
Boosting Topic-Based Publish-Subscribe Systems with
Dynamic Clustering ∗

Tova Milo Tal Zur Elad Verbin
School of Computer Science, Tel Aviv University

{milo,talzur,eladv}@post.tau.ac.il

ABSTRACT
We consider in this paper a class of Publish-Subscribe (pub-sub)
systems called topic-based systems, where users subscribe to topics
and are notified on events that belong to those subscribed topics.
With the recent flourishing of RSS news syndication, these systems
are regaining popularity and are raising new challenging problems.

In most of the modern topics-based systems, the events in each
topic are delivered to the subscribers via a supporting, distributed,
data structure (typically a multicast tree). Since peers in the net-
work may come and go frequently, this supporting structure must
be continuously maintained so that “holes” do not disrupt the events
delivery. The dissemination of events in each topic thus incurs two
main costs: (1) the actual transmission cost for the topic events, and
(2) the maintenance cost for its supporting structure. This mainte-
nance overhead becomes particularly dominating when a pub-sub
system supports a large number of topics with moderate event fre-
quency; a typical scenario in nowadays news syndication scene.

The goal of this paper is to devise a method for reducing this
maintenance overhead to the minimum. Our aim is not to invent yet
another topic-based pub-sub system, but rather to develop a generic
technique for better utilization of existing platforms. Our solution
is based on a novel distributed clustering algorithm that utilizes cor-
relations between user subscriptions to dynamically group topics
together, into virtual topics (called topic-clusters), and thereby uni-
fies their supporting structures and reduces costs. Our technique
continuously adapts the topic-clusters and the user subscriptions
to the system state, and incurs only very minimal overhead. We
have implemented our solution in the Tamara pub-sub system. Our
experimental study shows this approach to be extremely effective,
improving the performance by an order of magnitude.

Categories and Subject Descriptors. C.2.4 [Distributed Systems]:
Distributed applications; C.2.1 [Network Architecture and Design]:
Distributed networks.
General Terms. Algorithms, Performance, Experimentation.
Keywords. Publish-subscribe, Peer-to-Peer, Dynamic clustering.

∗The research has been partially supported by the European Project
EDOS and the Israel Science Foundation.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD’07, June 11–14, 2007, Beijing, China.
Copyright 2007 ACM 978-1-59593-686-8/07/0006 ...$5.00.

1. INTRODUCTION
The amount of information available to Internet users is increas-

ing rapidly. The need of users to be constantly updated with an
up-to-date, accurate, and relevant data, out of this ocean of infor-
mation, makes the publish-subscribe interaction scheme (pub-sub,
for short) particularly appealing. In a pub-sub system, subscribers
express their interest in certain events (e.g. the appearance of new
relevant data item), and are subsequently notified of any event, gen-
erated by a publisher (information provider), that belongs to their
registered interest. Pub-sub systems have raised considerable inter-
est in the research community over the years. In this paper we fo-
cus on a relatively simple class of such systems, called topic-based
systems, where users subscribe to topics and are notified on events
that belong to those subscribed topics. With the recent flourishing
of RSS news syndication, these systems are regaining popularity
and are raising new challenging problems.

In most of the modern platforms for topic-based event notifica-
tion, the events in each topic are delivered to the subscribers via a
supporting, distributed, data structure (typically a multicast tree).
Since peers in the network may come and go frequently, this sup-
porting structure must be continuously maintained so that holes do
not disrupt the delivery of events. The dissemination of events in
each topic thus incurs two main costs: (1) the actual transmission
cost for the topic events, and (2) the maintenance cost for its sup-
porting structure. This maintenance overhead becomes particularly
dominating when a pub-sub system supports a large number of top-
ics with moderate event frequency; a typical scenario in nowadays
news syndication scene.

The goal of this paper is to devise a method for reducing this
maintenance overhead to the minimum. Our aim is not to invent yet
another topic-based pub-sub system, but rather to develop a generic
novel technique for better utilization of existing platforms. Our
solution takes advantage of correlations between user subscriptions
to group topics together, into virtual topics (called topic-clusters),
and thereby unifies their supporting structures and reduces costs.

Before presenting our results let us briefly highlight some of the
main properties of pub-sub systems in general, and topic-based
ones in particular, and explain how a good solution to the prob-
lem addressed in this paper can contribute to better performance of
such systems.

Background. Pub-sub is a distributed computing paradigm that
consists of three principal components: subscribers, publishers, and
an infrastructure for event delivery. Subscribers express their in-
terest in an event or a pattern of events (say, the publication of
new sports news). Publishers (e.g. CNN’s sport department) gen-
erate events (e.g. post news). The infrastructure is responsible
for matching events with the interests and sending them to the
subscribers. Based on the way the subscribers specify their inter-

est, pub-sub systems can be classified into two main categories:
topic-based and content-based. In topic-based pub-sub systems,
subscribers specify their interest by subscribing to a topic, also
known as feed, channel, subject, or group. Each event produced
by the publisher is labeled with a topic and sent to all the topic sub-
scribers. In other words, publishers and subscribers are connected
together by a predefined topic. In content-based systems, on the
other hand, subscribers specify their interest through event filters,
which are boolean queries on the events content. Published events
are matched against the filters and sent to the subscribers if they
satisfy their specified filters.

Topic-based pub-sub is rather static and basic compared to a
content-based one. Its simplicity however has the advantage of al-
lowing for a very efficient implementation and a simple, intuitive,
user interface. Content-based pub-sub typically requires more so-
phisticated protocols with higher runtime overhead, as well as more
sophisticated user interaction. Because of this additional complex-
ity, one generally prefers to use a topic-based pub-sub in contexts
where events divide naturally into groups that correspond to users
interest. A typical example is the increasingly popular RSS news
syndication[16]. An RSS system is a simple topic-based pub-sub
system. Publishers publish their news by putting them into an RSS
feed and providing the URL for the feed on their website. RSS
users subscribe to an RSS feed by specifying its URL to their RSS
readers. It is interesting to note that most existing RSS applications
rely on a rather primitive implementation where RSS readers poll
the feeds periodically. But with the continuous dramatic increase
in the number of RSS users, it is anticipated that, for scalability,
future implementation will move to push-based platforms.

To allow for scalability, most modern topic-based platforms [4,
30, 18, 22] are based on a Peer-to-Peer architecture. More specif-
ically, they often run over Distributed Hash Table (DHT) systems
[21, 24, 29] and manage their operative layer using the DHT ex-
ported functions (API). In that sense, the DHT acts as a mediator
layer between the underneath network and the system core. For
each topic the system allocates a dedicated distributed structure (es-
sentially a multicast tree) over the DHT, which serves as medium
for delivering the events. Since peers may leave the network unex-
pectedly, the structure must be continuously maintained so that the
delivery of events is not disrupted.

In all the topic-based pub-sub systems that we are aware of, the
structures are built and kept separately for each topic, and the main-
tenance cost of each structure is proportional to the number of sub-
scribers. A large number of topics each having a large number of
subscribers entails a high overall maintenance cost. So the question
motivating the present work is can this overhead be avoided or at
least be significantly reduced?

It turns out that the answer is often positive. The key observation
is that, in practice, one can typically detect correlations between
users subscriptions, which can be used to group topics and reduce
the overall maintenance cost. As a simple example, consider two
popular news websites, CNN.com and FoxNews.com, each provid-
ing, among others, a Headlines feed. In a typical pub-sub system,
each of the feeds would be modeled as a distinct topic, and the
system would keep (and maintain) two separate structures for dis-
seminating their corresponding events. Now, assume that we have
a large number of “news addicts” that are subscribed to both top-
ics. If we create a topic that is the union of the two and subscribe
those users directly to the merged topic, instead of the individual
ones, the redundancy in the underlying structures would be elimi-
nated. The overall structures size would be reduced and hence also
the maintenance cost. Furthermore, if it happens that a majority of
CNN Headlines subscribers are also subscribed to FoxNews head-

lines, and the events frequency in FoxNews is not too high, it may
be cost effective to eliminate the individual CNN topic all together,
subscribing all its users to the merged CNN-FoxNews topic and
simply provide those few users not interested in FoxNews a local
filter that filters out the redundant events. In the above example the
correlation between the user subscriptions is due to the fact that the
topics provide semantically similar information. In general, there
may be many other reasons for such correlations. For instance,
users that are subscribed to updates for a given piece of software
(say the free bitmap image editor GIMP [25]) are likely to be also
subscribed to updates of other software pieces on which the given
software depends (e.g. GTK+, libart and Pango [9]).

Challenges. To improve performance, we would like to form
the “best” topic-clusters, (and correspondingly determine to which
topics/topic-clusters each users should subscribe), so that the over-
all cost of events delivery and structures maintenance in the system
is minimized. While this may appear to be a traditional cluster-
ing problem, there are three requirements, derived from the specific
context, which together make the problem particularly challenging.
Adaptivity. A P2P pub-sub environment has a dynamic nature:
users, topics and publishers may come and go; users may change
interests; the events frequency in the various topics may change
over time. A good solution thus must have a dynamic nature, con-
tinuously adapting the topic-clusters and the user subscriptions to
the current system state.
Distribution. The decentralized P2P nature of pub-sub systems,
where no central coordinator has full knowledge about the system’s
state and the users subscriptions, calls for a corresponding distrib-
uted clustering algorithm.
Low overhead. Finally, the continuous clustering efforts, as well
as the adjustment of users subscription, should incur only very min-
imal overhead for the saving it brings to be meaningful.

While each of these aspects have been addressed, often sepa-
rately, by previous research in the area of clustering (see Section 6
for an overview), to our knowledge none of these works provides
a comprehensive solution that can be employed in the given con-
text. In particular, many works aim at forming disjoint clusters,
which is not a requirement here (and may indeed lead to inferior
performance, as shown in our experiments.)

Results. The contributions of this paper are the following.
• We introduce a simple generic model for describing the cost

of events delivery and structures maintenance in a pub-sub
system with topic-clusters.

• Based on this model we present a dynamic distributed clus-
tering algorithm that continuously adapts the topic-clusters
and, resp., the user subscriptions, to the changing system
state. The algorithm employs local cluster updates to change
the overall system configuration. Each local update is per-
formed only when it is estimated to be (globally) cost effec-
tive. Furthermore, to minimize the overhead involved in gain
estimations, a probabilistic component is employed to guar-
antee that (with high probability) gain estimation are com-
puted only for updates that are likely to be beneficial.

• We have implemented the above algorithm in the Tamara
pub-sub system. Tamara uses a standard popular topic-based
pub-sub platform (Scribe [4]) to manage topics, topic-clusters,
and user subscriptions. Our new dynamic topic-clustering al-
gorithm is used to automatically group topics together, into
virtual topics, and redirect the publishers’ event notifications,
as well as the users subscriptions, to these virtual topic. Our
experiments shows that, compared to the standard use of Scribe,
Tamara improves the performance by an order of magnitude.

It should be stressed that while our implementation uses Scribe to
manage topics and user subscriptions, the technique that we pro-
pose is generic and can similarly be used to boost the performance
of other existing topic-based pub-sub platforms.

The grouping of topics into sets has been previously proposed
in the literature in a different context: To provide users with vary-
ing subscription granularity it was suggested to group topics into
sets forming a sub-set hierarchy [26]. A main difference with the
present work is the static nature of that grouping. In contrast our
solution adapts continuously the topic-clusters to the user needs,
guaranteeing, as we shall see, stable good performance even when
users interests shift significantly.

The paper is organized as follows. Section 2 provides the nec-
essary background for our study and presents the cost model used
in the rest of the paper. Section 3 presents our dynamic distributed
clustering algorithm and Section 4 describes the users subscription
process. Section 5 describes the system implementation and exper-
iments. Finally, Section 6 concludes with related and future work.

2. PRELIMINARIES
We start by describing the main features of a typical topic-based

pub-sub system and next identify aspects that need to be added to
support topic-clusters. Based on this we develop a simple generic
cost model that will serve as the basis of the topics clustering algo-
rithm presented in the next section. To give a concrete example, we
use Scribe [4], a popular topic-based pub-sub system, as a running
example throughout the paper, and explain how our ideas can be
used to boost its performance.

Topic-based Pub-Sub. The interfaces of typical P2P topic-
based pub-sub systems share four common operations: CREATE,
PUBLISH, SUBSCRIBE and UNSUBSCRIBE. The usage scenario is
simple: To generate events, one must first CREATE topics. Au-
thorized users (e.g. using proper credentials for access control [4,
21]), also known as the Publishers, declare and create topics based
on their suggested service. Each topic is virtually represented by
an individual peer (often called a channel), which is recognized by
a unique ID (called a topic-ID), and serves as a mediator between
the publishers’ side and the subscribers’ side. To publish an event
(send a message) for a given topic, the publisher calls the PUB-
LISH operation with a specific topic-ID. The message is passed to
the appropriate channel and propagated from it to the topic sub-
scribers. To become subscribers of a given topic, interested users
call the SUBSCRIBE operation, with the appropriate topic-ID. The
corresponding UNSUBSCRIBE operation removes the subscription.

Scribe. Many modern topic-based pub-sub platforms [4, 30, 18,
22] run over Distributed Hash Table (DHT) systems [21, 24, 29]
and manage their operative layer using the DHT exported func-
tions (API). Scribe [4] is an example for one such popular system.
It is built on top of a DHT overlay called Pastry [21]. Upon a topic
declaration, Scribe uses Pastry to locate a participating peer, using
the topic-Id as a search key. This node serves as the topic channel.
Following that, the subscribers to each topic form a distributed mul-
ticast tree which consists of the union of Pastry’s routing paths from
all subscribers to the channel peer, which now acts as the root of the
topic multicast tree. The peers in this multicast tree include the sub-
scribed peers, and often also some additional “helper” peers, that
happen to reside those Pastry’s routing paths from the subscribers
to the channel, and are “recruited” to assist in disseminating the
topic events. (See [4] for details.) The system’s operational cost, in
terms of communication, consists of two main ingredients:

Event dissemination To notify the subscribers on a topic update,
the publisher sends a Publish message to the topic’s channel (root
of the multicast tree). The message is then disseminated through
the multicast tree. The dissemination cost is proportional to the
tree size.
Structure maintenance Scribe uses a ”keep alive” mechanism to
maintain the completeness of the multicast tree and to detect bro-
ken edges. It is based on a simple principle where each partici-
pating node must notify its status to at least one other node that it
is alive, or else the node assumed to have failed and is eventually
ignored. We omit the algorithmic details and only note that this
maintenance is typically performed periodically, with the cost of
each maintenance round being proportional to the size of the tree.
Some optimization techniques can be applied, for topics with very
frequent events, encapsulating the “keep alive” messages with the
disseminated events. Such improvements are however rarely ap-
plicable to real life environments, since the frequencies of events
are relatively low compared to the minimum time interval, between
maintenance activities, that is needed for keeping the tree intact.

Topic-clusters. To reduce the systems’ maintenance cost, we
propose to group topics with similar sets of subscribers into a vir-
tual topic, which we call a topic-cluster, thereby unifying their un-
derlying supporting structures. Let us explain how pub-sub system
with topic-clusters operates. Just like individual topics, each topic-
cluster is given a unique id and is represented by a channel. When
a cluster is created, the channels of its topics are informed. Now,
when a publisher wishes to publish an event for a given topic, it no-
tifies the topic’s channel, which propagates the notification to the
channels of all those clusters to which the topic belongs. The chan-
nels (of the individual topic and its clusters) then disseminate the
event to their subscribers. Users may be subscribed to individual
topics as well as to topic-clusters. In the latter case they get noti-
fied of the events of all the topics associated with the cluster. If a
user that is subscribed to a cluster happens to be interested only in
a subset of the cluster topics, a local filter is activated to eliminate
the irrelevant events.

In a typical usage scenario, a user declares her interest in a set
of topics. The system then determines a subscription policy for the
user, namely a set of topics and topic-clusters that covers the user’s
interests, and subscribes her to them (possibly installing an appro-
priate filter to eliminate redundant events). When a user changes
her interests she informs the system and it adjusts her subscriptions
accordingly. The clusters shape is continuously optimized by the
system to best fit users interests, (with the users subscriptions be-
ing adjusted, when needed, accordingly).

Observe that when a subscriber is interested in all the topics of-
fered by a given cluster, subscribing her to the cluster, rather than
to the individual topics, is likely to be cost effective w.r.t. structures
maintenance as it eliminates the redundancy in the structures of the
individual topics, thereby reducing the overall structures size. On
the other hand, when a subscriber is interested in some of the clus-
ter’s topics, but not all, the reduction in maintenance comes at the
expense of an increased cost for event dissemination - some redun-
dant events are now being sent to the user and filtered upon arrival.
The tradeoff between the saving in structure maintenance and the
possible increase in event dissemination is a byproduct of the clus-
ters granularity. These need to be determined carefully.

Cost computation. To make this more precise we use the fol-
lowing notation. Let S be a set of subscribers, let T be a set of
topics, and let C ⊆ 2T be a set of (not necessarily disjoint) subsets
of topics from T , which we call topic-clusters. For a subscriber
s ∈ S, we denote the subset of topics from T that interest s by

interests(s). At any given moment, s may be subscribed to some
individual topics as well as topic-clusters. We denote these sub-
scriptions by topics(s) and clusters(s), respectively. We assume
that the subscriptions of each subscriber cover her interests, namely
interests(s) ⊆ topics(s) ∪S

c∈clusters(s) c
For a topic t ∈ T (resp. cluster c ∈ C), the total number

of its subscribers is denoted by size(t) (resp. size(c)). Namely
size(t) =| {s|s ∈ S, t ∈ topics(s)} |, and size(c) =| {s|s ∈
S, c ∈ clusters(s)} |.

Our measurement of cost, for events dissemination and structure
maintenance, is in terms of the overall number of messages ex-
changed between peers. To simplify we assume that all messages
are of approximately the same size. Similar development can be
done for the case where messages of different types have different
sizes. We assume that for all topics maintenance is performed pe-
riodically, say, every M seconds. Here too a similar development
can be done when topics have distinct maintenance intervals. The
average number of events, for a topic t, sent by the publisher within
a maintenance interval M is denoted by freq(t, M). For brevity,
when M is clear from the context we omit it and use freq(t).
Maintenance Cost The efforts spent on structure maintenance within
time interval M consist of one maintenance activity for each topic
t ∈ T and each topic-cluster c ∈ C, as described by the formula
MC (for Maintenance Cost) below.

MC =
X

t∈T

costm(size(t)) +
X

c∈C

(costm(size(c)) + costa(|c|))

The formula uses two functions, costm and costa. The function
costm gets as input the number of the topic(-cluster) subscribers
and models the average maintenance cost for a channel with that
many subscribers. In practice, the exact value of the function at any
given moment depends also on the current network topology and
the location of the channel and the subscriber peers in this topology.
(For instance, in Scribe, costm depends on the exact size of the
multicast tree, i.e. the number of subscribers plus the number of
“helper” peers participating in the tree.) For simplicity we use here
instead an average cost estimation. The function costa models,
for each cluster, the cost of maintaining the association between
the cluster and each of its topics. Given the number of topics in the
cluster, costa computes the average cost of maintaining association
with that many topics.
Dissemination Cost The dissemination of an event involves (1) no-
tifying the responsible channel (of a topic or a cluster) and then (2)
sending the event from the channel to the subscribers. In our cost
computation we use two functions, costn and costd, that model,
resp., the cost of notifying the channel and the cost of dissemi-
nating the event to its subscribers. costn has no parameters while
costd gets the number of channel subscribers as input. Here again
the functions provide average cost estimation. We assume that the
channel of each individual topic maintains the list of clusters to
which the topic belongs and notifies their respective channels upon
events arrival. The efforts spent, within the same time interval M
on events dissemination, are thus described by the formula DC (for
Dissemination Cost) below.

DC =
P

t∈T

freq(t)×[(costn()+costd(size(t)))+
X

{c|t∈c}
(costn()+costd(size(c)))]

Overall Cost The overall efforts, spent in interval time M , on struc-
ture maintenance and events dissemination is termed Overall Cost
(abbr. OC). Clearly OC = MC + DC.

The OC at a given moment naturally depends on the current
topic-clusters and the user subscription. For good performance it is

desirable that the clusters shape and the user subscriptions at each
moment are such that they minimize the OC. Since the environment
is dynamic (users, topics and publishers may come and go; users
may change interests; the events frequency in the various topics
may change over time), to keep the OC low, the clusters as well as
the user subscriptions must be continuously adapted to the system
state. As we shall see next, this adaptation also incurs some cost.
A major challenge is thus to keep a low OC while not spending too
much efforts on clusters and subscriptions update.

3. TOPIC CLUSTERS
To run a pub-sub system with topic-clusters, two main issues

need to be addressed. The first is the cluster creation and the con-
tinuous adaptations of their shape to the system needs (considered
in this section) and the second is the user subscriptions (considered
in the next section).

The decentralized P2P nature of the pub-sub system calls for a
corresponding distributed clustering algorithm. Our algorithm is
based on a set of local ”cluster update” operations, performed by
individual channels (of topics and clusters) consulting only a rela-
tively small neighborhood. These operations include: the grouping
of two individual topics to form a new cluster; the addition of a
topic to an existing cluster; the merge of two existing clusters into
a single cluster; and conversely the removal of a topics from a clus-
ter and the destruction of clusters.

Prior to each update, its contribution to the reduction of the Over-
all Cost, OC (as defined in Section 2), is estimated. Only up-
dates that are determined to be beneficial are performed. It should
stressed that it is impractical to try and evaluate the exact benefit
that a given update may bring - this requires gathering information
about the full network state and the possible affect of the update
on all users; clearly an expensive task in our distributed P2P set-
ting. Consequently, when estimating the effect of an update, we
restrict our attention to a limited part of the network (to be detailed
below) and execute the update only if it is proved beneficial w.r.t.
that part. Our method is safe in the sense that it underestimates
the potential benefit to the whole network. This means that all the
updates that we decide to perform are guaranteed to improve the
system’s overall state (although we may miss some other beneficial
updates). Our experimental study, described in Section 5, confirms
that this safe approach provides a good tradeoff between the gained
performance improvements and the efforts spent on them.

Since each such cost estimation nevertheless consumes some re-
sources, we employ in our algorithm probabilistic components to
guarantee that (with high probability) only useful updates (and their
relevant measurements) are indeed being considered.

In the reminder of this section we consider each of the update op-
erations. For each operation we explain (1) how its contribution to
the OC is calculated, (2) what triggers the cost estimation (and con-
sequently the update), and (3) how the update itself is performed.

3.1 Adding a topic to an existing cluster
The first update operation that we analyze is the addition of a

topic to an existing cluster. This will prove useful later for the
analysis of related operations like the merge of two topics to form
a new cluster and the removal of topics from an existing cluster.

Benefit estimation. Assume that a set s̃ ⊆ S of subscribers is
subscribed, among others, to a cluster c and to a topic t̄ not belong-
ing to c. Would it be more cost effective to add the topic t̄ to the
cluster c, and consequently remove the users subscription to t̄?

The two alternatives are depicted in Figure 1. In the figure, Tc

denotes the set of topics in the cluster c. Sc denotes the set of

subscribers subscribed to c. It includes two subsets: a group s̃ ⊆ Sc

of subscribes that are also subscribed to t̄, and the remaining set of
subscribers Sc \ s̃. The figure details only partial information about
the users: Users in both groups may also be subscribed to other
topics and clusters (not shown in the figure). In particular, some of
the users in Sc \ s̃ may also be interested in t̄ but already get it from
other clusters (consequently they are not directly subscribed to t̄).
Similarly, there may be additional subscribers to t̄ besides those of
c (namely |s̃| 6 size(t̄)). These are also not shown in the figure.

cc

(1) (2)

Tc Tc
t

t+{ }

s~s~

S cS c

Figure 1: Add a topic to a cluster?

Let E1 be an environment where the topic t̄ is not a member of
the cluster c (as in part 1 of Figure 1), and let E2 be environment
obtained from E1 by adding t̄ to c and removing, correspondingly,
the subscription of the s̃ users to the topic (as in part 2 of the fig-
ure). If we consider the OC formula described in Section 2 for the
two environments, we see that the only components that change are
those regarding the portion of the network depicted in Figure 1. Let
OC1 and OC2 denote OC restricted to these parts in the two envi-
ronments E1 and E2, resp. More formally, let size1(t̄) denote the
number of subscribers to t̄ in E1, and let size2(t̄) = size1(t̄)−|s̃|
be the number of its subscribers in E2.
OC1 = costm(size1(t̄))+costm(|Sc|)+costa(|Tc|)+

X

t∈Tc∪{t̄}
DC1(t)

OC2 = costm(size2(t̄))+costm(|Sc|)+costa(|Tc|+1)+
X

t∈Tc∪{t̄}
DC2(t)

where DC1 and DC2 are obtained from the 2nd line of the DC
formula in Section 2 by instantiating size(t̄) with size1(t̄) and
size2(t̄) resp. It is easy to see that if OC2 < OC1 then adding
t̄ to c and removing the subscription of the s̃ users to the topic is
beneficial. Note that it is possible that further improvement may be
obtained by changing subscriptions of other users according to the
new configuration. But even if all other subscriptions stay the same,
we are still guaranteed to have a better overall system performance.

To get some intuition about the behavior of the above formula, let
us consider a concrete simple example. Assume that we are given
a pub-sub system where the cost functions have the following be-
havior: The cost of event dissemination and structure maintenance
for a given topic/cluster is roughly the same as the number of its
subscribers, namely costd(N) = costm(N) = N ; The cost of
maintaining the associating between a cluster’s channel and those
of its associated topics is roughly the number of topics in the clus-
ter, namely costa(N) = N ; Finally, channels are notified of pub-
lished events in a constant time, i.e. costn() = 1.

Instantiating the above formula we get that the update is benefi-
cial if OC2 −OC1 = freq(t̄)(|Sc|+ 1− |s̃|) + 1− |s̃| < 0. Or, put
differently, when |s̃| >

1+freq(t̄)(|Sc|+1)
1+freq(t̄)

. The principle that the
formula highlights is simple; the higher the frequency of events in
t̄ is, the more interested users among c’s subscribers are required in
order to make the addition of t̄ to c profitable.

To see a numerical example, assume we have a cluster c with
10,000 subscribers (i.e. |Sc|=10,000), and freq(t̄) = 0.1. Then
we have 1+freq(t̄)(|Sc|+1)

1+freq(t̄)
= 910. Meaning, that as soon as the

number of interested users |s̃| passes 910, the update is profitable.

Triggering benefit estimations. Assume that an update of
the above form was determined not to be profitable in a given envi-
ronment. Looking at the formula above we can see that the update
may become profitable if, for instance, the frequency of events in t̄
decreases, the overall number of subscribers to c decreases, or the
size of the subset that register to t̄ increases.

The average frequency of events in a given topic can easily be
maintained by the topic channels. Similarly, a rough estimation
of the number of subscribers to a given channel can also be eas-
ily maintained as part of the maintenance of its underlying struc-
ture. A decrease in their value, below a certain threshold derived
from the formula, can be used to trigger a new benefit estimation
for the update. Tracking an increase in the number of cluster sub-
scribers that are also subscribed to the given topic is more tricky. A
naive solution would be to reevaluate benefits whenever a user de-
clares her interest in a topic t̄. Observe however that if the threshold
is high, it may take many subscriptions (hence many useless cost
reevaluation) before reaching a turnover point. For instance, in our
previous example, it may take 910 subscriptions to t̄ before the
update becomes beneficial. To save redundant work we introduce
a probabilistic component that assures, with a high probability, to
eventually trigger the update when beneficial, while saving many
unnecessary computations.

The process consists of three steps. When a user subscribes to t̄
we first toss a coin (with probabilities as detailed below), to decide
whether this new subscription should trigger a new benefit estima-
tion or not. If yes, an estimate for |s̃| is calculated by conducting
a survey among c subscribers: We determine which fraction of the
subscribers is also subscribed to t̄ (using a simple sampling tech-
nique as in [1]) and multiply it by the overall cluster size (main-
tained, as described above, by the channel).

To conclude we only need to explain how the probability ω for
winning the coin tossing is determined. We use a configurable pa-
rameter ϕ. ω is defined such that the coin tossing will succeed for
at least one of the |s̃| subscribers to t̄, with at least ϕ probability.
Namely, 1− ϕ > (1− ω)|s̃|. Consequently,

ω > 1− (1− ϕ)
1
|s̃|

To continue with our running example, recall that we needed at
least 911 users to subscribe to t̄, to make its addition to c cost effec-
tive. If we configure the argument ϕ to be 0.99, (namely we wish
to perform a benefit estimation with at least 99 percent probability),
we need to use coin tossing with winning ω > 0.005. Note that it
may be the case that the coin tossing happens to win early, before
all the required |s̃| users had been subscribed. However, since con-
secutive subscribers also toss the coin, there is a 99% probability
that another successful toss will happen again between |s̃| and 2·|s̃|
subscriptions and the update then will indeed be performed.

Overall process. Whenever a user subscribes to a topic, one of
the channels of the clusters to which the user is already subscribed
to is notified. (We explain below how we chose the specific clus-
ter). Upon receiving this notification, the channel tosses a coin,
as described above, to decide if to treat the case or not. If yes, it
conducts a survey among its subscribed users, again, as described
above, and subsequently decides whether to add the topic to itself
or not. Note that while in principle it may be useful to check all
the clusters to which the user is subscribed, to reduce the overhead
we use in our implementation a simple heuristic that chooses the
cluster that has the maximum number of filtered out topics. Our
experiment show this heuristic to be effective, but naturally other
methods may be possible.

We conclude this subsection with two remarks regarding two
closely related updated operations.

Removing a topic from a cluster. The process of removing a
topic from an existing cluster is similar to the one described above.
The removal of a topic becomes beneficial when OC2−OC1 > 0,
or, in other words, when the number of topic subscribers, |s̃|, drops
below the threshold specified previously. The same algorithm as
above is employed, except that now we track unsubscribe opera-
tions, rather than subscriptions.

Merging two topics to form a new cluster. We have con-
sidered above the addition/removal of a topic t̄ to/from an exist-
ing cluster c. A very similar analysis can be applied to determine
whether it is beneficial to merge t̄ with another topic t to form a new
cluster, (or, analogously to split the cluster into individual topics).
We omit this here.

3.2 Merging two clusters
We next consider the merge of two existing clusters. While some

aspects are similar to what we have seen above (e.g. the estimation
of the benefit to be gained for the merge) some require particular
care (e.g. the triggering of the cost estimation).

Benefit estimation. Assume that two clusters c1 and c2, share
a set t̃ of common topics and a set t̃ of common subscribers. When
is it beneficial to merge c1 and c2 into a single cluster c̃ and have
their respective subscribers register to the new cluster instead of the
two individual clusters?

The two alternatives, before and after the clusters merge, are
depicted in Figure 2. The set of users subscribed to the cluster
ci, i = 1, 2 is denoted Sci . It consists of two subsets: a group
s̃ = Sc1 ∩ Sc2 that is subscribed to both clusters, and the remain-
ing subscribers Sci \ s̃. Similarly, the set of topics in the cluster ci

is denoted Tci and is composed of two subsets: a group of topics
t̃ = Tc1 ∩ Tc2 that is common to both clusters, and the remaining
cluster topics Tci \ t̃. As before, the figure details only partial infor-
mation about the subscribers: Users may subscribed to additional
topics and clusters not shown in the figure. In particular, some of
the users in Sci\s̃ may be interested in topics that are offered by the
second cluster but get it from another source (e.g. are subscribed
directly to these topics or to other clusters that provide them). This
too is not shown in the figure.

(1) (2)

c 1 c 2

t
~

c2TTc1

c~

t
~

c1S s~ s~ S c2 Uc1S S c2

Tc1 c2TU

Figure 2: Merge clusters dilemma

Let E1 be the environment where the clusters c1 and c2 are two
distinct entities, and let E2 be the environment obtained from E1

by merging the two clusters into a new cluster c̃, eliminating the old
clusters and subscribing the users of S1 and S2 to the new cluster.
If we look at the OC formula given in Section 2, for the two envi-
ronments, we see that the only components that change are those
regarding the portion of the network depicted in Figure 2. Similar
to section 3.1 let OC1 and OC2 denote OC restricted to these parts
in the two environments, resp. Namely,

OC1 = costm(|Sc1|)+costa(|Tc1|)+costm(|Sc2|)+costa(|Tc2|)+
X

t∈Tc1∪Tc2

DC1(t)

OC2 = costm(|Sc1 ∪ Sc2 |) + costa(|Tc1 ∪ Tc2 |) +
X

t∈Tc1∪Tc2

DC2(t)

where DC1 and DC2 denote the 2nd line of the DC formula in
Section 2, using, resp., the clusters in E1 and E2 (i.e. having two
clusters in the first case and a single in the second). Here too it is
easy to see that if OC2 < OC1 then merging the two clusters, and
updating accordingly the subscription of the users, is beneficial.

To get some intuition, let us continue with our running example
and assume that we are given a pub-sub system with the same cost
functions as in Subsection 3.1. Namely, costd(N) = costm(N) =
N , costn() = 1 and costa(N) = N . Instantiating the above
formula we get that the update is beneficial if

OC2 −OC1 =

X

t∈Tc1\t̃

freq(t) · |Sc2 \ s̃|

+
X

t∈Tc2\t̃

freq(t) · |Sc1 \ s̃|

−
X

t∈t̃

freq(t)(|s̃|+ 1)− |s̃| − |t̃|

< 0

To see more closely how the formula behaves, let us further sim-
plify it by assuming that the event frequencies in all topics are ap-
proximately the same, and denote the frequency by α. We get that
the update is beneficial if

OC2−OC1 = α(|Tc1\t̃|·|Sc2\s̃|+|Tc2\t̃|·|Sc1\s̃|−|t̃|·(|s̃|+1))−|s̃|−|t̃| < 0

Again, the principle that the formula highlights is simple: the
decision whether to merge the two clusters or not is influenced by
two main factors, the number of common subscribers s̃ and the
number of common topics t̃. The bigger these groups are, the more
profitable is the merge.

To see a numerical example, assume that the two clusters c1 and
c2 share 80 topics (i.e. |t̃| = 80) and have each additionally 20
more topics (i.e. |Tc1 \ t̃| = |Tc2 \ t̃| = 20). Also assume that the
number of distinct subscribers to each of the clusters is 200 (i.e.
|Sc1 \ s̃| = |Sc2 \ s̃| = 200). How many common subscribers
should the clusters have for the merge to be beneficial? Using the
above formula we get that the merge is profitable as soon as the set
s̃ of common subscribers satisfies the inequality

|s̃| > α|Tc1 \ t̃| · |Sc2 \ s̃|+ α|Tc2 \ t̃| · |Sc1 \ s̃| − |t̃|(α + 1)

α|t̃|+ 1

Instantiated by the above numbers we get that |s̃| > 79.11.
Namely, the merge is profitable if the number of common sub-
scribers is greater than 79. Observe that this relatively low num-
ber of common users (i.e. ∼ 25% of the overall number of cluster
subscribers), is due the fact that the clusters share many common
topics (80% of the clusters size). If the number of common top-
ics would drop (say to 7 topics, i.e 25%), then the merge would
become profitable only if the number of common subscriber was
much higher (|s̃| > 466, i.e. ∼ 70%).

Triggering benefit estimations and updates. The above
formula reveals several factors that affect the usefulness of the merg-
ing of the clusters. These include (1) the event frequencies of the
topics, (2) the number of topics in each individual cluster and the
number of its subscribers, and (3) the number of the common topics
and common subscribers. As explained in the previous subsection,
it is easy to maintain an estimation (and detect changes in the val-
ues) of (1) and (2). It is slightly more tricky to maintain an estimate
on the numbers |t̃| of common topics and the number |s̃| of com-
mon subscribers. We explain how this is done below.
|t̃|: The channel of every cluster c maintains, for each of its top-

ics, a list of the ids of all other clusters to which this topic
belongs. The channel can then easily determine the number
of common topics with any other cluster, by counting in how
many lists it appears. Observe that these lists can be main-
tained with a fairly little overhead: Recall that the channel

of each topic records the clusters to which the topic belongs.
Whenever the topic is added/removed to/form a cluster, the
topic’s channel notifies the other topic clusters about the up-
date. Since topics typically belong only to a small number
of clusters, and clusters are not updated too frequently, the
overhead involved is low.

|s̃|: Recall that the channel of each cluster c maintains an esti-
mation about the overall number of its subscribers. Each
channel also samples periodically its subscribers to know to
which other clusters they are subscribed. The distribution of
answers, together with the estimation about the overall num-
ber of subscribers, allows to estimate how many subscribers
the cluster shares with all other clusters. To trigger a merge
operation, the channel of c contacts the channel of the cluster
c′ having maximum number of common subscribers, passing
to c′ its size and the number of common users and lets c′ de-
termine (using its own gathered size estimations) whether the
number of common subscribers justifies a merge. A simple
locking mechanism is used to prevent two clusters from at-
tempting to simultaneously perform the same merge, or to
merge a given cluster into two distinct clusters.

Note that in principle it may be useful to contact other clus-
ters, besides the one with maximal number of common sub-
scribers. We have chosen this heuristic to reduce overhead
(with our experiment proving it to be effective).

We conclude with two remarks.

Splitting two clusters. In principle the same formula can be
used to determine when it is beneficial to split a cluster. Observe
however that the number of possible candidate splits to be consid-
ered is exponential in the size of the cluster. To avoid the implied
overhead we decided not to include an explicit split operation in our
implementation and instead rely on a the removal of single topics
from a cluster (as described in the previous subsection) to shrink
clusters when needed.

Single topics. We have considered above the merge of two clus-
ters. If one (or both) clusters are viewed as singleton sets, similar
reasoning can be used to trigger the merge of a single topic to a
cluster or the merge of two single topics, in a analogous way to
what we have seen in the previous paragraph.

4. SUBSCRIPTION
Consider a system with a set T of topics, a set C of clusters, and

as set S of subscribers, that are possibly already subscribed to some
topics and clusters that cover their current interests. Assume that
a subscriber s ∈ S declares her interest in some additional topics,
and/or is no longer interested in some other topics. How should we
update s’s subscriptions to achieve best performance?

It easy to see that, given a set of topics that the user is interested
in, finding the optimal subscription, (namely one that covers her in-
terests while reducing the OC cost function to minimum), is diffi-
cult. Indeed, a simple reduction from the Set Cover problem shows
the problem to be NP complete (details omitted). Note that this also
implies that even the incremental version of the subscription prob-
lem, where a user that is currently subscribed in an optimal manner
changes just one of her interests, is NP complete, (or else one could
apply it iteratively to get a PTime optimal solution to the general
problem - a contradiction.) We thus employ a heuristic, using a
greedy (un)subscription algorithm, that iterates over the requested
changes in the user interests and treats each individual request for
adding/removing a topic heuristically.

We first explain how a SUBSCRIBE request to a new topic is
treated and next consider UNSUBSCRIBE.

SUBSCRIBE. First recall that for a user s, topics(s) and clusters(s)
denote, resp., the set of topics and clusters to which the user is sub-
scribed (prior to the new SUBSCRIBE request). For a topic t we
use associated(t) to denote the set of clusters to which the topic t
belongs.

Assume that a user s wishes to subscribe to a new topic t. We
first check if t belongs to any of the clusters to which s is already
subscribed (and is being currently filtered out). If yes, then we
simply update the filter, and we are done. Otherwise, we need to
choose between subscribing s directly to t, or to some new cluster
c ∈ associated(t) that includes t. Note that if s is currently sub-
scribed to some individual topics t1, . . . , tn that are also members
of the new cluster c, then, if we subscribe s to c, we can remove
these direct subscriptions - their events will be already received
from c. (Events of the other topics in c, that do not interest the user,
will be filtered out). The two alternatives are depicted in Figure 3.
Tc denotes the set of topics in the new cluster c and Sc denotes its
set of subscribers (before s expressed her interest in t.) The user
s may be also subscribed to additional clusters and topics that are
omitted from the figure for simplicity.

c c

(1) (2)

Tc

+
s

S
c

S
c

s
(filter)

...
1t

2t t n

t

...
1t

2t t n

t

...
1t

2t t n

t Tc

Figure 3: Subscribe instruction dilemma

To choose between the two alternative we use a cost analysis
similar to that of the previous section. Let t̃ = (topics(s)∪{t})∩
c be the set topics to which s is subscribed directly, in the first
alternative, and which is obtained from c, in the second alternative.
Let E1 denote the first environment and E2 the second one. If
we consider the OC formula from section 2, for the two optional
environments, we see that the only components that are different
are those regarding the portion of the network depicted in Figure
3. Let OC1 and OC2 denote OC restricted to these parts in the
two environments E1 and E2, resp. More formally, let size1(t)
be the number of subscribers for each t ∈ t̃ under E1, and let
size2(t) = size1(t)−1 be the number of its subscribers under E2.

OC1 =
X

t∈t̃

costm(size1(t))+ costm(|Sc|)+ costa(|Tc|)+
X

t∈Tc

DC1(t)

OC2 =
X

t∈t̃

costm(size2(t))+costm(|Sc|+1)+costa(|Tc|)+
X

t∈Tc

DC2(t)

where DC1 and DC2 are obtained from the 2nd line of the DC
formula in Section 2 by instantiating size(t) with size1(t) and
size2(t) resp. It is easy to see that if OC2 < OC1 then subscribing
s to the cluster c is more beneficial, and vice versa.

To continue with our running example, for a pub-sub system with
cost functions as in Section 3.1 (e.g. costd(N) = costm(N) =
N , costn() = 1 and costa(N) = N) and where topics have an
average events frequency α, subscription to the cluster is better if
OC2 − OC1 = 1 − |t̃| + α · |Tc \ t̃| < 0. Or, put differently, when
|t̃| > 1+α|Tc|

1+α
. This indeed captures the intuition that the lower the

rate of events α is, the less common topics are required to make the
subscription to the cluster beneficial.

To conclude note that one could check all the clusters in c ∈
associated(t) and choose the one with highest benefit (if any).

To reduce the overhead, we employ a simple heuristic, considering
only the cluster where the size of t̃ (i.e., |topics(s)∩c|) is maximal.

UNSUBSCRIBE. Assume that a user s looses interest in a topic t.
If s is directly subscribed to s, namely t ∈ topics(s) then we sim-
ply remove the subscription. Otherwise, if s receives t from some
cluster c, we have two alternatives. We can stay subscribed to the
cluster c and simply filter out t’s events upon arrival, or we can re-
move the subscription to c altogether and subscribe directly to those
other topics in c that are still of interest. The analysis of the two
options follows exactly the same lines as above, except that now
the set of topics to be considered is t̃ = (topics(s) \ {t}) ∩ c.

When a subscriber declares (a change in) her interests, the sys-
tem performs the (un)subscription, as described above, based on
the current clusters’ shape, and the user can immediately start get-
ting interesting events. In parallel, these new (un)subscriptions may
trigger, as explained in Section 3, some changes in the clusters
shape, which may further improve the original subscription.

5. IMPLEMENTATION & EXPERIMENTS
In order to validate our approach and demonstrate the gain in per-

formance it brings compared to traditional topics-based pub-sub,
we implemented the algorithms and ran extensive experiments. We
summarize now the main features of our implementation, and high-
light our main experimental results.

5.1 Implementation
We have implemented the above ideas in the Tamara pub-sub

system. Tamara was developed in Java on top of the popular topic-
based pub-sub platform Scribe [4] (which is itself built on top of the
DHT system Pastry[21]). Tamara exposes to users the same API as
Scribe for defining topics, publishing events, and (un)subscribing.
It uses our new dynamic clustering algorithm to automatically group
topics into clusters and redirect the publishers’ event notifications,
as well as the users subscriptions, accordingly.

Network layers. Figure 4 illustrates the layered architecture
that we adopted in our design, starting from the highest level - the
application that utilizes Tamara through its API, and ending with
the Network itself.

Internet

DHT

Publish/Subscribe

Tamara Core

Tamara API

P / S A P I

D H T A P I

Sys.

Tamara Demo Application

Figure 4: Tamara network hierarchy

Although our current implementation runs on top of Scribe and
Pastry, our design (i.e. Tamara core, see next paragraph) is generic
and can be applied to other pub-sub systems sharing similar stan-
dard features. Tamara leverages the basic event notification qual-
ities of Scribe for creating and managing its topics and its clus-
ters, and utilizes the Pastry’s capabilities for locating nodes of in-
terest. On initiation, a Tamara peer first tries to recognize the un-
derneath Network, and to connect to an already established Pastry
ring. Upon success, it further allocates a new Scribe instance using
the created Pastry node ID. In that sense, both Scribe and Pastry act
as mediator layers between Tamara and the underneath network.

Tamara core. Each network node in Tamara may play differ-
ent roles, being simultaneously a publisher, a subscriber, and/or a

channel for one or more topics/clusters. The different facets of a
node are represented by distinct entities and managed using two
main software components. (1) The Entities Manager serves as
interface between the node’s entities and the network. For any in-
coming message/request, the Entities Manager identifies the desti-
nation entity and checks the legitimacy of the request. For instance,
a “publisher” entity should not receive a “merge” request as such
requests are handled only by topic/cluster entities. The Entities
Manager may also be requested to supply necessary information
about its entities. For example, each topic entity holds informa-
tion about the average frequency of events, the list of clusters (IDs)
to which the topic belongs, and an estimation number of its sub-
scribers. (2) Each entity is implemented as a set of state machines
that run in parallel and are managed by a State Machine Manager.
Each request (e.g. ”Create a topic”) received by the entity invokes
a new machine that is in charge of its execution. The machine inter-
acts with other machines (of the same or other entities) to achieve
its goal, sending messages, performing local operations, receiving
answers, etc. The design is modular and new state machines sup-
porting additional operations can be easily integrated.

Tamara’s software is available for download and we also plan to
make it available under an open-source license.

Simulator. To estimate the gain in performance that Tamara brings
relative to a standard use of Scribe, we had built a simulator that al-
lows to emulate the two environments, with varying parameters,
and to compare their performance. The simulator is written in Java
and can be instantiated with different configurations as explained
below. At any given moment the simulator can report the current
value of OC for the running environment, as well as the value for its
two main ingredients, namely the current costs for events dissem-
ination and for structures maintenance. When emulating Tamara
the simulator can also report the additional efforts spent on clus-
ters formation, their adaptation to the changing user interests, and
on users (re)subscriptions. The simulator can also output statistical
data, like the current total number of clusters, the average number
of their associated topics, the average number of topics with direct
subscribers, the number of cluster updates, etc.

We ran two series of experiments to validate our approach. First,
we used synthetic data to vary the main parameters that may af-
fect the performance and quantify their effects on the relative gain.
Second, we used real data, in the context of a real life application
concerning the dissemination of updates of GNU/Linux software to
users. These two series of experiments are presented next.

5.2 Experiments on synthetic data
We run two types of such experiments. The first set was aimed

at quantify the quality of Tamara as a clustering algorithm. The
second focused on the dynamic aspects of the system and evaluated
the adaptability of the clustering to shifts in users interests. The
parameters we varied in the experiments are the following.
Users and topics: In both sets of experiments we ranged the num-
ber of topics from ten to three thousand and the number of users
from a few hundreds to ten thousands. As the results were practi-
cally independent of the number of topics/users we show here only
a representative sample conducted with 120 topics and 3000 users.
User interests: We considered various distributions for the user
interests, ranging uniform distribution to ones with increasingly
stronger clustering characteristics (i.e. where user interests natu-
rally divide the topics into several clusters). We show below two
representative samples, one where users’ interests form clear clus-
ters and the second where they have a uniform distribution, and use
them to explain the overall trend.

Maintenance interval: In our analysis of the Overall Cost (OC)
we assumed that, for each topic, maintenance for its underlying
structure is performed periodically, every M seconds. After a few
experiments, it became evident that increasing (resp. decreasing)
the value of M has essentially the same effect as decreasing (resp.
increasing) the average number of events being disseminated within
such an interval and the rate of changes in user interests. We thus
show below experiments for a fixed value of M of six minutes1,
while varying the other parameters.
Events frequency: To get a feeling about events frequency in real
pub-sub systems, we examined 30 RSS feed channels of five lead-
ing news sites: abcnews.com, bbc.co.uk, CNN.com, foxnews.com
and news.sky.com, considering popular topics such as Headlines,
World news, Business, Sport, Technology and Entertainment. We
used this as a base reference, and built several models for the dis-
tribution of events frequencies (in the interval M of 6 minutes).
We present here three representatives, one having the same events
distribution as the base reference, the second having more frequent
events, and the third having less frequent events. The models, re-
ferred below as the Average, Frequent and Infrequent models are
depicted in Tables 1(a), (b) and (c), resp.

Frequency % of topics
0.6-0.6 15
0.2-0.4 5
0.1-0.2 25
0.02 - 0.1 45
0.002 - 0.02 10

Frequency % of topics
1-3 5
0.5-1 20
0.1-0.5 50
0.01-0.1 20
0.001-0.01 5

Frequency % of topics
0.1-0.2 10
0.01-0.1 40
0.001-0.01 50

Table 1: (a) Average model (b) Frequent mode (c) Infrequent model

Cost functions: The Overall Cost (OC) formula uses four con-
figurable cost functions, costn and costd that model the cost of
notifying the channel and resp. disseminating the event to the sub-
scribers, costm that models the average maintenance cost for a
channel, and costa that models the cost of maintaining the asso-
ciation between a cluster and its associated topics. We have con-
ducted experiments with various values for the functions, includ-
ing in particular functions that model the average and worse case
costs for the corresponding actions in Scribe and Pastry and simi-
lar pub-sub/DHT systems (we omit the details here for space con-
straints). The experimental results that we obtained were similar
for all these functions. We present below a representative sam-
ple that uses the same cost functions as in our running example:
costn() = 1, costd(N) = costm(N) = costa(N) = N .
Experiment time and Subscription rate: To test the effect of the
rate of user subscriptions (or changes in user interests) on the sys-
tem’s performance, we have fixed the average number of requests
per users and varied the time interval in which all requests are is-
sued. In the experiments below each user subscribes/changes sub-
scription to approximately 25 topics (i.e. there is a total of 75,000
(un)subscription operations) and the overall experiment time ranges
from two month to a single day.

Quality of clustering. As mentioned above, our first set of ex-
periments aims at quantify the quality of Tamara as a clustering
algorithm. We started the system from an empty state with no sub-
scribers, let users join the system and declare their interest, watched
the clusters being formed and measured the corresponding perfor-
mance gain. In the first experiment reported below we examine a
case where the data holds strong clustering characteristics. Users
subscribe on the average of 25 topics out of the 120 available topics;
the subscriptions here were chosen so that the topics split naturally
into 10 clusters, each containing approximately 12 topics.

1This is in fact close to Scribe’s real default value for its mainte-
nance interval

Events Algo. Structure maint. Event diss. OC
Average Tamara -78.75% +45.45% -63.73 %

K-means -53.75% +9.1% -46.15%
Frequent Tamara -73.75% +15.62% -48.21%

K-means -65% +9.3% -43.75%
Infrequent Tamara -88.75% +150% -77.38%

K-means -65% 0 -61.9%

Table 2: Clusters quality

The three graphs in Figures 5(a),(b), and (c), depict the behavior
of Scribe and Tamara, for the Infrequent, Average, and Frequent
models of event frequencies, resp. The X-axis describes time (a
period of two months in which more and more users subscribe to
the system). The Y-axis describes bandwidth consumption. The
figures show the values of OC for both systems (denoted in the fig-
ure by Scribe and Tamara, resp.). For Tamara it also shows the total
operational cost (denoted in the figure by Tamara+), that includes,
in addition to OC, the costs of clusters formation and adaptation,
the subscription of users to the clusters, and the changes, when
needed to these subscription. (We count here all additional mes-
sages exchanged due to these actions). It is interesting to note that
this overhead turns out to be so low that the Tamara and Tamara+
curves practically merge. As time passes, and more and more users
subscribe, the costs increase. But is in all cases it is significantly
lower for Tamara+ than for native Scribe. We can see that the gain
somewhat increases (resp. decreases) when the events frequency
decrease (resp. increases).

To assess the quality of the clusters generated by our distrib-
uted dynamic algorithm, we have compared them to what would
have been generated by a standard centralized algorithm such a
K-means[13]2. Table 2 shows the delta (in percentages) relative
to Scribe, obtained by Tamara and K-means, for the value of OC
and its two components: events dissemination and structure main-
tenance. A negative delta (say, -65%) for a given algorithm means
better performance (i.e. the considered algorithm consumed 65%
less resources than Scribe), and vise versa. We can see that, in gen-
eral, clustering increases the cost of events dissemination (since
now users may get redundant events that are filtered upon arrival)
but greatly reduces the cost of the structures maintenance, and that
their relative weight in the overall value of OC defends on the
events frequency. Surprisingly, although K-means operates in a
centralized manner and can utilize full knowledge about the net-
work state, it nevertheless achieves less good OC cost than Tamara.
This is for two main reasons. First, like many common clustering
algorithms, K-means computes disjoint clusters. This is not neces-
sarily best for the problem at hand. Second, K-means is a general
purpose clustering algorithm that is suitable for the optimization
of a single target functions (e.g. events dissemination cost) while
Tamara is tuned to optimize the particular OC cost function that we
use here, which is the sum of two such target functions.

When the rate of user subscriptions increases, so does the cost
of cluster formation and maintenance. This is illustrated in Figures
6(a) and (b) below, where the same number of subscription as above
(75,000) is now issued in just two weeks, and in one day, resp. The
event frequencies here are based on the Average model. We can
see that at the beginning of an intense subscription period, (e.g. as
the one depicted in Figure 6(b)), Tamara spends efforts on analyz-
ing the subscriptions and forming the appropriate clusters. These
efforts pay off soon after, and the performance becomes superior to
that of native Scribe. It is important to note that at the end of such
an intense period, when the user interests become more stable, the
overhead will drop significantly and the performance will go back
close to what is described by the Tamara solid line in the figure.

2We have also examined other clustering algorithms, but since K-
means performed better we use it here as a comparison point.

Figure 5: (a) Infrequent model for event freq. (b) Average model (c) Frequent model

Figure 6: (a) Two weeks (b) One day

To conclude let us consider the case where users subscriptions
have uniform distribution, or in other words no clear dependen-
cies between topics exist. The behavior of Scribe and Tamara is
depicted in Figure 7(a). As before we have 75,000 subscriptions is-
sued during two months and events frequency based on the Average
model. Interestingly, even when no natural clusters exist, Tamara
still performs better. This is because it observes that topics with
very low event frequencies can be clustered, even when their sub-
scribers are fairly different, as the gain from less structures mainte-
nance bypasses the loss from higher cost of events dissemination.

Adaptive clustering. Our second set of experiments focused on
the dynamic aspects of Tamara. In other words, we evaluated the
adaptability of the clustering to shifts in users’ interest. We started
the system from a given configuration, with clusters that match per-
fectly current user interests, let users change their interests, and
watched the system as it adapts the clusters (and correspondingly
the users subscriptions) to the new state. In the first experiment re-
ported below we examine a case where the new set of user interests
have strong clustering characteristics. We consider afterwards the
case where the new subscriptions have uniform distribution.

The three graphs in Figures 8 (a), (b), and (c) depict the behavior
of Scribe and Tamara, for the Infrequent, Average, and Frequent
models of event frequencies, resp. The figure also shows what
would have happened if we did not adapt the clusters’ shape and
kept them, as in the beginning, for the whole run. This is repre-
sented by the SC (for Static Clusters) line in the figure.

It is evident that Tamara’s performance is superior and that the
overhead of clusters maintenance is negligible. Observe that the
cost for Scribe is stable (and high) throughout the experiments as
the overall number of users and subscriptions remains similar. For
Tamara the cost increases a bit at the beginning when users interests
start shifting and the existing clusters are not suitable anymore, but
decreases again as soon as the clusters get updated and reflect, more
and more, the new discovered dependencies between topics.

To assess the quality of the new clusters generated at the end of
the run we again compared them to what would have been gener-
ated by the K-means clustering algorithm, for the new set of sub-
scriptions. Table 3 depicts the results. It also illustrates what could
be the effect of a static approach, that ignores changes in users in-
terests and sticks to the original clusters.

Observe that, in this case, the new clustering computed by Tamara
is sometimes slightly inferior (w.r.t. OC) to that of K-means. This
is because, when starting from an given system state (clustering),

Events Algo. Structure maint. Event diss. OC
Average SC -55% +141.66% -29.34%

Tamara -70% +100% -47.82%
K-means -63.75% +8.33% -54.34%

Frequent SC -25% +39.4% -6.2%
Tamara -67.5% +30.3% -38.9%
K-means -62.5% +12.12% -40.7%

Infrequent SC -63.75% +200% -51.2%
Tamara -96.25% +275% -78.57%
K-means -65% 0 -61.9%

Table 3: Adaptive clusters quality

Tamara’s goal is not just to move to a new, more suitable, state, but
also to do the change without inflicting too much overhead (i.e. it
may not fully optimize the clustering to avoid consuming too much
resources). This is critical for the saving that the new clustering
brings to be meaningful.

Here again, when the rate of users subscription increases, so does
the cost of clusters maintenance. The results are similar to what we
have seen in the previous subsection and we omit them.

To conclude, consider the case where the new subscriptions have
uniform distribution. The results are depicted in figure 7(b). We
can see again that even when there are not salient dependencies
between topics, clustering may still be useful for unifying some
of the structures of topics with very low event frequencies. Note
however that the difference between the old clustering and the new
one is now less significant.

5.3 Experiments on real data
We tested our algorithms in the context of a real life application

concerning the dissemination of updates of GNU/Linux software
packages to users. A GNU/Linux distribution consists of thousands
of software packages. The subset of packages that each user in-
stalls depends on her particular hardware/software configuration.
To keep the software up to date, users would like to get notified
about updates to the installed packages. Dependencies exist be-
tween software packages: to install an updated package, one often
needs to have also installed updated versions for other packages
that it uses. Viewing a software package as a topic, a user that sub-
scribes to a given topic (package updates) is likely to subscribe also
to topics (updates of other packages) on which it depends. Conse-
quently there are topics that are likely to be subscribed by many
users (e.g. kernel or gcc updates), while others are subscribed by
particular user groups with common configurations.

The data that we used for our experiments was taken from FTP
logs of a Debian GNU/Linux mirror site, recording the download
requests of users during a full year. We tracked thousands of anony-
mous individual Linux users and interpreted each request for a
package download as a sign for the user’s interest in that package
(over three thousand packages all together). The download history

Figure 7: (a) Clustering for Uniform subscription (b) Adaptive clustering for Uniform subscription

Figure 8: (a) Adaptive clust. for Infrequent model (b) Average model (c) Frequent model

of users over time was used to infer changes in interests. The fre-
quencies of events (package updates) that we used is based on sta-
tistics gathered by Mandriva[14], a Linux distribution editor, over
the last six years.

Since the observed events frequency were fairly low - packages
rarely get updated more than once within a day - it is possible
to perform maintenance less frequently, namely increases mainte-
nance interval M , without risking much loss of events. Figures
9(a), (b), and (c), depict the behavior of Scribe and Tamara, for
maintenance intervals of 2, 12, and 24 hours, resp. The frequencies
of events are adjusted to the length of the maintenance interval.
The system here starts from an empty state with the Linux users
gradually joining the system and declaring their interests.

As the maintenance activities become more sparse, the savings
offered by Tamara are smaller, but still provide in the long run sig-
nificant performance improvement. In particular, even for sparse
maintenance, Tamara is cost effective as soon as 250 users join the
system, and when all the thousand users are subscribed the perfor-
mance is more that 4 times better than that of native Scribe. Similar
significant performance gains are observed when users change their
interests. We omit this here for space reasons.

6. RELATED WORK AND CONCLUSION
We studied in this paper topic-based pub-sub systems and pro-

posed a novel technique for minimizing the maintenance overhead
for their topics. Our solution is based on a new distributed cluster-
ing algorithm that takes advantage of “correlations” between user
subscriptions to dynamically group topics and thereby unifies their
supporting structures and reduces costs. Our technique continu-
ously adapts the topic clusters and the user subscriptions to the
system state, and incurs only very minimal overhead. We have im-
plemented our solution in the Tamara pub-sub system, and showed
experimentally that it is extremely effective.

The publish-subscribe paradigm have received much attention
in recent years. Research on topic-based pub-sub led to the de-
velopment of several systems, such as Scribe[4], Bayteux[30], and
CAN[19]. While different in their implementation, they share (as
described in Section 2) similar API and structure, and may employ
the clustering technique developed in this paper to improve perfor-
mance. Complementary to our work are projects like Green [23]
that introduce a middle-ware to support flexible pub-sub on top of
diverse network types (e.g. Internet vs. mobile networks).

The flourishing of RSS news syndication led to the development
of several systems (e.g. Corona[18] and FeedTree [22]) designed to

alleviate the load on RSS feed providers and allow for better scala-
bility. They optimize the polling strategy of news and/or replace it
by push technology. The clustering technique that we propose here
may help to improve performance in the push-based components of
such applications.

The grouping of topics into sets has been previously proposed in
the literature in the context of type-based pub-sub: To provide users
with varying subscription granularity, these systems grouped topics
into sets forming a sub-set hierarchy [26]. A main difference with
the present work is the static nature of this predefined grouping. In
contrast, our solution adapts, continuously, the topic clusters to the
changes in user needs. It would be interesting to try to design a suit-
able user interface that exposes the current clusters to the users, to
ease their subscription task (interpreting a subscription to a cluster
as subscription for the set of topics it currently contains.)

Much research has been devoted in the database community over
the last ten years to content delivery and data dissemination. See,
e.g., [7, 8, 5] for a very small sample. In this paper we focus on a
relatively simple class of such systems, that disseminate events of
predefined topics. The relative simplicity of these systems is pre-
cisely what makes them attractive for simple application. As men-
tioned in Section 2, content-based pub-sub allows for more flexible
subscription, based on the content of messages. Some example sys-
tems include JEDI[6], SEINA[3] and Kyra[2]. The added flexibil-
ity requires more sophisticated protocols, typically with higher run-
time overhead. The use of clustering algorithms for enhancing the
performance of content-based pub sub has been considered in [20].
However, all the algorithms considered there are centralized and
the dynamic aspect of subscription is not addressed. Distributed
clustering algorithm for content-based pub-sub has been proposed
e.g. in [28, 27]. The algorithm in [28] assumes the use of a central
coordinator. Such a coordinator may not exist in a fully distributed
P2P environment as the one considered in this paper. Furthermore,
changes to user subscriptions simply reactivate the central algo-
rithm and the minimization of this overhead is not addressed. The
adaptive algorithm in [27], on the other hand, is fully distributed,
but allows only clusters where the subscribers are interested in all
topics. It also assumes an unstructured overlay network, while the
DHT overlay used by typical topic-based pub-sub systems is struc-
tured. It would be interesting to see whether the ideas developed in
the present work are applicable to content-based systems as well.

Several distributed clustering algorithms appear in the literature,
(e.g. [12, 11, 17]), but assume static input and do not account for
changes in the data. Adaptive clustering is considered in [10, 15].

Figure 9: (a) Linux updates for M = 2 hours (b) M = 12 hours (c) M = 24 hours

But these works assume constant dimension for the clustered ob-
jects. This is not the case in our context: In a dynamic pub-sub
system, users and topics may come and go. Viewing the topics (or
users) as objects, this implies that the arity of the vectors describ-
ing the objects may changes in time. To our knowledge the present
work is the first one to provide a distributed clustering algorithm
that allows, with very minimal overhead, to continuously adapt the
topic clusters and the user subscriptions to the changing state of the
system.

7. REFERENCES
[1] J. E. Bartlett, J. W.Kotrlik, and C. C.Higgins. Organizational

research: Determining appropriate sample size in survey research.
Information Technology, Learning, and Performance, 19(1), 2001.

[2] F. Cao and J. P. Singh. Efficient event routing in content-based
publish-subscribe service networks. IEEE INFOCOM, 2004.

[3] A. Carzaniga, D. Rosenblum, and A. Wolf. Design and evaluation of
a wide-area event notification service. ACM Transactions on
Computer Systems (TOCS), 19(3):332–383, 2001.

[4] M. Castro, P. Druschel, A. Kermarrec, and A. Rowstron. SCRIBE: A
large-scale and decentralized application-level multicast
infrastructure. IEEE Journal on Selected Areas in communications
(JSAC), 20(8):1489–1499, 2002.

[5] B. Chandramouli, J. Xie, and J. Yang. On the database/network
interface in large-scale publish/subscribe systems. In Proc. ACM
SIGMOD, pages 587–598, 2006.

[6] G. Cugola, E. Di Nitto, and A. Fuggetta. The JEDI event-based
infrastructure and its application to the development of the opss
wfms. IEEE Trans. on Software Engineering, 27(9):827–850, 2001.

[7] Y. Diao, P. Fischer, M.J. Franklin, and R. To. Yfilter: Efficient and
scalable filtering of xml documents. In Proc. Intl. Conf. on Data
Engineering (ICDE), pages 341–342, 2002.

[8] Y. Diao, S. Rizvi, and M. J. Franklin. Towards an internet-scale xml
dissemination service. In Proc. VLDB, pages 612–623, 2004.

[9] Freshmeat. The largest index of unix and cross-platform softwares.
http://freshmeat.net/projects/gimp/.

[10] Y. Gourhant, S. Louboutin, V. Cahill, A. Condon, G. Starovic, and
B. Tangney. Dynamic clustering in an object-oriented distributed
system. In Proc. Objects in Large Distributed Applications OLDA-II,
Ottawa, Canada, 1992.

[11] E. Januzaj, H. Kriegel, and M. Pfeifle. Towards effective and efficient
distributed clustering. In Workshop on Clustering Large Data Sets
(ICDM2003), Melbourne, FL, 2003.

[12] R. Jin, A. Goswami, and G. Agrawal. Fast and exact out-of-core and
distributed k-means clustering. Knowledge and Information Systems,
10(1):17–40, 2006.

[13] T. Kanungo, D. Mount, N. Netanyahu, C. Piatko, R. Silverman, and
A. Wu. An efficient k-means clustering algorithm: analysis and
implementation. IEEE Transactions, 24(7):881–892, 2002.

[14] mandriva.com. Mandrive linux distribution.
http://www.mandriva.com/.

[15] S. Moritz and B. Ernst W. DDC: A dynamic and distributed
clustering algorithm for networked virtual environments based on
p2p networks. In Proceedings of CoNEXT’05, France, 2005.

[16] nielsen-netratings.com. NIELSEN/NETRATING.
http://www.nielsen-netratings.com/pr/pr–050920.

[17] E. Ogston, B. Overeinder, M. van Steen, and F. Brazier. A method for
decentralized clustering in large multi-agent systems. In Proc. Int.
Conference on Autonomous agents and multiagent
systems(AAMAS’03), pages 789–796, New York, NY, USA, 2003.

[18] V. Ramasubramanian, R. Peterson, and Emin Gun Sirer. Corona: A
high performance publish-subscribe system for the world wide web.
In Proc. of Networked System Design and Implementation, San Jose,
California, 2006.

[19] S. Ratnasamy, M. Handley, R. Karp, and S. Shenker.
Application-level multicast using content-addressable networks. In
Proc. Int. COST264 Workshop on Networked Group Communication,
volume 2233, pages 14–29. LNCS, 2001.

[20] A. Riabov, Z. Liu, J. L. Wolf, P. S. Yu, and L. Zhang. Clustering
algorithms for content-based publication-subscription systems. In
Proc. Int. Conference on Distributed Computing Systems
(ICDCS’02), page 133, 2002.

[21] A. Rowstron and P. Druschel. Pastry: Scalable, decentralized object
location, and routing for large-scale peer-to-peer systems. In
Proceedings of IFIP/ACM Middleware, Germany, 2001.

[22] D. Sandler, A. Mislove, A. Post, and P. Druschel. FeedTree: Sharing
web micronews with peer-to-peer event notification. In Proc. Int.
Workshop on Peer-to-Peer Systems (IPTPS05), New York, 2005.

[23] T. Sivaharan, G. Blair, and G. Coulson. GREEN: A configurable and
re-configurable publish-subscribe middleware for pervasive
computing. In Proc, Int. Symposium on Distributed Objects and
Applications (DOA05), Agia Napa, Cyprus, 2005.

[24] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balakrishnan.
Chord: A scalable Peer-To-Peer lookup service for internet
applications. In Proc. ACM SIGCOMM, pages 149–160, 2001.

[25] GIMP. GNU image manipulation program. http://www.gimp.org/.
[26] E. Patrick Th., G. Rachid, and S. Joe. Type-Based Publish/Subscribe.

Technical report, 2000.
[27] S. Voulgaris, E. Riviere, A. Kermarrec, and M. van Steen. Sub-2-sub:

Self-organizing content-based publish and subscribe for dynamic and
large scale collaborative networks. In Proc. Int’l Workshop on
Peer-to-Peer Systems (IPTPS),, California, USA, February 2006.

[28] R. Zhang and Y. C. Hu. Hyper: A hybrid approach to efficient
content-based publish/subscribe. In Proc. Int. Conference on
Distributed Computing Systems (ICDCS’05), pages 427–436.
ICDCS, 2005.

[29] B. Y. Zhao, J. D. Kubiatowicz, and A. D. Joseph. Tapestry: An
infrastructure for fault-tolerant wide-area location and routing.
Technical Report UCB/CSD-01-1141, UC Berkeley, April 2001.

[30] S. Q. Zhuang, B. Y. Zhao, A. D. Joseph, R. H. Katz, and J. D.
Kubiatowicz. Bayeux: An architecture for scalable and fault-tolerant
wide-area data dissemination. In Proc. Int. workshop on Network and
OS support for digital audio and video, pages 11–20. ACM, 2001.

