
Compact Samples for Data Dissemination ?

Tova Milo, Assaf Sagi, and Elad Verbin

School of Computer Science
Tel Aviv University

{milo,sagiassa,eladv}@post.tau.ac.il.

Abstract. We consider data dissemination in a peer-to-peer network,
where each user wishes to obtain some subset of the available information
objects. In most of the modern algorithms for such data dissemination,
the users periodically obtain samples of peer IDs (possibly with some
summary of their content). They then use the samples for connecting
to other peers and downloading data pieces from them. For a set O
of information objects, we call a sample of peers, containing at least k
possible providers for each object o ∈ O, a k-sample.
In order to balance the load, the k-samples should be fair, in the sense
that for every object, its providers should appear in the sample with equal
probability. Also, since most algorithms send fresh samples frequently,
the size of the k-samples should be as small as possible, to minimize
communication overhead. We describe in this paper two novel techniques
for generating fair and small k-samples in a P2P setting. The first is
based on a particular usage of uniform sampling and has the advantage
that it allows to build on standard P2P uniform sampling tools. The
second is based on non-uniform sampling and requires more particular
care, but is guaranteed to generate the smallest possible fair k-sample.
The two algorithms exploit available dependencies between information
objects to reduce the sample size, and are proved, both theoretically and
experimentally, to be extremely effective.

1 Introduction

We consider in this paper data dissemination in a peer-to-peer network, where
each user wishes to obtain some subset of the available information objects. In
most of the modern algorithms for such data dissemination, the users period-
ically obtain samples of peer IDs, (possibly with some summary of the peers’
content). They then use the samples for connecting to other peers and down-
loading data pieces from them. It is desirable that the peer samples (1) contain
enough providers for each requested object, so that users have a sufficient choice
of data sources, (2) are ‘fair’, so that the requests for objects are spread evenly
over their providers, and (3) are as small as possible, so that the communication
overhead is minimized when samples are sent frequently. The goal of this paper

? The research has been partially supported by the European Union Project EDOS
and by the Israel Science Foundation.

is to devise peer-sampling algorithms that achieve the above three goals. Our
algorithms take advantage of “correlations” between data objects to improve
performance. To motivate the study of this problem, let us briefly describe its
practical origin and explain how a good solution to the problem can contribute
to better performance of data dissemination platforms.

Motivation In a data dissemination scenario, various information objects are to
be disseminated to peers in the network. The original distributors of the objects
are one or more source peers who initially hold the data. The other peers are
interested in obtaining some subset of the available objects. When the number of
peers to which the data is to be disseminated is large, it is practically impossible
to have all peers downloading the data directly from the original sources. Indeed,
most data dissemination platforms are based on peer cooperation, where each
peer provides to other needing peers the objects (or parts thereof) which she
has already acquired [3].1 In such a setting, all peers serve essentially both as
information consumers and information providers - a peer interested in obtaining
a certain object serves also as a provider for it.

In order for a peer to connect with peers that may assist her in obtaining
a certain object, she needs to obtain information about other peers in the sys-
tem holding it. For this end, data dissemination algorithms typically supply the
requesting peer with information about a set of k peers (for some constant k),
chosen randomly from the set of all peers in the system that hold the object [14].
The peer then chooses a subset that is most beneficial to her, e.g. in terms of
bandwidths or available object pieces, and connects to those peers to obtain the
data. New peer samples may be supplied periodically (or upon request) to the
peers to allow them to acquire new, possibly more suitable, data sources. De-
pending on the particular data dissemination algorithm being used, the details
of which object pieces are available at each of the sample peers may be either
encoded as summary information given in the sample or, alternatively, may be
obtained by querying the given peer [18]. To abstract this and ignore the specific
implementation details, we assume the existence of a function objects(n) that,
given a network peer n, tells which (pieces of) objects may be provided by n.

The sampling domain for an object o may consist of those peers that actually
hold (pieces of) of o, or of the peers that declared their wish to obtain that
object. The rationale for the latter is that such peers, being interested in o, are
likely to have already obtained some of its pieces (or will soon manage to). Most
algorithms take the latter approach as it guarantees the sampling domain to be
fairly stable (it is determined once the peers declare their wishes) [5]. This is also
what we assume here. In order not to overload certain peers, the samples are
required to be fair, in the sense that for every object o the peers (potentially)
providing o should appear in the sample with equal probability [8]. Also, since
most algorithms send fresh samples frequently it is desirable that their size be
as small as possible, to minimize communication overhead. Finally, to be able
1 Data objects are typically fragmented into blocks. A peer who shares an object might

not have yet completed its download and hence shares only the blocks downloaded
thus far.

to guarantee that a certain number of samples can be sent within a fixed time
period, the dissemination algorithms need to know the bound on the samples’
size. To put this in terms of the problem mentioned at the beginning of the
section, one would like the samples sent to a given peer to contain at least k
providers for each of the objects that she requested, be fair, and have the worst-
case bound on their size be as small as possible.

For a set of objects O, we call a fair sample of the network peers, containing
at least k providers for each object o ∈ O, a k-sample (the formal definition is
given in sec. 2). Our goal is to devise sampling algorithms that minimize the
worst-case bound on the k-samples’ size. Before presenting our results, let us
consider a simple example.

Example Consider a peer-to-peer network consisting of a set N of peers and
holding a set O of distinct information objects. Let n be some network peer that
is interested in obtaining a set of objects O ⊆ O. For simplicity, assume a simple
network architecture where some coordinating peer is informed of the peer’s
request and is in charge of providing her with corresponding k-samples. (In more
general architectures the task may be distributed among several peers). Consider
first a simple method that the coordinator peer can use for generating k-samples
for O: For each o ∈ O, sample (uniformly) k peers among the providers for o (we
will see in the following section standard techniques to perform such sampling).
The k-sample then consists of the union of the sampled sets. Clearly its size
is bounded by k |O |. Interestingly, although rather näıve, the bound obtained
by this simple algorithm is in fact the tightest we could find in the existing
literature since current systems treat the dissemination of distinct information
objects separately (see more on that in Section 5). So the question motivating
the present work is can one do better?

It turns out that the answer is often positive. The key observation is that,
in practice, one can typically detect correlations between object requests, which
can be used to significantly reduce the k-sample size. As a simple example, con-
sider three objects A,B and C. The näıve sampling algorithm described above
yields for them a k-sample of size 3k. Now, assume that the coordinator knows
that every peer interested in obtaining B also wants A (implying that the set
of potential providers of B is included in that of A). If the two sets of providers
happen to be identical then clearly a k-sample of size 2k suffices: the same set of
k peers sampled for A can also be used for B. Even if the B’s are not provided
by all the A-peers but only by say, 75% of them, a k-sample of size 2 1

3k still
suffices: a sample of 1 1

3k A-peers contains on the average k B-peers.

Our results Based on the above observation, we present in this paper two classes
of algorithms for generating compact k-samples. The first employs uniform peer
sampling. Its main advantage is that it allows to build on standard P2P uniform
sampling tools e.g.[16, 13]. The sampling procedure here amounts to (1) grouping
the requested objects, based on the correlations between their providers, and (2)
uniformly sampling providers for each object group. The crux is to determine
the optimal objects’ grouping, i.e. the one that minimizes the resulting samples’

size. We show the problem to be NP-hard but provide a linear time, constant-
factor approximation algorithm for it. Furthermore, we show, experimentally,
that our approximation algorithm yields in practice results much better than its
worse case bound - indeed, the generated k-samples are of size very close to the
minimal possible. We next consider non-uniform sampling. We first show that
for k-samples generated using non-uniform sampling, the size of the minimal
possible k-sample can be determined in linear time. We then propose a new
simple distributed sampling technique that allows to generate such minimal k-
samples in a decentralized P2P environment. To illustrate the benefit that our
new sampling techniques can bring to existing data dissemination platforms, we
tested experimentally the performance improvement that can be obtained by
incorporating them in the popular BitTorrent[2], showing significant gain.

The paper is organized as follows. Section 2 introduces the basic formalisms
used throughout the paper. Section 3 studies the generation of compact k-
samples via uniform sampling. Non-uniform sampling is considered in Section 4.
We conclude in Section 5 considering related work. The full proofs of the results
as well as a detailed description of the experiments can be found in the full
version of the paper [17].

2 Preliminaries

We introduce here the basic formalisms used throughout the paper, including
our abstraction of the P2P network as an objects-providers bipartite graph, and
the notions of k-samples and uniform peer sampling.

Objects-Providers graph As mentioned in the Introduction, peer requests
serve as a good indication for the availability of objects on the given peers. The
rationale is that peers that are interested in a given object are likely to quickly
obtain (at least some pieces of) the object and be able to provide them to other
peers. Consequently we consider from now on each network peer n that requested
a certain object o as a provider of o. Consider a peer-to-peer network consisting
of a set N of peers and holding a set O of distinct information objects. The
availability of the objects in the network peers can be represented as a bipartite
graph consisting of two sets of nodes, one representing the objects and the other
representing peers, with edges connecting each peer node to the nodes of the
objects that it provides. Overloading notation, we will use O for both the objects
and the nodes representing them. Peers that provide the same set of objects are
grouped together and represented in the graph by a single node. We associate
with each such node a weight that reflects the number of peers that it represents
(as a fraction of the overall number of all peers). More formally,

Definition 1. An objects-providers graph g = (O, P, E,w) is a weighted bipar-
tite graph where O and P are two disjoint sets of nodes called the object nodes
and the provider nodes, resp.; E ⊆ O × P is the set of edges of the graph; and
w : P → [0, 1] is a weight function, associating to each provider node p ∈ P
some weight w(p), s.t. Σp∈P w(p) = 1.

Fig. 1. An objects-providers graph.

We will use below o, o1, . . . to denote object nodes as well as the informa-
tion objects that they represent. We use p, p1, . . . to denote provider nodes and
n, n1, . . . to denote the actual network peers. We use v to denote an arbitrary
graph node. Consider the objects-providers graph in Fig. 1, which will serve as
a running example throughout this paper. O here consists of six information
objects o0 . . . o5 which are provided by six types of providers. Here, the peers
represented by the node p2 provide the objects o0, o1 and o2 and form 15% of
the overall set of peers providing objects in O.

For a set of nodes s in the graph g, we denote by N(s) the set of nodes in
g that are neighbors of some node in s. When s is a singleton set consisting of
a single node v, we use N(v) as a shorthand for N({v}). Observe that for any
information object o ∈ O, the nodes in N(o) represent the set of peers that
provide o. Indeed, the sum of the neighbors’ weight,

∑
p∈N(o) w(p), describes

precisely the number of o’s providers (as a fraction of the overall number of the
providers of O). We refer to this sum as the popularity of o (in g). To continue
with our running example, the popularity of o4 is w(p5) + w(p6) = 0.54.

The objects-providers graph for a given network may be constructed in dif-
ferent ways, depending on the particular application setting: for instance by
considering the full set of peers’ requests (e.g. in a centralized setting or when
the number of peers is not too big); by drawing a random sample of the net-
work peers as representatives for the requests distribution (e.g. in a distributed
setting with a large number of peers); using logs and history information (in
environments where peers tend to repeatedly request similar data); using known
dependencies between information objects (when such dependencies are avail-
able); or by some combination of the above.

In the remainder of this paper we assume that we are given an objects-
providers graph, and ignore the particular method used for its construction. We
will return to this topic in Section 3.3, showing that the algorithms that we
propose do not require in practice to actually build the objects-providers graph
but use only a very partial knowledge of its shape, which can be easily obtained
in a distributed manner by simple uniform sampling.

k-samples Consider a network peer that is interested in obtaining a set of
objects O ⊆ O. A k-sample for O is a fair sample of the network peers containing
at least k providers for each object o ∈ O. More precisely,

Definition 2. A k-sample (for a set O of information objects) is a randomly
generated entity consisting of a subset K ⊆ N of the network peers and sup-
porting a function Providers(o) which returns, for each object o ∈ O, a subset
Ko ⊆ K of providers for o, where the following two properties hold:

1. (sufficient number of providers) For each object o ∈ O, the expected size of
Providers(o) is at least k, i.e. E[|Ko|] ≥ k;

2. (fairness) For each object o ∈ O, each of o’s providers has an equal probability
of appearing in Providers(o).

Our goal here is to design sampling algorithms that - given as input, an
objects-providers graph g describing the availability of objects in the network
peers, a request for a set of objects O and a number k - generate small k-samples
(for O). When measuring the quality of a sampling algorithm, we look at the
maximal size of K in the samples generated for the given input. We are inter-
ested in devising sampling algorithms where for any g, O, and k, the worst-case
bound on the size of K is minimal.

Uniform sampling For the generation of k-samples, we naturally need a method
to sample the network peers. We present in the following sections some particu-
lar sampling techniques aimed at minimizing the sampled set’s size. But before
doing so, let us consider some of the standard methods used nowadays for peer
sampling in P2P networks. Peer sampling has received much attention in recent
research on P2P networks and is used in various applications for data dissem-
ination, gossip-based communications and querying (see e.g. [11, 15, 9]). Much
of the work has focused on uniform sampling of network peers, proposing vari-
ous techniques that vary in their resilience to failures, communication overhead,
etc. [16, 13]. Ignoring the particular algorithmic details, a uniform peer sam-
pling technique can be viewed as a function GetProvidersSample(R, l), where
R is a Boolean predicate on peers and l is the size of the required sample.
GetProvidersSample(R, l) returns l peers, drawn with uniform probability, from
the set of all network peers that satisfy the predicate R. In our context we are
interested in sampling peers that provide a certain set of objects. For a set of
information objects O, RO will denote the predicate that is true for those peers
that provide some object in O. Namely, for a network peer n, RO(n) = True iff
O∩objects(n) 6= ∅.

3 Uniform k-sampling

Given an objects-providers graph g and a set of objects O in g, our goal is to
generate the smallest possible k-samples for O. Namely k-samples where the
maximal size of the set K of peer IDs (in any of the random instances) is mini-
mal. The first sampling method that we present is based on uniform sampling.
It has the advantage that it can employ any of the standard P2P sampling tech-
niques mentioned in the previous section (hence enjoy whatever benefits they
bring, such as resilience to failures, communication efficiency, etc.). To get some

intuition, let us first describe two simple (not necessarily optimal) ways to use
uniform sampling for the generation of a k-sample. Our novel sampling method
is presented next (first intuitively and then formally). In all the examples below
we assume that we are given the objects-providers graph of Figure 1 and we
want to generate a k-sample for the set of objects O = {o1, o2, o3, o4}.
Method 1:Individual sample for each object The näıve sampling algorithm,
described in the introduction, samples k providers for each object o ∈ O, by
running GetProvidersSample(R{o}, k). The set K of the k-sample then consists
of the union of the sampled sets, with the function Providers(o) returning o’s
sample. Clearly the size of the k-sample here is bounded by k|O|. In our running
example, for k = 3 the size is bounded by 3 · 4 = 12.

Implementation wise, the K peers are transmitted in an array, containing
essentially a concatenation of the individual object samples. Providers(o) re-
turns for each object o the corresponding array fragment. It is important to note
that a simplistic implementation of Providers(o) that simply returns all the
peers in K that provide o would be inadequate as it may violate the fairness of
the k-sample. To see this, consider the following simple example. Assume that
the set O contains two objects, ou, an unpopular object provided by a very small
fraction of the peers, and op, a very popular object provided by most peers. Con-
sider a peer n that happens to provide both objects. n has a high probability
of being sampled for ou (hence of appearing in K), a higher probability than
any of the other providers of op. To guarantee the fairness of Providers(op),
it is essential to restrict its answer to those peers sampled (uniformly) for op,
ignoring those other peers in K (like n) which happen to also provide op.

Method 2: One sample for all objects An alternative method is to run only
one sampling instance, GetProvidersSample(RO, l), drawing a single sample
of size l (for some constant l, to be defined below), from the set of all the
providers of objects in O. The set K here consists of all the peers in this sample,
with the function Providers(o) returning the network peers n ∈ K for which
o ∈ objects(n). The use of uniform sampling guarantees that requirement 2 (fair
sample) holds. To satisfy requirement 1 (at least k providers for each object),
the size l of the sample should be large enough to contain k providers even
for non-popular objects (i.e. objects provided only by few peers). Clearly if the
least popular object o ∈ O is provided by β of the providers of O, to assure an
expectancy of k providers for o, the sample size should be at least l =

⌈
k · 1

β

⌉
.

In our running example, the least popular objects o1 and o2 are each provided
by 0.29 of the providers of O. Consequently, the size of the required sample (hence
also the bound on size of the k-sample) is

⌈
3 · 1

0.29

⌉
= 11, a bit smaller than the

one obtained with the previous näıve construction.
In general this method beats the näıve construction whenever |O| > 1

β , β
being the relative popularity of the least popular object in O. It performs par-
ticularly well when there are no “very unpopular” objects. For instance, in the
extreme case where all objects are provided by all providers, β = 1 and a k-
sample of size k suffices. The näıve construction, on the other hand, is superior

when some objects are provided by only a very small fraction of the peers.

Method 3: Object Partitioning The new method that we propose in this
paper combines the advantages of the two previous ones. It partitions the objects
into several sets s1, . . . , sm. A sample is then drawn for each set si, from the set
of all the providers of objects in si. The size of the sample for si is dictated,
as above, by the popularity of the least popular object in si. The set K of the
k-sample consists of the union of the si samples. Finally, for any object o ∈ si,
the function Providers(o) returns the peers, in si’s sample, which provide o.2

Observe that the previous two methods are in fact special cases of this new
method: In the first näıve sampling we have |O| singleton sets, one per each
object in O; in the second method there is a single set s1 consisting of all the
objects in O. If the least popular object in a set of objects si is provided by βsi

of the providers of si, then a call to GetProvidersSample(Rsi
,
⌈
k · 1

βsi

⌉
) will

draw a sample with an expectancy of at least k providers for each object o ∈ si.
The maximal size of the obtained k-sample is thus

∑
si

⌈
k · 1

βsi

⌉
. The challenge

is to find the optimal partitioning of objects into sets so as to minimize this sum.
Consider again our running example and assume that we partition the objects

in O into two sets, s1 = {o1, o2} and s2 = {o3, o4}. The providers of objects in
s1 (represented in the graph by p1, p2 and p3) form 0.43 of the overall set of
peers. o1 and o2 are each provided by 0.67 of these providers, hence the required
size of s1, for k = 3, is

⌈
3 · 1

0.67

⌉
= 5. Similarly, the providers of objects in

s2 (represented by p3, . . . , p6) form 0.61 of the overall set of peers. o3 and o4

are each provided by 0.76 of these providers, hence the required size of s2 is⌈
3 · 1

0.76

⌉
= 4. Thus, the size of the k-sample here is bounded by 5 + 4 = 9,

smaller than in any of the previous two methods. In this example this is also the
optimal partitioning.

Observe that the reduction in size here, relative to the previous two methods,
is not too big because our running example contains, for simplicity, only very
few information objects. In practice, results on real-life scenarios demonstrate
significant size reduction [17].

3.1 Formal Problem Statement

Consider a partitioning of the objects in O into (not necessarily disjoint) sets
s1, . . . , sm. As explained above, the size of the k-sample generated for such a
partitioning is bounded by

∑
si

⌈
k · 1

βsi

⌉
, where βsi is the fraction of peers,

among the providers of si, providing the least popular object o in si. To make
this more precise we use the following notations.

Given an objects-providers graph g and a set s of information objects in
g, the popularity of the set s (in g), denoted SPop(s), is the fraction of peers,
2 Implementation wise, the sent k-sample is an array containing the concatenation of

the samples drawn for the si sets. Given the partitioning details (the object sets
and their samples’ size), Providers(o) returns for each o ∈ si, the peers n in the si

fragment of the array s.t. o ∈ objects(n).

among all providers, that provide some object in s. Putting this in terms of the
graph g, SPop(s) is the sum of the weights of the provider nodes in g that are
neighbors to the object nodes in s. Namely, SPop(s) =

∑
p∈N(s) w(p).

Observe that when s contains a single object o, the set’s popularity is pre-
cisely the popularity of o, as defined in Section 2, namely the fraction of peers,
among all providers, that provide o. The relative-popularity of o w.r.t s, denoted
relPop(o, s), is the fraction of peers, among the providers of s, that provide o.
Namely, relPop(o, s) = SPop({o})

SPop(s) .
Going back to the generation of our k-sample, the sample size for a set si

is dictated by the object o ∈ si with the least relative-popularity. Namely, the
sample size for si should be at least

⌈
k · 1

mino∈si
relPop(o,si)

⌉
. Consequently, for

a partitioning S of the objects in O to sets, the overall size of the k-sample is
bounded by

(∗)
X
si∈S

ż
k · 1

mino∈sirelPop(o, si)

ĳ
=

X
si∈S

ż
k · SPop(si)

mino∈siSPop({o})
ĳ

The value of (∗) naturally depends on the particular partitioning of objects to
sets. We denote by sizede(S) the value of (∗) for a given partitioning S. For an
objects-providers graph g, a set of objects O in g, and an integer k, we refer to
the problem of finding a partitioning S of the objects in O for which sizede(S) is
minimal as the Object Partitioning Problem (denoted OPPde). We will call such
a partitioning S an optimal solution (for g, O, and k) and denote the value of
sizede(S) for it by optde.

We will also define a variant of this problem, denoted OPP (with no ceiling),
where the objective is to minimize the value of

(∗∗) size(S) =
X
si∈S

k · SPop(si)

mino∈siSPop({o})

The size of an optimal solution for OPP is denoted by opt. For some purposes,
such as to prove NP-Hardness of OPPde, we will go through OPP first.

3.2 Observations

We provide next some observations about the possible structure of an optimal
solution. These will be useful later for studying the complexity of the problem
and for proposing algorithms to solve it.

Provider contribution Consider some objects-providers graph g, a set of ob-
jects O, and a partitioning S of the objects of O into sets. Let si ∈ S be some
objects set and let oi ∈ Si be the least popular object in si. Looking at the
formula (∗) from the previous subsection, it is easy to see that for every object
o ∈ si, each of its providers p (neighbor nodes in the graph g) contributes to
sizede(S) a value k·w(p)

SPop({oi}) (not yet regarding the ceiling we have to take). If
a provider provides objects that belong to different sets, then the provider will
contribute to sizede(S) such a value for each of these sets. We can therefore see

that a provider’s contribution to the value of sizede(S) depends on the number
of sets that the objects that it provides participate in, and on the popularity of
the least popular object in each of these sets.

Looking at things from the provider’s view point, the partitioning of the
objects into groups can be viewed as labeling each provider with labels that
identify the sets to which the objects that it provides belong. Each label placed
on a provider induces a cost that he has to pay, and all providers who provide a
given object must have at least one label common to all of them (describing the
set(s) that contain the object). Our problem can thus be described as a labeling
problem: we want to find an optimal labeling for the providers, namely one that
minimizes their overall contribution to sizede(S). This alternative description of
the problem will prove useful later on in the various proofs.

“Nice” partitioning Given an objects-providers graph g and a set of objects
O, a partitioning S for the objects in O is called a nice partitioning if (1) all the
sets s ∈ S are pairwise disjoint and (2) there are no two distinct sets s, s′ in S
whose least popular objects are equally unpopular. Namely for all s, s′ ∈ S,s 6=
s′ → mino∈sSPop({o}) 6= mino′∈s′SPop({o′}).

The following lemma shows that when searching for an optimal solution for
OPPde (resp., OPP) it is sufficient to look at nice partitioning.

Lemma 1. For every objects-providers graph g, a set of objects O in g, and an
integer k, there always exists a nice partitioning for the objects in O which is an
optimal solution for OPPde (resp., for OPP).

Proof. We prove the lemma for OPPde. The proof for OPP follows exactly the
same lines. Let us look at some optimal solution S for OPPde. Consider the nice
partitioning S′ obtained from S by removing redundant objects and unifying
sets with equal least object popularity. It is easy to see from formula (∗) that
sizede(S′) ≤ sizede(S). Since S is an optimal solution it must be the case that
sizede(S′) = sizede(S), hence S′ is an optimal solution as well.

The above lemma is interesting since it allows to reduce the search space
when searching for an optimal solution. Specifically, in every nice partitioning
the number of sets is bounded by the number of the distinct popularity values
for objects in O. We will use this extensively in our analysis of the problem.

3.3 Algorithms and Complexity

We will see below that both OPPde and OPP are NP-Hard and will propose
linear and polynomial approximation algorithms for them. But before we do
that, let us first consider a restricted case that can be solved in polynomial time
and can shed some light on the structure of optimal solutions.

Consider an objects-providers graph g and a set O of information objects
in g, where the objects in O each have one of two possible popularity values.
This is for instance the case in our running example, where objects in O have

popularity 0.29 or 0.54. Indeed, the popularities of {o1, o2, o3, o4} are respectively
{0.29, 0.29, 0.54, 0.54}.

By Lemma 1 we know that in this case there exists a nice optimal partitioning
for O consisting of (at most) two sets, s1 and s2, such that all the less popular
objects belong to s1 while the more popular objects may be spread between s1

and s2. To find the optimal partitioning we only need to to determine which
popular objects belong to s1 and which to s2. We show next that this can be
determined in PTime. We first consider OPP and then OPPde.

Theorem 1. OPP can be solved in polynomial time when the information ob-
jects in O each have one of two possible popularity values.

Proof. (sketch) We provide here an intuition for the polynomial algorithm. The
full algorithm and its correctness proof appear in the full version of the paper
[17]. The algorithm works as follows. First, given the objects-providers graph g
and a set of objects O, we construct a new weighted bipartite graph G. For every
provider node p ∈ g that provides some object in O, the graph G contains two
nodes, v1

p and v2
p. The node vi

p, i = 1, 2 will be used to represent the case where
none of the O objects provided by p belongs to the set si (The graph edges and
the weights of the nodes are described later on).

Next, we find a maximum-weight independent set3 W for G (known to be
polynomially solvable for bipartite graphs [12]). Finally, we use W to determine
the partitioning of objects of O into the sets s1, s2: For every provider node p s.t.
v1

p ∈ W , all the objects in O provided by p are placed in s2. For every provider p
s.t. v2

p ∈ W , all the objects in O provided by p are placed in s1. The remaining
objects are placed arbitrarily.

Theorem 2. The same algorithm is an approximation algorithm for OPPde

that gives a solution whose value is at most optde + 1, where optde is the size of
an optimal solution.

Proof. Let optde be the optimal value of OPPde for an objects-providers graph
g and a set of objects O in g. Let S be the solution produced by the above
algorithm. Let opt be the optimal value of OPP on the same instance. We have
shown that opt = size(S). We wish to prove that sizede(S) ≤ optde + 1. Obvi-
ously, opt ≤ optde. On the other hand, sizede(S) < opt + 2, because the only
change in the objective function is the ceiling sign added to each of the two
summands. Therefore, sizede(S) < optde + 2. Since both expressions here are
integral, it follows that sizede(S) ≤ optde + 1.

It is open whether OPPde has an exact polynomial solution in the case of
two object popularities. We can show however that as soon as objects have more
than two distinct popularities, both OPP and OPPde become NP-Hard. The
proof appears in [17].

3 An independent set is defined as a subset W of the nodes in the graph G such that
no pair of nodes in W is connected by an edge in G.

Theorem 3. OPPde and OPP are both NP-Hard, even for objects-providers
graphs where the object nodes have only three popularity values and all the weights
of the provider nodes are equal.

Proof. (sketch) We prove that the problems are NP-Hard by reduction from the
problem of minimum unweighted 3-multiway cut (3MC) (also referred to in the
literature as 3-Terminal cut or 3-multiterminal cut), known to be NP-Hard [6].
In the 3MC problem a graph G and three distinguished nodes v1, v2, v3 are given.
The objective is to find a partitioning of the nodes in G into three sets V1, V2, V3

s.t. for i = 1, 2, 3 node vi is in partition Vi, so as to minimize the number of
edges going between different partitions. The full reduction is given in [17].

Clearly an optimal solution can be found in exponential time by enumerat-
ing all possible solutions. As this is too expensive, we propose next two simple
algorithms that approximate the optimal solution up to a constant factor.

The PartitionByPopularity algorithm Our first approximation algorithm
partitions the information objects into sets based on their popularity. It has
several advantages: (1) It is simple and runs in linear time. (2) It does not
require knowing the exact structure of the objects-providers graph but only the
popularity of the objects.4 (3) It is on-line for the objects, namely if a new object
is added then the partitioning of already-existing objects does not change.

To describe the algorithm we use the following notation. For two numbers
c > 1 and x > 0, let IPowerc(x) = cblogc xc. That is, IPowerc(x) is the
integral power of c smaller than x and closest to it. Given a constant num-
ber c, the algorithm PartitionByPopularity(c) partitions the objects in
O into sets based on the value of IPowerc(SPop({o})). Formally, we define
si = {o : IPowerc(SPop({o})) = ci}, and the solution S is simply the collection
of all non-empty si’s.

Theorem 4. PartitionByPopularity(c) is a c2

c−1 -approximation algorithm

for OPP for any c>1. Namely, it gives a solution whose value is at most c2

c−1 ·opt,
where opt is the size of an optimal solution.

Corollary 1. (Optimizing on the value of c) PartitionByPopularity(2) is
a 4-approximation algorithm for OPP.

The proof is omitted for space constraints. We have a slightly weaker bound
for OPPde.

Theorem 5. PartitionByPopularity(c) is a 2c2

c−1 -approximation algo. for
OPPde for any c > 1.

Corollary 2. (Optimizing on the value of c) PartitionByPopularity(2) is
an 8-approximation algorithm for OPPde.

4 This can be easily obtained in a distributed manner by a simple uniform peers
sampling.

We conclude with a remark about the tightness of the approximation fac-
tor of PartitionByPopularity(2). We provide in [17] a particular example
of inputs to OPP for which the algorithm indeed produces a result 4 times the
value of the optimal solution (it is open whether the 8 factor for OPPde is indeed
tight). Our experiments[17] show however that this algorithm yields in practice
results much better than its worst case bound.

The OrderByPopularity algorithm Our second approximation algorithm is
of polynomial time complexity. While its worst-case constant factor is the same
as that of PartitionByPopularity, it yields in practice even better results.
The algorithm first sorts the information objects according to their popularity,
and puts them (in sorted order) into an array. To partition the objects it splits
the array into non-overlapping intervals. Each partition contains the objects in
the corresponding interval. To find the optimal splitting it employs standard
dynamic programming. The overall complexity of the dynamic programming
phase here is o(|g| · |O|2): There are o(|O|2) possible intervals (i.e. partitions)
to check, and the contribution of each partition to the overall length of the
k-samples can be computed in time linear in g.

It is easy to see that partitions obtained by Methods 1 and 2 described
previously, as well as by PartitionByPopularity, all belong to the search
space of this algo.: in all these algorithms, each partition, when sorted internally
by object popularity, forms a continuous interval of the overall popularity order of
objects. The k-samples constructed by OrderByPopularity are thus assured
to be at least as compact as those generated by the previous algos.

4 Non-Uniform Sampling

The sampling methods described in the previous section build on standard P2P
uniform sampling tools. An alternative approach, based on non-uniform sam-
pling, is considered briefly next. We first show that, given an objects-providers
graph g and a set O of requested objects, the minimal bound on the size of the
k-samples (for O) can be determined in time linear in g. Next we describe a
non-uniform sampling method achieving this bound.

Size Consider a P2P network with a set N of peers providing some object in O.
Let p be some provider node in the object-providers graph g. We denote by op

the least popular object in O that p provides. Note that for any object o ∈ O,
SPop({o}) · |N | is the absolute number of nodes that provide o (for definition
of SPop see Sec. 3). Define X̄p = k·w(p)

SPop({op}) . Denote l̄ =
∑

p∈g X̄p, and l =
⌈
l̄
⌉
.

We claim that l is the minimal possible bound on the size of the k-sample for
O. A proof to the claim is in [17].

Sampling To generate a sample of this size, we sample the network peers, non-
uniformly: For every provider node p in the graph g, each of the nodes n that it
represents is selected with probability Xn = k

SPop({op})·|N | . In [17] we describe
a simple distributed P2P algorithm to perform such sampling. The algorithm

is an adjustment of an existing P2P uniform-sampling method (RanSub [16])
to non-uniform sampling. Let K be the set of sampled peers. To complete the
k-sample’s definition, we define what subset of peers (K0 ⊆ K) is returned by
Providers(o) for every object o ∈ O. To ensure fairness, Providers(o) samples
peers from K as follows: Each peer n ∈ K that provides o is chosen to be in Ko

with probability k
SPop({o})·|N |/Xn

5. We prove in [17] that the sampling is fair
and that E[|Ko|] ≥ k.

5 Related Work and Conclusion

We studied in this paper the problem of peer sampling for the dissemination
of data in a peer-to-peer network. We introduced the notion of k-samples - fair
samples that contain a sufficient number of providers for each requested object.
We then proposed algorithms with varying complexity for the generation of
compact k-samples. To illustrate the benefit that our new sampling techniques
can bring to existing data dissemination platforms, we tested experimentally
the performance improvement that can be obtained by incorporating them in
the popular BitTorrent[2] platform, showing significant gain. The experimental
result are reported in[17]. Two questions that remain open are the existence of
an exact polynomial solution for OPPde in the case of two object popularities,
and the tightness of the 8 factor in the approximation algorithm for OPPde.

Peer sampling is used extensively in epidemic/gossip-based methods for dis-
seminating information between network nodes. Such data dissemination is the
basis of a wide range of application, including replicated databases [1], content
distribution [11], failure detection [20] and probabilistic multicast [9]. Those
methods depend on nodes acquiring information about other nodes in the net-
work, or a sample in large networks. Peer sampling is also used in a variety of
P2P systems (e.g. [4]) and for load balancing [7]. The compact samples generated
by our algorithms may help to reduce the communication overhead in such ap-
plications. There has been an extensive previous work on uniform peer sampling
in P2P networks, ranging from dedicated techniques developed for a particular
system or protocol (e.g. [8]), to general-purpose sampling algorithms (e.g. [16,
13]). All these methods sample each requested object separately, yielding, for a
set O of requested objects, samples of size bounded by k|O|. To our knowledge
the present work is the first attempt to use correlations between object requests
to reduce the sample size. Non-uniform sampling has received relatively little
attention. An algorithm in which a probability for each node to appear in the
sample may be defined, is given for instance in [21]. Our non-uniform k-sampling
method from Section 4 can be built on top of such an algorithm.

We are currently incorporating our k-sampling algorithms in the Information
Dissemination Platform (IDiP) developed in Tel Aviv University. More generally
we believe them to be useful in the general context of publish/subscribe systems
[10, 19], where users inherently have heterogeneous needs.

5 This probability is ≤ 1 because k
SPop({o})·|N|/Xn =

SPop({op})
SPop({o}) and we assumed that

SPop({op}) ≤ SPop({o}).

References

1. D. Agrawal, A. El Abbadi, and R. C. Steinke. Epidemic algorithms in replicated
databases. PODS’97.

2. Bittorrent. http://bittorrent.com.
3. J. W. Byers, J. Considine, M. Mitzenmacher, and S. Rost. Informed content de-

livery across adaptive overlay networks. SIGCOMM’02.
4. M. Castro, P. Druschel, A.M. Kermarrec, and A. Rowstron. Scribe: A large-scale

and decentralized application-level multicast infrastructure. IEEE JSAC, 20(8),
October 2002.

5. B. Cohen. Incentives build robustness in BitTorrent. In Proc. of the Workshop on
the Economics of P2P Systems, Berkeley, CA, 2003.

6. E. Dahlhaus, D. S. Johnson, C. H. Papadimitriou, P. D. Seymour, and M. Yan-
nakakis. The complexity of multiterminal cuts. SIAM, 23(4):864–894, 1994.

7. M. Dahlin. Interpreting stale load information. The 19th IEEE Int. Conf. on
Distributed Computing Systems (ICDCS), May 1999.

8. P. Eugster, S. Handurukande, R. Guerraoui, A. Kermarrec, and P. Kuznetsov.
Lightweight probabilistic broadcast. In Proc. of The Int. Conf. on Dependable
Systems and Networks (DSN 2001), July 2001.

9. P. T. Eugster and R. Guerraoui. Probabilistic multicast. In Proc. of the Int. Conf.
on Dependable Systems and Networks (DSN’02), June 2002.

10. F. Fabret, H.-A. Jacobsen, F. Llirbat, J. Pereira, K. Ross, and D. Shasha. Filtering
algorithms and implementation for very fast publish/subscribe systems. In Proc.
of ACM SIGMOD’01.

11. M. J. Freedman, E. Freudenthal, and D. Maziéres. Democratizing content publica-
tion with Coral. In Proc. 1st USENIX/ACM Symp. on Networked Systems Design
and Implementation (NSDI ’04), 2004.

12. M. R. Garey and D. S. Johnson. Computers and Intractability, A Guide to the
Theory of NP-Completeness. W.H. Freeman and Company, 1979.

13. C. Gkantsidis, M. Mihail, and A. Saberi. Random walks in peer-to-peer networks.
INFOCOM’04.

14. M. Jelasity, R. Guerraoui, A. Kermarrec, and M. van Steen. The peer sampling
service: Experimental evaluation of unstructured gossip-based implementations.
5th Int. Middleware Conference, Toronto, October 2004.

15. D. Kostic, R. Braud, C. Killian, E. Vandekieft, J. W. Anderson, A. C. Snoeren,
and A. Vahdat. Maintaining high bandwidth under dynamic network conditions.
USENIX, 2005.

16. D. Kostic, A. Rodriguez, J. Albrecht, A. Bhirud, and A. Vahdat. Using random
subsets to build scalable network services. In Proc. of USITS’03, 2003.

17. T. Milo, A. Sagi, and E. Verbin. Compact samples for data dissemination (full
version). Tech. Report. http://www.cs.tau.ac.il/ milo/work/Samples.pdf.

18. Y. Minsky, A. Trachtenberg, and R. Zippel. Set reconciliation with nearly optimal
communication complexity. Int. Symp. on Information Theory, June 2001.

19. M. Petrovic, H. Liu, and H. Jacobsen. CMS-ToPSS: efficient dissemination of RSS
documents. VLDB’05.

20. S. Ranganathan, A. D. George, R. W. Todd, and M. C. Chidester. Gossip-style
failure detection for scalable heterogeneous clusters. Cluster Computing, 4(3):197–
209, July 2001.

21. M. Zhong, K. Shen, and J. Seiferas. Non-uniform random membership management
in peer-to-peer networks. INFOCOM’05.

