
On-Line Index Selection for Shifting Workloads

Karl Schnaitter† Serge Abiteboul‡ Tova Milo± Neoklis Polyzotis†
†Univ. of California Santa Cruz
{karlsch,alkis}@cs.ucsc.edu

‡INRIA and Univ. Paris 11
fname.lname@inria.fr

±University of Tel Aviv
milo@cs.tau.ac.il

Abstract
This paper introduces COLT (Continuous On-Line Tun-

ing), a novel framework that continuously monitors the
workload of a database system and enriches the existing
physical design with a set of effective indices. The key idea
behind COLT is to gather performance statistics at different
levels of detail and to carefully allocate profiling resources
to the most promising candidate configurations. Moreover,
COLT uses effective heuristics to self-regulate its own per-
formance, lowering its overhead when the system is well
tuned and being more aggressive when the workload shifts
and it becomes necessary to re-tune the system. We de-
scribe an implementation of the proposed framework in the
PostgreSQL database system and evaluate its performance
experimentally. Our results validate the effectiveness of
COLT and demonstrate its ability to modify the system con-
figuration in response to changes in the query load.

1. Introduction

One of the main tasks of a database administrator in-
volves tuning the physical schema of the system, that is,
installing physical access structures, such as indices or ma-
terialized views, that assist the data server in optimizing the
query load more efficiently. The selection of these access
structures is itself an optimization problem: the administra-
tor must optimize the system throughput, assuming some
limited storage resources for the materialized structures.
To assist the administrator in this challenging task, ear-

lier studies [4, 8, 23] have introduced techniques that ana-
lyze a representative workload and automatically generate
a recommended physical configuration. This paradigm is
typically referred to as off-line tuning, since the workload is
gathered and analyzed before the database system goes live.
The use of a representative workload implies that off-line
tuning is suitable for the stable component of a query load,
that is, the subset of query characteristics that are predomi-
nant. On the other hand, one can identify an unstable com-
ponent that, while not being present in most of the queries
in the whole workload, it is present in most of the queries

in some contiguous subset of the workload. One such ex-
ample are workloads that result from interactive data analy-
sis. In this context, a user issues exploratory queries to val-
idate various hypotheses against the data, and the consecu-
tive queries related to a single hypothesis may have similar
characteristics.
The previous discussion hints at the desirability of an on-

line tuning mechanism that complements the off-line tuning
of a database system. The main idea is to monitor the query
load to identify locally dominant patterns (vs. the glob-
ally dominant patterns identified by off-line tuning), and
automatically adjust the physical configuration to maximize
query performance.

Prior Work. A large subset of previously proposed on-
line tuning techniques fall in the general area of semantic
caching [10], and its variants [14, 15] that are specialized to
specific domains. We can identify Cache Investment [13],
QUIET [17], and the work of Hammer and Chan [12] as
the techniques most relevant to the on-line tuning of the
physical configuration of a DBMS. These techniques focus
on the problem of automatic index selection and adopt the
same working model: the system continuously monitors the
workload to identify candidate indices, it profiles their bene-
fit, and materializes the most promising ones. The profiling
is typically performed through a what-if optimizer, which
essentially optimizes queries (and thus computes their cost)
assuming that candidate indices are materialized. A key is-
sue, however, is that the aforementioned works do not pro-
vide an explicit mechanism to regulate the issuance of what-
if calls. Thus, the on-line process operates with the same
intensity even if the system cannot be tuned to work bet-
ter for the current workload, and it is not straightforward to
control the number of what-if calls used by on-line tuning.
These two points are critical for controlling the overhead
of on-line tuning, and are thus key for its incorporation in
real-world systems.
There has also been a large body of research in off-line

methods for database tuning. As the name suggests, off-
line techniques work outside of the continuing operation of
the database system. Typically, such tuning methods em-

1

ploy a representative query load in order to both generate
candidate physical configurations and to evaluate their ef-
fectiveness. Earlier studies on this topic include techniques
for the automatic selection of indices [8, 11] and/or mate-
rialized views [1, 2, 3, 4], while several commercial sys-
tems include auto-tuning tools [7, 23] that are based on the
off-line approach. Off-line methods, however, are not well
suited for on-line tuning since their cost is prohibitive for
the continuous monitoring of the query load. Moreover,
they do not incorporate any mechanisms for allocating the
use of profiling resources or self-regulating the overhead of
tuning – these are clearly non-issues as all computation is
performed off-line. A recent work has developed a physical
design alerter [5], which essentially approximates the result
of an off-line tuning tool in a fraction of the time. Given a
set of queries as input, the alerter provides upper and lower
bounds on the performance improvement that would be pos-
sible with a comprehensive tuning tool.

Our Contributions. In this paper, we introduce the COLT
framework (short for Continuous On-Line Tuning) that sup-
ports the automatic on-line materialization of index struc-
tures on top of an existing pre-tuned configuration. COLT
builds a model of the current workload based on the incom-
ing flow of queries, estimates the respective gains of differ-
ent indices, and selects those that would provide the best
performance for the observed workload within the available
space constraint. The novel feature of COLT compared to
previous works is that it incorporates an explicit mecha-
nism for controlling its overhead. Thus, the administrator
can specify the maximum rate of what-if calls issued by
COLT, but most importantly, COLT is able to self-regulate
its performance. Intuitively speaking, the latter amounts to
decreasing the intensity of on-line tuning when the system
is well tuned, and increasing it when a phase shift occurs
in the workload. To the best of our knowledge, ours is the
first work on on-line tuning to address this important issue
of controllable overhead.
We also present the results of a preliminary experimen-

tal study based on a prototype implementation inside the
PostgreSQL database server. Our results show that COLT
discovers an effective set of materialized indices and adapts
rapidly to shifts in the query distribution. Moreover, it is
able to control the overhead of on-line tuning and regulate
it according to the changes in the query load.

2. Problem Definition

At an abstract level, the tuning (optimization) problem
that we consider in this paper may be described as fol-
lows: given a pre-tuned physical database design, the cur-
rent query distribution Q, and an on-line storage budget of
B units, select the set I of additional indices that minimize
the expected query evaluation cost and fit in the allotted

storage budget. Thus, I is expected to vary over time in
order to adapt to changes in Q. We also note that the query
distribution is not observable, so it must be guessed from
past queries.
Similar to off-line tuning algorithms, a solution to this

on-line tuning problem must rely on what-if calls to the
query optimizer to select access structures that match the
underlying query execution cost model. Moreover, the on-
line algorithm must address the following important issues
that are unique to continuous tuning.

• Adaptivity and Resilience to Noise. In order to be effec-
tive, the tuning process must adapt relatively fast to changes
in the query load. At the same time, it should not overreact
to temporary variations of the query distribution but focus
instead on real changes of the workload.

• Adaptive Overhead. Since the tuning process runs con-
currently with normal query processing, it is important to
maintain a controlled overhead in order to avoid penalizing
normal query execution. Furthermore, the overhead the sys-
tem is willing to spend on tuning should depend on the gain
that is expected from a modification of the physical schema.

These issues introduce interesting trade-offs that are not
trivial to balance. For instance, the tight coupling with the
query optimizer hints at additional optimizer invocations,
which in turn increase the cost of self-tuning. Our observa-
tions also indicate that adopting existing off-line methods is
not a feasible solution to the problem. In particular, off-line
methods use a specific instance of the workload and thus
behave well only if the actual load is rather stable in time.
Moreover, they do not address adequately the issue of low
overhead as they are executed separately from the running
system. Hence, they typically require plenty of CPU re-
sources and they can cause a serious slowdown if deployed
on-line.
In our work, we tackle the variant of the problem where

I consists of single-column indices. This may seem lim-
iting at first, especially when compared to existing off-line
tuning techniques that consider multi-column indices (clus-
tered or unclustered) and materialized views. As we show
in this paper, however, the transition to on-line tuning poses
significant challenges that are not trivial to address even
in this seemingly simplified setting. Moreover, a recent
study [9] has shown that a set of carefully chosen single-
column indices can offer significant improvements in query
performance. The extension of our techniques to more gen-
eral access structures, e.g., multi-column indices and mate-
rialized views, is an interesting direction for future work.

3. Overview of COLT

In this section, we present an overview of the proposed
COLT framework for continuous on-line tuning. COLT di-

Query Parser

Extended
Query

Optimizer

Query
Execution

Engine

What-if
requests

Query

Proler

Self-Organizer

Scheduler

Query
information

Materialization
requests Indices to materialize

Performance
Statistics

Figure 1. Architecture of COLT.

vides the incoming workload in non-overlapping windows
of w queries, called epochs, where w is a system param-
eter. We use Si to denote the sequence of queries in the
most recent i epochs. During an epoch, COLT profiles each
candidate index I on the corresponding queries in order
to evaluate its potential benefit on the current query load.
Thus, the measurements for I in recent epochs provide a
picture of its potential performance as time progresses. At
the end of an epoch, COLT initiates a reorganization phase
that determines which indices should be materialized based
on the performance statistics gathered while profiling. This
continuous alternation between profiling and reorganization
enables COLT to track the current workload and adapt the
physical configuration accordingly.
COLT maintains a set C of candidate indices by mining

the selection predicates of queries in the sequenceSh. Here,
h is a global parameter that regulates the extent of the sys-
tem’s memory and should be large enough in order to cap-
ture the dominant traits of the query workload. COLT con-
tinuously profiles the indices in C and carefully selects a
subsetM ⊆ C, termed the materialized set, that is materi-
alized and used for query evaluation. To avoid the high cost
of extensive profiling for every candidate index, COLT em-
ploys a two level strategy. More precisely, each index in C is
profiled with very easy to compute, yet crude performance
statistics. These crude statistics are used to rank candidates
and identify a small set H ⊆ C of hot indices, that is, in-
dices that have not been materialized but look promising
for the current workload. COLT subsequently profiles hot
and materialized indices with accurate and therefore more
expensive methods, and from that derives the new material-
ized set at the end of the epoch.

Figure 1 presents an architectural diagram of COLT.
As shown, COLT works in parallel to the main processing
pipeline. The functionalities of its three main components
can be summarized as follows:

• Extended Query Optimizer (EQO). The EQO extends a
standard query optimizer by providing a what-if optimiza-
tion interface. More precisely, we assume that the optimizer
exports a function call WHATIFOPTIMIZE(q,P), where q is
a query and P is a set of indices1. For each index I ∈ P ,
the optimizer computes and returns the reduction in the ex-
ecution cost of q assuming that I is materialized. Overall,
the what-if optimizer constitutes the primary mechanism
by which COLT measures accurately the effect of different
indices on query evaluation. This tight coupling with the
query optimizer is an essential element of our approach.

• Profiler. This component is responsible for gathering per-
formance statistics for candidate indices. These statistics
are updated incrementally after the evaluation of each query.
As explained previously, the level of detail for the collected
statistics changes depending on the set (C,H, orM) of the
candidate index. For C, the Profiler maintains very crude
performance statistics; for H and M, the indices are pro-
filed through the what-if interface of the EQO.

• Self Organizer (SO). This component implements the re-
organization phase of COLT and is thus activated only at
the end of each epoch. SO mines the performance statistics
gathered by the Profiler and forecasts the expected bene-
fit of each index in H ∪ M on the query workload. The
indices with the highest expected benefits are then materi-
alized, forming the newM. The SO is also responsible for
selecting the hot indices from C to have them profiled accu-
rately in the coming epochs.

• Scheduler. All modifications to M are handled by the
Scheduler. This gives COLT the power to choose the best
time to materialize an index. Several scheduling strategies
are possible, including (1) carrying out materialization re-
quests immediately, (2) building indices during system idle
time, and (3) using intermediate results of future queries to
build indices more efficiently. In our implementation of the
COLT framework, we take the first approach and issue im-
mediate asynchronous requests (in parallel) for the indices
that the Self Organizer selects for materialization. This is
the most straightforward design, and it has the advantage
that new indices are available as soon as possible.

We discuss the details of the Profiler and the Self Orga-
nizer in the following two sections.

1It is interesting to note that this what-if interface is already imple-
mented in most commercial systems and is thus readily available.

4. Profiler
The Profiler is closely coupled with the EQO and its

main function is to measure the performance of candi-
date indices. In our work, we measure the performance
of an index in a specific epoch as the average reduction
in execution time for the corresponding queries. More
formally, consider a particular query q and some partic-
ular time t, and let QueryCost(q, I) denote the optimal
cost of evaluating q using the physical design that consists
of the pre-tuned configuration and the single-column in-
dices in I. Let QueryGain(q, I) = QueryCost(q,M ∪
{I })−QueryCost(q,M− {I }) denote the savings in ex-
ecution time of q when I is part of the materialized set
M (with t understood). The benefit for an index I in the
current epoch S1 is defined as the average Benefit(I) =
(
∑

q∈S1
QueryGain(q, I))/w .

Clearly, the exact computation of this metric would re-
quire a prohibitive cost in terms of what-if calls to the query
optimizer. To obtain reasonable estimates of Benefit(I)
at moderate cost, COLT employs a two-level strategy. At
the first level, the Profiler computes a crude approxima-
tion BenefitC(I) of Benefit(I) that is used to select the
most promising candidate indices and place them in the
hot set H. At the second level, the Profiler uses what-
if optimization calls to compute much better approxima-
tions BenefitH(I) and BenefitM(I) of Benefit(I) for
hot and materialized indices respectively. The key idea,
therefore, is that Benefit C is used for all candidates in C,
while BenefitH and BenefitM are directly comparable and
used to compare indices between H and M. The afore-
mentioned approximations of benefits are computed with
appropriate approximations of QueryGain(q, I) for each
query q, namely QueryGain C(q, I), QueryGainH(q, I),
and QueryGainM(q, I), respectively. We describe these
approximations in the following section, and then discuss
the profiling algorithm in more detail.

4.1. Gain estimation

QueryGainC . The model for QueryGain C relies on stan-
dard cost formulas to obtain an optimistic approximation
of the true query gain. More formally, let q be a query
in the current workload and I ∈ C be a relevant candi-
date index. Let R denote the table on which I is defined
and σ be the selection predicate in q that I may help evalu-
ate. We define a binary indicator variable uq,I that takes the
value 1 if the optimizer uses I in the evaluation plan of q.
This information can be derived from the normal optimiza-
tion of q and any additional what-if calls if I ∈ M ∪ H;
for any other case, our system makes an optimistic predic-
tion and sets uq,I = 1. The Profiler approximates the gain
of q as QueryGainC(q, I) = uq,I · ∆cost(R, σ, I), where
∆cost(R, σ, I) is a crude estimate of the gain in evaluating

σ using I vs. using a sequential scan ofR. (We use standard
cost formulas [20] for this computation.)
Clearly, the resulting approximationBenefit C is a crude

estimate of the true performance of an index. The goal,
however, is only to identify the most promising candidate
indices in order to profile them more accurately at the next
level. In this respect, we have found the previous metric to
work adequately well.

QueryGainH. As mentioned earlier, the Profiler relies on
what-if optimization calls to obtain detailed performance
metrics for indices in H. To control the overhead of what-
if calls, the Profiler relies on an intuitive assumption: for
queries that are “similar”, one is likely to observe similar
benefits for a given index I . Hence, profiling I against a
sample of queries only may provide enough information for
the complete query set. More precisely, the Profiler main-
tains a clustering Q1, . . . , QK of query occurrences in Sh,
where each cluster corresponds to a subset of queries that
access the same tables, have the same join predicates, and
have selection predicates on the same attributes with se-
lectivity factors in specific ranges. We use two possible
ranges of selectivity factors, namely, 0-2%, and 2-100%,
yielding an approximate separation between selective and
non-selective predicates. Each cluster Qi records a count
Count(Qi) of the queries that it represents, and a set of
statistics (explained further) on the gains of indices for
queries inQi. It is important to note that each query belongs
to a unique cluster and that this assignment is performed ef-
ficiently on-line when the query arrives. Moreover, the sys-
tem does not need to maintain a large number of clusters. In
the worst case, the number of clusters can be equal to w · h,
the total number of queries in the system’s memory.
The key idea behind our clustering model is to cap-

ture query similarity in the current workload and to
maintain aggregate index statistics per cluster. Given
an index I ∈ H and a related cluster Qi, the Pro-
filer measures QueryGain accurately (through what-
if calls) on a sample of Qi, and uses the col-
lected measurements to build a confidence interval
[LowGain(I ,Qi),HighGain(I ,Qi)] for the average gain
of a query in Qi with respect to I . In our work, we use
CLT-style bounds [21] with a fixed level of confidence (e.g.,
90%) for all pairs (I, Qi). Typically, we would expect the
interval to get reduced when more queries inQ i are selected
to be profiled. Given the similarity of queries in Q i, how-
ever, it is highly likely to obtain a tight approximation with
only a few what-if calls.
Based on these statistics, the Profiler computes

QueryGainH(q, I) (and hence BenefitH(I)) as follows.
Let q be some query in cluster Qi for some i. If q has been
profiled against I then the Profiler already has knowledge of
its gain and sets QueryGainH(q, I) = QueryGain(q, I).
Otherwise, the Profiler makes a conservative estimate and

uses the lower boundLowGain(I ,Qi) of the confidence in-
terval as the approximated gain. Clearly, this method yields
a conservative estimate as it underestimates the true query
gain. This property is nonetheless desirable in our setting,
as an index will be selected for materialization only if there
is strong evidence of its good performance, i.e., when the
conservative estimate indicates it is worth materializing.
As a final remark, we note that our approximation mod-

els for QueryGainH rely on selective QueryGain mea-
surements that are time-sensitive by definition, i.e., they
capture the difference in execution cost if an index is in-
serted (or dropped) from the contents ofM at the time of
measurement. Statistics may therefore become invalid as
the set of materialized indices evolves over time. To ad-
dress this issue, QueryGainH only uses statistics that are
consistent with the current materialized indices. In our con-
text, a past measurement for a hot index is consistent if the
relevant indices on the same table have not changed inM.

QueryGainM. As mentioned earlier, QueryGainM is
computed in a similar fashion as QueryGainH, i.e., by
maintaining benefit statistics on a per (cluster,index) basis.
The key difference is that the statistics capture the average
positive benefit per query in the cluster, instead of the av-
erage overall benefit. This distinction is necessary since a
materialized index I is always considered for the optimiza-
tion of a query q, and hence COLT needs to approximate the
trueQueryGain(q, I) only when I is used in the plan.
As with QueryGainH, the value of QueryGainM is

based on what-if calls, but the EQO handles materialized
indices differently. This is because the normal optimization
of a query will yield the execution cost with all materialized
indices available. The what-if optimizer must pretend that
a materialized index is unavailable, and the QueryGain is
given by the resulting increase in execution cost. This pro-
cess is the reverse of traditional what-if optimization for in-
dices that are not materialized.

4.2. Profiling Algorithm

Having introduced our estimation models for
QueryGain we now describe the algorithm for gath-
ering the corresponding statistics in the course of an epoch.
Figure 2 shows the pseudo-code for one invocation of
the Profiler on the current query. After receiving the
current query q and its initial optimized plan, the Profiler
assigns q to a unique cluster Qi and updates the statistics
of the materialized and hot indices that are related to Q i.
For each such index I , it computes a sampling probabil-
ity (function GETSAMPLERATE(I, Qi)) for measuring
QueryGain(q, I) through a what-if call, and samples the
indices with this probability. The sampled indices are
included in the probation set P that is sent to the Extended
Query Optimizer, and the returned query gains are used

Procedure PROFILEQUERY(q,plan)
Input: Current query q; its optimal physical plan plan.
begin
1. Let Qi be the cluster of q

/** Form probation set P **/
2. Let#WI cur be the number of performed what-if calls
3. Let IM ⊂ M be the materialized indices used in plan
4. Let IH ⊂ H be the hot indices relevant toQi

5. P ← ∅
6. for each I in a permutation of IM then IH do
7. if#WI cur + |P| < #WI lim then
8. with probability GETSAMPLERATE(I, Qi) add I to P

/** Call what-if optimizer **/
9. QG ← WHATIFOPTIMIZE(q,P)

/** Update statistics for BenefitH and BenefitM **/
10. for each 〈I,QueryGain(q, I)〉 in QG do
11. Update statistics for (I,Qi)
12. #WI cur+ = |P|

/** Update statistics for BenefitC **/
13. for each I ∈ C relevant to q do
14. Update BenefitC(I) estimate with QueryGainC(q , I)
end

Figure 2. Profiling Algorithm.

to update the corresponding interval statistics. We detail
the computation of sampling probabilities later; the key
intuition is to sample more from the (I, Qi) combinations
for which the gain estimate is believed to be very impre-
cise. Finally, the Profiler completes the processing of q
by updating the statistics of Benefit C(I) for each relevant
candidate I ∈ C (line 14).

Controlling the profiling overhead. At the beginning of
each epoch, the Profiler is allocated a current profiling “bud-
get” #WI lim that bounds the number of what-if calls per-
formed during the epoch. As will be explained in Section 5,
this#WI lim budget is set adaptively by the Self-Organizer
based on the potential of the current hot indices. In a nut-
shell, the Self-Organizer increases #WI lim if there is evi-
dence that the current hot indices can lead to a much better
materialized set, and conversely limits the budget (and even
possibly sets it to 0) in the opposite case. The provided bud-
get never exceeds a system parameter #WI max that con-
trols the maximum profiling overhead of COLT. A subtle
point of the profiling algorithm is that materialized indices
are given precedence in the spending of the what-if budget
(line 6), as it is important to maintain accurate statistics for
the materialized set.

Computing the sample rate. An important element of our
approach is the use of adaptive sampling. We now describe
in more detail the computation of the sampling probabilities
through function GETSAMPLERATE(I, Q i). For simplic-
ity, we focus our discussion on the case of I ∈ H. We use a

similar method forM.
Intuitively, a pair (I, Qi) should be allocated more what-

if calls if its profiling may have an important impact on
the accuracy of the estimate BenefitH(I). More precisely,
this heuristic is captured as follows. As we show in the
full version of the paper, each pair (I, Q i) contributes in-
dependently to the error (in a statistical sense) of the esti-
mate BenefitH(I). Moreover, the error contribution grows
with the popularity of Qi and with the variance of profiled
gains of I within Qi, and shrinks as more of Qi is pro-
filed against I . A natural heuristic, therefore, is to allocate
what-if calls in proportion to this error contribution, in or-
der to profile more aggressively the inaccurate (I, Q i) pairs
and thus try to improve the accuracy of the estimated in-
dex benefit. Thus, we put the focus on indices that have the
most unstable (or unpredictable) performance on the cur-
rent workload. It is important to stress that the allocation is
performed on-line: the Profiler reevaluates the error contri-
butions after the what-if calls for (I, Qi), which leads es-
sentially to a modified sampling probability for (I, Q i).

5. Self Organizer

The Self Organizer component is invoked at the end of
each profiling epoch and essentially performs two opera-
tions: (a) it determines the new composition of the hot and
materialized sets based on the performance statistics of the
existing indices in C, and (b) it sets the profiling budget
#WI lim based on the potential benefit of the currently hot
indices. We refer to these operations as reorganization and
re-budgeting resp., and discuss them in more details further.

Reorganization. The SO first chooses the new composition
of the materialized setM by selecting the most promising
indices from H ∪ M. It then designates a subset of the
remaining indices as the new hot set H. We first describe
the selection ofM.
Indices are chosen for materialization based on a met-

ric that predicts the net benefit of indices in the near fu-
ture. The system uses the statistics from the past h epochs
to predict the benefit for the next h epochs (recall that h is
the number of epochs in the system’s memory). The net
benefit takes into account improvements in query execu-
tion time and the cost of index materialization. The met-
ric is defined as NetBenefit(I) =

∑
j PredBenefitj (I) −

MatCost(I). MatCost(I) is an estimate of the cost of ma-
terializing I (if I is already materialized, MatCost(I) =
0). PredBenefitj (I) is the forecasted benefit that I will
have for query execution in future epoch j. The value is
computed taking all of the past j epochs into account. The
complete details of the forecasting function can be found
in the full version of this paper [19]. The new material-
ized set is formed by solving an instance of the KNAP-
SACK problem: the set of objects isH∪M; the size of the

knapsack is the storage budget B; each object I occupies
IndexSize(I) units of storage, and providesNetBenefit(I)
units of value. The KNAPSACK model is not completely
accurate because the benefits of different indices are not al-
ways independent. However, our preliminary experiments
indicate that this model can work well in this context.
We also note that previously proposed methods for off-

line tuning have used the KNAPSACK model for the selec-
tion of physical structures [6, 22]. Our use of the model
differs in two ways. First, the value of an index is given by
the NetBenefit metric that predicts the benefit of an index,
taking the materialization cost into account. Second, the SO
determines a new KNAPSACK solution at the end of each
epoch. This allows the system to correct some mistakes that
may result from the inaccuracy of the model. For exam-
ple, suppose a materialized index I becomes useless due to
some change in the materialized set. The SO should remove
I fromM, but the KNAPSACK model does not make this
apparent, since the benefit of indices are assumed to be in-
dependent. However in future epochs, I will be unused and
its predicted benefit will converge to zero. This means that
I will not be included in the optimal KNAPSACK solution,
and it will be dropped from the materialized set.
The second stage of the reorganization task selects the

hot set for the next epoch. The SO computes a smoothed av-
erage of the crude Benefit C(I) estimates for each of the re-
maining candidate indices, and groups the benefit estimates
into two clusters with minimum variance. The indices in the
top cluster are considered the most promising according to
BenefitC , and are selected as the new hot set.

Re-budgeting. The goal of re-budgeting is to compute an
appropriate value for the what-if budget#WI lim of the up-
coming epoch. Our strategy is to intensify profiling if the
hot indices are likely to be more beneficial than the already
materialized indices, and to decrease profiling, or even sus-
pend it, in the opposite case. This mechanism enables self-
tuning to “hibernate” when the workload is stable and M
performs well, and to wake up when a shift occurs and new
indices need to be materialized.
To asses the potential of the currently hot indices, the

Self Organizer considers a best-case scenario for their per-
formance. More concretely, it adjusts BenefitH(I, Qi) to
utilize the upper bound of the confidence interval and thus
computes an overestimate ofBenefit(I); this is in turn used
to compute an overestimate of NetBenefit(I) for each hot
index. (Note that the metrics formaterialized indices are left
untouched.) Based on these optimistic predictions for hot
indices, the Self Organizer solves the KNAPSACK prob-
lem again and computes another composition M ′ for the
materialized set. The idea is to compare M and M ′ in
terms of their projected performance and to determine ac-
cordingly how to set #WI lim. More precisely, we use the
aggregate NetBenefit metric of each set and compute the

ratio r = NetBenefit(M′)/NetBenefit(M). (Note that
r ≥ 1.) We adopt a scheme that suspends profiling if r = 1
and maximizes it to#WI max if r ≥ 1.3.

6. Experimental Study
We next present the results of an empirical study that we

have conducted to evaluate the performance of COLT. Our
study focuses on the following aspects of COLT: its ability
to choose an effective set of indices and to adapt to the cur-
rent workload; the resilience to noise in the workload; and
the overhead of on-line tuning. We detail our experimental
methodology and the main results of our study.

6.1. Methodology

In this section, we describe the self-tuning techniques
that we evaluated in our study, the data sets and correspond-
ing workloads, and the evaluation metrics.

Self-Tuning Techniques. We base our experimental study
on two self-tuning techniques, namely, COLT and an opti-
mal off-line technique.

• COLT. We implemented a prototype2 of COLT inside the
PostgreSQL database system [16]. The prototype follows
the architecture presented in Section 3. It extends the Post-
gres optimizer with a what-if interface and features COLT
as a separate sub-process of the Postgres server. In order to
minimize the overhead of what-if calls, our implementation
of the what-if optimizer reuses intermediate solutions from
the initial query optimization. Of course, not all intermedi-
ate solutions can be reused, so the EQOmust be careful only
to reuse the solutions to subproblems that do not depend on
the index being evaluated.
We use the following values for the system parameters:

epoch length w = 10; history depth h = 12; maximum
number of what-if calls #WI max = 20; confidence level
of intervals 90%. We note that the results we present were
not sensitive to the exact values of these parameters.

• OFFLINE. We have implemented an off-line tuning tech-
nique, henceforth referred to as OFFLINE. OFFLINE has
knowledge of the exact workload and examines exhaus-
tively the space of all possible single-column index sets,
evaluating the effectiveness of each candidate with the same
what-if optimizer that is used by COLT. The returned con-
figuration is thus optimal with respect to the specific work-
load and the allotted space budget. Clearly, OFFLINE rep-
resents an idealized off-line technique as it has complete
knowledge of the workload and infinite processing time.
Thus, in the context of single-column index selection, it
strictly dominates existing off-line techniques [4, 8] that
rely on a heuristic search of the same configuration space.

2A demonstration of our prototype appears in [18].

Size (binary data) 1.4 GB
Tables 32

Tuples in all tables 6,928,120
Tuples in largest table 1,200,000
Tuples in smallest table 5

Indexable attributes 244

Table 1. Data Set Characteristics

Data Set. We use a synthetic data set based on the well-
known TPC-H schema. Table 1 summarizes its character-
istics. The data set consists of 4 different data instances
of the TPC-H schema, thus containing a large number of
indexable attributes. This allows us to generate workloads
that shift their focus between multiple tables and attributes.
We use synthetic query workloads that are randomly

generated based on query distributions. We consider a
workload with a fixed distribution, as well as workloads
with a query distribution that changes over time. Details
on the characteristics of individual workloads are given in
the description of each experiment.

Evaluation Metric. We use the total query execution time
as the basic metric for measuring the performance of a tun-
ing technique. For OFFLINE this does not include the time
spent to select and materialize an index set, since both tasks
are assumed to take place off-line. For COLT, on the other
hand, the measured query execution time is affected by the
initially empty index set, the overhead of on-line tuning,
i.e., the what-if calls and the indexmaterialization. We mea-
sure query response time at the server, using a cold cache
and a single client executing on a remote machine.

6.2. Experimental Results

In this section, we present some results of our study. The
specific cases we chose to present capture the main traits of
the wide range of results we obtained by varying the data,
the query workloads, and system parameters.

On-line Tuning for Stable Workloads. In the first exper-
iment, we compare the performance of COLT to OFFLINE
for a workload with a fixed query distribution. This experi-
ment has a duration of 500 queries. The workload implies a
total of 18 relevant indices, many of which have high poten-
tial benefit. We select the space budgetB so that it can fit 3
to 6 of these indices. This makes the task of on-line tuning
nontrivial, as no materialized set is clearly optimal.
Figure 3 shows the relative performance of COLT and

OFFLINE as time progresses. Each bar describes the sum of
execution times for 50 queries in chronological order. The
height of the grey region is the total execution time for the
faster technique, either COLT or OFFLINE. Each black re-
gion indicates time spent by COLT in excess of time spent
by OFFLINE. Similarly, the white regions indicate addi-

0

200

400

600

800

1000

1200

1400

1600

1800

2000

50 100 150 200 250 300 350 400 450 500

Query Number

E
x
e
c
u

ti
o

n
 T

im
e
 (

s
e
c
)

Colt Extra Time

Offline Extra Time

Minimum Time

0

200

400

600

800

1000

1200

50 200 350 500 650 800 950 1100 1250

Query Number

E
x

e
c

u
ti

o
n

 T
im

e

Colt Extra Time

Offline Extra Time

Minimum Time

Figure 3. Stable workload. Figure 4. Shifting workload.

tional time spent by OFFLINE. During the first 100 queries,
COLT has higher execution times as it monitors the query
distribution, selects indices, and materializes them on disk.
The overhead of index creation contributes significantly to
the execution time for COLT during this period. After 100
queries, COLT has materialized the important indices for the
workload, and the query execution time is essentially equal
to OFFLINE with a negligible deviation of 1%. Clearly, this
demonstrates that our on-line technique can achieve similar
performance to the ideal off-line technique that has precise
knowledge of the complete workload.

On-Line Tuning for Shifting Workloads. In the second
experiment, we evaluate the performance of COLT on a
shifting workload. We form a workload consisting of four
distinct phases, each phase comprising 300 queries from a
different query distribution. A particular phase focuses on
specific attributes with different degrees of selectivity, and
essentially implies a specific index set that is optimal for
query evaluation. To make our experiment more realistic,
we have tuned the distributions so that there is some over-
lap among the optimal index sets. Moreover, the transitions
between phases occur gradually over 50 queries, implying a
total of 1350 queries for the workload. The disk budget and
total number of relevant indices are the same as the previous
experiment.
Figure 4 shows the total query execution time under

COLT and OFFLINE as the workload progresses. (We use
the same illustration format as Figure 3.) The results clearly
show that COLT outperforms the OFFLINE technique for the
majority of queries in the workload. Being on-line, COLT
can detect the different phases of query distribution and
fine-tune the physical configuration accordingly; OFFLINE,
on the other hand, selects an index set that is good on the
average (i.e., for the complete workload) and thus misses
significant opportunities for fine-tuning. This is evident in
the second phase of the workload (queries 350-650), where
the total query execution time under COLT is 49% shorter
than OFFLINE – clearly, a significant reduction. Over the
complete workload, on-line tuning results in 33% reduc-

tion in total execution time compared to the ideal off-line
technique. We note that we have observed similar benefits
in multi-user settings, where the shifting workload is gen-
erated by multiple concurrent clients. Overall, our results
demonstrate the potential of on-line approaches in the de-
sign of self-tuning systems.
At this point, it is interesting to examine the overhead

of self-tuning as the workload moves through the different
phases. As described in Section 3, this overhead stems from
the on-line maintenance of statistics and in particular from
the use of additional what-if calls to the optimizer. Figure 5
charts the number of what-if calls invoked by COLT over
each epoch during this experiment. Recall that we have a
maximum number of 20 what-if calls for each epoch of 10
queries. The chart has four discernable peaks that coincide
with the transitions to new query distributions. Apart from
these peaks, COLT uses less than half of its budget in each
epoch. This behavior matches the goals of our framework:
COLT intensifies profiling when a shift is detected, and low-
ers the overheadwhen the workload is stable and the system
is well tuned. We also observe that the workload queries
have a significant number of relevant indices, but COLT ju-
diciously profiles only 11% of these indices. Overall, this
results in a very efficient use of the what-if optimizer.

Effect of Noise. Conceptually, we consider noise to be any
query that does not reflect the dominant traits of the current
query distribution. COLT is faced with a challenging task in
this case, as it has to determine if few such queries constitute
noise (and thus should be ignored), or whether they signal a
new trend in the workload.
We consider a worst-case scenario for COLT and assume

that noise queries occur in concentrated bursts. Depending
on the length of a burst, an on-line tuning system may mis-
take it for a shift in the workload and change the configura-
tion. We generate the test workload by starting with a fixed
distributionQ1 and injecting bursts of queries from a distri-
bution Q2. Each workload consists of at least 500 queries
and contains at least 2 injections. (In all cases, the queries
from Q2 represent 20% of the total workload.) We ensure

0

10

20

Phase 1 Phase 2 Phase 3 Phase 4

#
W

h
a

t-
if
 C

a
lls

 P
e

r
E

p
o

c
h

0

0.2

0.4

0.6

0.8

1

1.2

20 30 40 50 60 70 80 90

Duration of Noise

P
e
r
fo

r
m

a
n

c
e
 R

a
ti

o
 C

O
L
T

/O
F

F
L

IN
E

Figure 5. Overhead Figure 6. COLT with noisy workload.

that the optimal index sets for Q1 and Q2 are disjoint, and
we start each workload with 100 queries from Q1 in order
to allow the system to stabilize before the noise. We vary
the length of bursts from 20 to 80 queries. As our evaluation
metric, we use the ratio of total query execution time under
COLT to total query execution time under OFFLINE, where
off-line tuning is performed solely onQ1, i.e., it completely
ignores noise.

Figure 6 shows the ratio of the execution time of COLT to
the execution time of OFFLINE as a function of burst length.
We do not include the first 100 queries in our measurements,
because we want to isolate the queries that show the effects
of noise. Our results indicate that COLT is resilient to short
bursts of noise (up to 20 queries) and effectively ignores
distribution Q2. For long-lived injections (more than 70
queries), COLT materializes the index set for Q2 relatively
early and thus improves query performance considerably
for several of the noise queries. Overall, COLT provides per-
formance equivalent to OFFLINE for these ranges of bursts.
Conversely, there is a small range of burst lengths (30-60
queries) where COLT becomes less effective than OFFLINE.
For this range, the indices for Q2 are materialized shortly
after the burst begins, but they are not used extensively as
the workload shifts quickly back to Q1. Still, we observe
that the average loss in performance is 18% compared to
an ideal off-line technique having precise knowledge of the
workload and noise.

As we describe in the full version of this paper, the worst
burst length is correlated with the specifics of our forecast-
ing model that predicts the future benefits of indices. In
particular, our model uses a window of past measurements,
which in this case coincides with the burst of noise queries
and thus misjudges the utility of noise indices. It may be
possible for the system to tune the length of this window
if materialized indices are dropped too quickly. We plan to
explore this extension in our future work.

7. Conclusions
This paper introduces COLT, a novel self-tuning frame-

work that continuously monitors the incoming queries and
adjusts the system configuration in order to maximize query
performance. COLT minimizes the overhead of on-line tun-
ing by carefully allocating profiling resources to the most
promising candidate configurations, and by self-regulating
its overhead. Our experiments validate the effectiveness of
our approach. We show that COLT performs as well as off-
line tuning for stable workloads and significantly outper-
forms off-line tuning for evolving workloads. Furthermore,
COLT rapidly adapts to shifts of the query load, while being
resilient to noise.

References

[1] S. Agrawal, S. Chaudhuri, and V. R. Narasayya. Auto-
mated selection of materialized views and indexes in SQL
databases. In VLDB ’00: Proceedings of the 26th Interna-
tional Conference on Very Large Data Bases, pages 496–
505, San Francisco, CA, USA, 2000. Morgan Kaufmann
Publishers Inc.

[2] S. Agrawal, E. Chu, and V. Narasayya. Automatic physical
design tuning: workload as a sequence. In SIGMOD ’06:
Proceedings of the 2006 ACM SIGMOD international con-
ference on Management of data, pages 683–694, New York,
NY, USA, 2006. ACM Press.

[3] E. Baralis, S. Paraboschi, and E. Teniente. Materialized
views selection in a multidimensional database. In VLDB
’97: Proceedings of the 23rd International Conference on
Very Large Data Bases, pages 156–165, San Francisco, CA,
USA, 1997. Morgan Kaufmann Publishers Inc.

[4] N. Bruno and S. Chaudhuri. Automatic physical database
tuning: a relaxation-based approach. In SIGMOD ’05: Pro-
ceedings of the 2005 ACM SIGMOD international confer-
ence on Management of data, pages 227–238, New York,
NY, USA, 2005. ACM Press.

[5] N. Bruno and S. Chaudhuri. To tune or not to tune?: a
lightweight physical design alerter. In VLDB ’06: Proceed-
ings of the 32nd international conference on Very large data
bases, pages 499–510. VLDB Endowment, 2006.

[6] S. Chaudhuri, M. Datar, and V. Narasayya. Index selection
for databases: A hardness study and a principled heuristic
solution. IEEE Transactions on Knowledge and Data Engi-
neering, 16(11):1313–1323, 2004.

[7] S. Chaudhuri and V. Narasayya. AutoAdmin what-if in-
dex analysis utility. In SIGMOD ’98: Proceedings of the
1998 ACM SIGMOD international conference on Manage-
ment of data, pages 367–378, New York, NY, USA, 1998.
ACM Press.

[8] S. Chaudhuri and V. R. Narasayya. An efficient cost-driven
index selection tool for microsoft sql server. In VLDB
’97: Proceedings of the 23rd International Conference on
Very Large Data Bases, pages 146–155, San Francisco, CA,
USA, 1997. Morgan Kaufmann Publishers Inc.

[9] M. P. Consens, D. Barbosa, A. Teisanu, and L. Mignet.
Goals and benchmarks for autonomic configuration recom-
menders. In SIGMOD ’05: Proceedings of the 2005 ACM
SIGMOD international conference on Management of data,
pages 239–250, New York, NY, USA, 2005. ACM Press.

[10] S. Dar, M. J. Franklin, B. T. Jónsson, D. Srivastava, and
M. Tan. Semantic data caching and replacement. In VLDB
’96: Proceedings of the 22th International Conference on
Very Large Data Bases, pages 330–341, San Francisco, CA,
USA, 1996. Morgan Kaufmann Publishers Inc.

[11] H. Gupta, V. Harinarayan, A. Rajaraman, and J. D. Ullman.
Index selection for OLAP. In ICDE ’97: Proceedings of the
Thirteenth International Conference on Data Engineering,
pages 208–219, Washington, DC, USA, 1997. IEEE Com-
puter Society.

[12] M. Hammer and A. Chan. Index selection in a self-adaptive
data base management system. In SIGMOD ’76: Proceed-
ings of the 1976 ACM SIGMOD international conference on
Management of data, pages 1–8, New York, NY, USA, 1976.
ACM Press.

[13] D. Kossmann, M. J. Franklin, G. Drasch, and W. Ag. Cache
investment: integrating query optimization and distributed
data placement. ACM Trans. Database Syst., 25(4):517–
558, 2000.

[14] Q. Luo and J. F. Naughton. Form-based proxy caching for
database-backed web sites. In VLDB ’01: Proceedings of the
27th International Conference on Very Large Data Bases,
pages 191–200, San Francisco, CA, USA, 2001. Morgan
Kaufmann Publishers Inc.

[15] M. Palmer and S. B. Zdonik. Fido: A cache that learns to
fetch. In VLDB ’91: Proceedings of the 17th International
Conference on Very Large Data Bases, pages 255–264, San
Francisco, CA, USA, 1991. Morgan Kaufmann Publishers
Inc.

[16] The PostgreSQL Database System
http://www.postgresql.org.

[17] K.-U. Sattler, I. Geist, and E. Schallehn. QUIET: Continu-
ous query-driven index tuning. In VLDB ’03: Proceedings
of the 29th International Conference on Very Large Data
Bases, pages 1129–1132, San Francisco, CA, USA, 2003.
Morgan Kaufmann Publishers Inc.

[18] K. Schnaitter, S. Abiteboul, T. Milo, and N. Polyzotis.
COLT: continuous on-line tuning. In SIGMOD ’06: Pro-
ceedings of the 2006 ACM SIGMOD international confer-
ence on Management of data, pages 793–795, New York,
NY, USA, 2006. ACM Press.

[19] K. Schnaitter, S. Abiteboul, T. Milo, and N. Polyzotis. On-
line database tuning. Technical Report UCSC-CRL-06-07,
UC Santa Cruz, 2006.

[20] P. G. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A.
Lorie, and T. G. Price. Access path selection in a relational
database management system. In SIGMOD ’79: Proceed-
ings of the 1979 ACM SIGMOD international conference on
Management of data, pages 23–34, New York, NY, USA,
1979. ACM Press.

[21] Student. The probable error of a mean. Biometrika, 6(1):1–
25, 1908.

[22] G. Valentin, M. Zuliani, D. C. Zilio, G. M. Lohman, and
A. Skelley. DB2 advisor: An optimizer smart enough to rec-
ommend its own indexes. In ICDE ’00: Proceedings of the
16th International Conference on Data Engineering, pages
101–110, Washington, DC, USA, 2000. IEEE Computer So-
ciety.

[23] D. C. Zilio, J. Rao, S. Lightstone, G. M. Lohman, A. Storm,
C. Garcia-Arellano, and S. Fadden. DB2 design advisor: In-
tegrated automatic physical database design. In VLDB ’04:
Proceedings of the 30th International Conference on Very
Large Data Bases, pages 1087–1097, San Francisco, CA,
USA, 2004. Morgan Kaufmann Publishers Inc.

