive queries.)
Our algorithms determine if the result of previously com-

puted queries suffices to answer a new query. When the an-
swer is negative, it is desirable to determine what additional
(minimal) information is needed. We intend to study this
problem in future work. Identifying additional cases where
processing can be done in PTIME is another challenge.

6. REFERENCES
[1] S. Amer-yahia, S. Cho, L. V. S. Lakshmanan, and

D. Srivastava. Minimization of tree pattern queries. In
SIGMOD, 2001.

[2] A. Balmin, F. Özcan, K. S. Beyer, R. J. Cochrane, and
H. Pirahesh. A framework for using materialized xpath
views in xml query processing. In VLDB, 2004.

[3] C. Beeri, A. Eyal, T. Milo, and A. Pilberg. Monitoring
business processes with queries. In VLDB, 2007.

[4] M. Ben-Ari. Answering DAG queries using partial views.
MSc Thesis, Tel Aviv University.
http://www.cs.tau.ac.il/∼milo/projects/bpq/papers/DagsFull.pdf.

[5] Business Process Execution Language for Web Services.
http://www.ibm.com/developerworks/library/ws-bpel/.

[6] D. Calvanese, G. De Giacomo, M. Lenzerini, and M. Vardi.
Answering regular path queries using views. In ICDE, 2000.

[7] D. Calvanese, G. D. Giacomo, M. Lenzerini, and M. Y.
Vardi. Containment of conjunctive regular path queries
with inverse. In KR, 2000.

[8] D. Calvanese, G. D. Giacomo, M. Lenzerini, and M. Y.
Vardi. Rewriting of regular expressions and regular path
queries. J. Comput. Syst. Sci., 64(3):443–465, 2002.

[9] D. Coppersmith and S. Winograd. Matrix multiplication
via arithmetic progressions. In STOC, 1987.

[10] S. Dar, M. J. Franklin, B. Jónsson, D. Srivastava, and
M. Tan. Semantic data caching and replacement. In VLDB,
1996.

[11] D. Deutch and T. Milo. Type inference and type checking
for queries on execution traces. In VLDB, 2008.

[12] A. Deutsch, L. Popa, and V. Tannen. Physical data
independence, constraints, and optimization with universal
plans. In VLDB, 1999.

[13] A. Deutsch and V. Tannen. Optimization properties for
classes of conjunctive regular path queries. In DBPL, 2001.

[14] O. M. Duschka and M. R. Genesereth. Answering recursive
queries using views. In PODS, 1997.

[15] D. Eppstein. Parallel recognition of series-parallel graphs.
Inf. Comput., 98(1):41–55, 1992.

[16] D. Florescu, A. Levy, and D. Suciu. Query containment for
conjunctive queries with regular expressions. In PODS,
1998.

[17] A. Y. Halevy. Answering queries using views: A survey.
The VLDB Journal, 10(4):270–294, 2001.

[18] R. M. Karp. Reducibility among combinatorial problems.
In R. E. Miller and J. W. Thatcher, editors, Complexity of
Computer Computations. Plenum Press, 1972.

[19] L. V. S. Lakshmanan, H. Wang, and Z. Zhao. Answering
tree pattern queries using views. In VLDB, 2006.

[20] A. Y. Levy, A. O. Mendelzon, Y. Sagiv, and D. Srivastava.
Answering queries using views. In PODS, 1995.

[21] G. Miklau and D. Suciu. Containment and equivalence for
an xpath fragment. In PODS, 2002.

[22] K. Takamizawa, T. Nishizeki, and N. Saito. Linear-time
computability of combinatorial problems on series-parallel
graphs. J. ACM, 29(3):623–641, 1982.

[23] N. Tang, J. Yu, M. T. Ozsu, B. Choi, and K. Wong.
Multiple materialized view selection for xpath query
rewriting. ICDE, 2008.

[24] J. D. Ullman. Information integration using logical views.
In ICDT, 1997.

[25] J. Valdes, R. E. Tarjan, and E. L. Lawler. The recognition
of series parallel digraphs. In STOC, 1979.

