
COLT: Continuous On-Line Database Tuning

Karl Schnaitter† Serge Abiteboul‡ Tova Milo± Neoklis Polyzotis†

†Univ. of California Santa Cruz

{karlsch,alkis}@cs.ucsc.edu
‡INRIA and Univ. Paris 11

fname.lname@inria.fr

±University of Tel Aviv

milo@cs.tau.ac.il

ABSTRACT
Self-tuning is a cost-effective and elegant solution to the important
problem of configuring a database to the characteristics of the query
load. Existing techniques operate in an off-line fashion, by choos-
ing a fixed configuration that is tailored to a subset of the query
load. The generated configurations therefore ignore any temporal
patterns that may exist in the actual load submitted to the system.

This demonstration introduces COLT (Continuous On-Line Tun-
ing), a novel self-tuning framework that continuously monitors the
incoming queries and adjusts the system configuration in order to
maximize query performance. The key idea behind COLT is to
gather performance statistics at different levels of detail and to care-
fully allocate profiling resources to the most promising candidate
configurations. Moreover, COLT uses effective heuristics to regu-
late its own performance, lowering its overhead when the system
is well-tuned, and being more aggressive when the workload shifts
and it becomes necessary to re-tune the system. We present a spe-
cialization of COLT to the important problem of selecting an effec-
tive set of relational indices for the current query load. Our demon-
stration will use an implementation of our proposed framework in
the PostgreSQL database system, showing the internal operation of
COLT and the adaptive selection of indices as we vary the query
load of the server.

1. INTRODUCTION
Consider a data server (e.g., a database or an XML repository)

confronted with a heavy workload of queries. Typically, the phys-
ical database schema is enriched with specific access structures,
such as indices or materialized views, that can improve the per-
formance of query evaluation. The selection of such structures is
performed by a system administrator, based on her knowledge of
the query load and perhaps with the help of tuning tools [4, 9],
and it is in itself an optimization problem: given a limited storage
space for physical structures, select the ones that are most effective
for the expected query workload. When the workload is not stable,
however, this off-line approach has serious shortcomings as the se-
lection may soon become inappropriate; furthermore, the Internet
has allowed many data sets to be made available to large audiences,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD 2006,June 27–29, 2006, Chicago, Illinois, USA.
Copyright 2006 ACM 1-59593-256-9/06/0006 ...$5.00.

and there is often no expert administrator who may configure the
system.

These observations have motivated our work on an on-line tuning
framework, termed COLT (Continuous On-Line Tuning), that sup-
ports the automatic selection of physical access structures. COLT
addresses the following problem: given a stream of queries and
a storage budget, it dynamically selects access structures that fit
in the budget and improve the performance of query processing
for the current characteristics of the query load. In order to pro-
vide the most effective tuning, COLT continuously monitors the
query load in order to judge the benefit of existing and hypothetical
access structures, and periodically adjusts the set of materialized
structures to provide the best gain in performance. This is the key
difference between our work and the majority of recent studies on
self-tuning [3, 5, 1, 2], which determine the configuration of the
database off-line and are thus susceptible to the shortcomings out-
lined earlier. There has been recent work on the problem of on-line
index selection [8] that is similar in spirit to the proposed COLT
framework. The novelty of COLT lies in its ability to regulate the
overhead of on-line tuning depending on the performance of the
system, and to allocate its resources judiciously based on a princi-
pled methodology.

We illustrate the application of COLT on the practical problem of
self-tuning a relational database system [7, 6, 3]. To focus the pre-
sentation further, the access structures we consider are indices. We
want to stress, however, that the technique goes beyond relational
queries and indices; indeed, the present work has been originally
motivated by the on-line tuning for an XML system taking region
and keyword indices into account.

The demonstration will highlight the benefits of the approach,
using our implementation of COLT inside the PostgreSQL database
system. We will show how the system self-tunes to a given work-
load and to shifts in workloads. We will interact with the server by
executing queries both individually and in batches. Our interaction
will simulate various operating conditions, including (i) a query
load with stable characteristics, (ii) a transition in the query load,
and (iii) a query load with “noise” in the form of random queries.
The demonstration will visually display COLT’s adaptations to the
environment, such as the evolution of the index configuration and
the resources devoted to self-tuning.

2. COLT OVERVIEW
Figure 1 depicts the high-level architecture of COLT. Its main

components are the Extended Query Optimizer that optimizes the
incoming flow of queries as well as profiles indices, and the Self-
Tuning Module that selects the materialized indices. In this section,
we describe how these new modules operate and define how they
interact with the rest of the system.

Query
Parser

Extended
Query

Optimizer

Execution
Engine

index set P to profile

gain(I, q) for each I in P

Self-Tuning
Module

query q

Materialized
Indices

CREATE INDEX ...

DROP INDEX ...

index data

physical
plan

Figure 1: COLT Architecture.

2.1 The Extended Query Optimizer
We have replaced the query optimizer in the traditional query

pipeline with anExtended Query Optimizer(EQO). The primary
responsibility of the EQO is the same as the standard optimizer: to
choose the optimal physical execution plan for a query. The EQO
extends the functionality of the optimizer with the ability topro-
file hypothetical and materialized indices. More concretely, given
a queryq and an indexI to be profiled, the EQO will return the
reduction in time to executeq that would result from usingI. We
term this reduction thegain of I with respect toq and denote it
asgain(I, q). We will often abstractly refer to thegain of an in-
dex as the performance improvement that the index can provide
for the current query load. The gain of an index, therefore, is al-
ways non-negative, and a zero gain (gain(I, q) = 0) implies thatI
cannot improve the running time ofq. In addition, the gain of an
index depends on the current set of materialized indices and hence
gain(I, q) can change depending on when it is evaluated.

The EQO computes index gains in a batch fashion as part of the
optimization of the current queryq. More precisely, the EQO first
chooses the optimal execution plan forq using the current set of
materialized indicesM. Let cM be the cost of this initial plan.
Subsequently, the EQO receives an optional setP of indices to
profile. For each indexI ∈ P , the EQO recomputes the optimal
execution plan forq as follows: (a) ifI is materialized, the EQO
generates the optimal plan that does not useI, or (b) if I is ahypo-
thetical index, the optimal plan is chosen assuming thatI is avail-
able. We refer to these plans aswhat-if plans[4]. Let cI be the cost
of a what-if plan. With these measurements, the EQO calculates
gain(I, q) = |cM − cI |.

This batch-style profiling is important for reducing the cost of
what-if planning, as the initial planning only needs to be performed
once for the whole set of profiled indices. To reduce the overhead
further, our implementation of the what-if planner reuses interme-
diate solutions from the initial planning stage. Of course, not all in-
termediate solutions can be reused, so the optimizer must be careful
to only reuse subsolutions that do not depend on the profiled index.

2.2 The Self-Tuning Module
The purpose of theSelf-Tuning Module(STM) is to tune the sys-

tem by adjusting the set of materialized indices. In order to evaluate
the potential benefit of candidate indices, the STM sends profiling
requests to the EQO. The STM also interacts with the physical data
storage by sending commands to create or delete indices. Based on
this interface, the STM has two difficult tasks: (1) choosing can-
didate indices to profile, and (2) maintaining a set of materialized
indices that fit within the storage budget. In order to coordinate
these tasks, the STM partitions the incoming queries into regular
intervals, calledepochs. In our implementation, an epoch consists
of 10 queries. During an epoch, the STM gathers statistics for the
query load and profiles the gains of candidate indices. At the end
of each epoch, the candidates are reexamined and changes may be
made to the materialized indices.

In order to be effective, the STM has to address several issues
that pertain to the selection of candidate indices, their efficient pro-
filing, and the choice of which structures are materialized. We now
outline the challenges involved and discuss the highlights of our
proposed approach.

Index Organization. As queries are submitted to the system, the
STM analyzes the workload and decides which candidate indices
are relevant. The (potentially many) candidate indices are parti-
tioned into three sets as follows. Thematerialized setM contains
the materialized indices that are managed by the STM. Thehot set
H contains candidate indices that are relevant to the recent query
load and have shown strong evidence that they will significantly
improve performance. Thecold setC contains candidate indices
that are relevant to the recent query load, but have only shown mild
evidence that they will improve performance.

Profiling Strategy. The distribution of indices intoM, H, and
C is primarily guided by the estimated gains of candidate indices.
Since what-if plans are relatively expensive to compute, the STM
is allocated a profiling budget, which limits the number of what-if
plans that may be evaluated in each epoch. This budget can change
over time based on the stability in the query load. Profiling is also
constrained by the interface of the EQO, because what-if plans may
only be evaluated with respect to the current query that the system
is processing.

Given these restrictions, the STM has to select carefully which
indices to profile after each query is optimized. To address this
issue, we adopt the following profiling methodology. For cold in-
dices, the STM evaluates their performance only with a crude met-
ric based on the selectivity of predicates in the query. For hot and
materialized indices, the STM uses what-if calls to the EQO in a
randomized fashion, with greater probability given to the indices
for which the gain is the most uncertain. More concretely, the STM
may be able to confidently guess the gain of an index with respect to
the current query if it has observed consistent gains with “similar”
queries in the past. In our implementation of COLT, two queries are
similar if they involve the same relations, and their selection pred-
icates only differ slightly in selectivity. The STM is more likely
to allocate what-if calls if there have not been similar queries in
the past with consistent gains, because a confident guess cannot be
made in this case.

Index Selection.As queries are submitted, the STM identifies can-
didate indices that are relevant to selective predicates, and new can-
didates are placed in the cold set. At the end of each epoch, the
STM uses the estimated index gains to partition candidate indices
into M, H, andC. This redistribution is performed as follows. A
cold index that has shown significant potential for the current query

load (based on the crude metric mentioned above) may bepromoted
to become a hot index. If profiling shows that a hot index has high
gain, the STM may select it for materialization by promoting the
index toM and creating the index in physical storage. On the
other hand, the index may lose its relevance after being promoted.
In these cases, the STM may choose todemoteindices fromM to
H, or fromH to C. For each demotion fromM, the corresponding
index is deleted from storage. Since a change in the materialized
set can be costly, the STM chooses to promote an index toM based
on its projected future gain as well as the cost of materialization.

3. DEMONSTRATION
The purpose of our demonstration is to illustrate how the tech-

niques of COLT are used to tune the system. The demonstration is
built on our implementation of COLT that we have integrated into
the PostgreSQL database system. In order to make the demonstra-
tion clear, we use a simple, synthetic data set. We have two query
loads, namedW1 and W2, that contain queries with predictable
characteristics. Many of the queries are chosen fromW1 or W2,
but we also introduce “noise” queries that have characteristics that
differ significantly fromW1 andW2.

We consider two main scenarios in our demonstration:

1. The first scenario demonstrates the behavior of the system
with a changing workload. The system is first given queries
from W1. We monitor the operation of the STM (see de-
tails below) and measure the improvement and convergence
of performance. We then switch to the workloadW2 and
monitor the automatic adjustment of the system to the new
workload. When we switch toW2, we will see a drop in
performance, which will climb back up again as the system
self-organizes.

2. The second scenario demonstrates the effect of noise in the
workload. We give the system a steady workload, and intro-
duce brief periods of “noise,” where we have queries that are
not characteristic of the workload. We observe the loss in
performance during the noisy periods, and the ability of the
system to return to the optimal configuration.

The visual aspects of the demonstration are divided into acontrol
paneland asurveillance panel. The contents of these components
are detailed below.

The Control Panel. In our demonstration, we have the ability to
set various parameters that control the flow of queries and the set-
tings of COLT. We set these parameters in the control panel. We
select the executed queries by aworkload distributioncontrol and
a noise ratecontrol. The workload distribution controls the por-
tion of workload queries (i.e. queries that are not noise) that are
in W1 andW2. For example, if the workload distribution is 60/40,
then 60% of workload queries come fromW1 and 40% of work-
load queries come fromW2. The noise rate is a number between
0 and 1 that indicates the probability of choosing a noise query.
Once these parameters are chosen, we may execute random queries
selected from the desired distribution. The actual queries that are
submitted will be displayed in order to view the true contents of
the workload. We execute individual queries to show the detailed
behavior of COLT, or at times we may execute multiple queries to
“fast-forward” the demonstration.

The Surveillance Panel. The central visual component of our
demonstration is the surveillance panel. The internal operation of
the STM is shown in this component. Most importantly, the status
of candidate indices is displayed. The surveillance panel shows the

division of candidate indices into the cold, hot, and materialized
sets. We also display the gain that the STM has evaluated for each
index. This will help visualize how the transitions of candidate in-
dices are made betweenC, H, andM.

In the interactive demonstration, we will use a simplistic setting to
clearly illustrate the underlying techniques, the functionalities of
the system, and its benefits. To conclude the demonstration, we
will briefly present experimental results that demonstrate benefits
provided by COLT in more realistic and complex settings. In par-
ticular, we will show that COLT provides a significant improve-
ment in average query time when compared to a system that has
been configured with an optimal fixed set of indices using off-line
techniques.

Acknowledgments
This work was supported in part by EC project Edos, by the Is-
rael Science Foundation, and by a research grant from Microsoft
Corporation.

4. REFERENCES
[1] S. Agrawal, S. Chaudhuri, and V.Narasayya. Automated

Selection of Materialized Views and Indexes for SQL
Databases. InProceedings of the 26th Intl. Conf. on Very
Large Data Bases, pages 496–505, 2000.

[2] Elena Baralis, Stefano Paraboschi, and Ernest Teniente.
Materialized views selection in a multidimensional database.
In Proceedings of the 23rd Intl. Conf. on Very Large Data
Bases, pages 156–165, 1997.

[3] Surajit Chaudhuri and Vivek R. Narasayya. An efficient
cost-driven index selection tool for microsoft sql server. In
vldb97, pages 146–155, 1997.

[4] Surajit Chaudhuri and Vivek R. Narasayya. Autoadmin
’what-if’ index analysis utility. InProceedings of the 1998
ACM SIGMOD Intl. Conf. on Management of Data, pages
367–378, 1998.

[5] Himanshu Gupta, Venky Harinarayan, Anand Rajaraman, and
Jeffrey D. Ullman. Index selection for olap. InProceedings of
the 13th Intl. Conf. on Data Engineering, pages 208–219,
1997.

[6] Michael Hammer and Arvola Chan. Index selection in a
self-adaptive data base management system. InProceedings of
the 1976 ACM SIGMOD Intl. Conf. on Management of Data,
pages 1–8, 1976.

[7] N.Bruno and S. Chaudhuri. Automatic Physical Database
Tuning: A Relaxation-based Approach. InProceedings of the
2005 ACM SIGMOD International Conference on
Management of Data, 2005.

[8] Kai-Uwe Sattler, Eike Schallehn, and Ingolf Geist.
Autonomous Query-driven Index Tuning. InProceedings of
the International Database Engineering and Applications
Symposium, 2004.

[9] Daniel C. Zilio, Jun Rao, Sam Lightstone, Guy M. Lohman,
Adam Storm, Christian Garcia-Arellano, and Scott Fadden.
DB2 Design Advisor: Integrated Automatic Physical
Database Design. InProceedings of the 30th Intl. Conf. on
Very Large Data Bases, pages 1087–1097, 2004.

