
Improved Recommendations via (More) Collaboration ∗

Rubi Boim Haim Kaplan Tova Milo Ronitt Rubinfeld
School of Computer Science

Tel-Aviv University
{boim,haimk,milo,ronitt}@post.tau.ac.il

ABSTRACT
We consider in this paper a popular class of recommender systems
that are based on Collaborative Filtering (CF for short). CF is the
process of predicting customer ratings to items based on previous
ratings of (similar) users to (similar) items, and is typically used by
a single organization, using its own customer ratings.

We argue here that a multi-organization collaboration, even for
organizations operating in different subject domains, can greatly
improve the quality of the recommendations that the individual or-
ganizations provide to their users. To substantiate this claim, we
present C2F (Collaborative CF), a recommender system that re-
tains the simplicity and efficiency of classical CF, while allowing
distinct organizations to collaborate and boost their recommenda-
tions. C2F employs CF in a distributed fashion that improves the
quality of the generated recommendations, while minimizing the
amount of data exchanged between the collaborating parties. Key
ingredient of the solution are succinct signatures that can be com-
puted locally for items (users) in a given organization and suffice
for identifying similar items (users) in the collaborating organiza-
tions. We show that the use of such compact signatures not only
reduces data exchange but also allows to speed up, by over 50%,
the recommendations computation time.

1. INTRODUCTION
Recommender systems are programs that attempt to present to

the user a small subset of items (out of a much larger items set),
which she is likely to find interesting. With the growing popularity
of e-commerce, and the huge variety of items offered by on-line
stores, assisting users in identifying relevant items is crucial. In-
deed, much research has been devoted recently to developing effec-
tive recommendation algorithms, as even very small improvements
directly translate into higher income.

In this paper we focus on a popular class of such recommender
systems, where recommendations are computed via Collaborative
Filtering (CF for short) [3]. CF is the process of predicting users
∗The research has been partially supported by the European Project
Mancoosi, the Israel Science Foundation and the US-Israel Bina-
tional Science Foundation.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WebDB ’10 Indianapolis, IN USA
Copyright 2010 ACM 978-1-4503-0186-2/10/06 ...$10.00.

rating to items based on previous ratings of (similar) users to (sim-
ilar) items. Unlike semantic-based methods [3], CF does not use
semantic properties of the items (e.g, manufacturer, color, etc). In-
stead, it is based on the assumption that users who agreed in the
past on item ratings are likely to agree again in the future. Com-
mon CF algorithms thus consist of two main steps: (1) choosing
the right neighborhood of users (resp. items), and (2) calculating
the prediction using some aggregation function on actual ratings
provided by the chosen neighborhood.

Previous works on such recommender systems focused mostly
on CF performed by a single organization over its own customer
ratings. We argue here that a multi-organization collaboration, even
for organizations operating in different subject domains, can greatly
improve the quality of the recommendations that the individual or-
ganizations provide to their users. Assume for instance that Netflix
- an online movie rental service, Blockbuster - a chain of movie
rental stores, and Toys“R”Us - a toy store chain, wish to collab-
orate in order to improve the service to their customers. Naturally,
each organization has its own database of user ratings and can use
it to generate recommendations. But the quality of recommenda-
tions may be greatly improved by taking into account information
available in the other collaborating organizations. This seems ob-
vious for Netflix and Blockbuster where the domain items
are similar: Correlations between users interest in one movie store
may naturally be used to refine recommendations in the other. But
correlations between inter-domain items may also exist and can be
leveraged: We may discover, e.g., that a large portion of the users
who viewed (and liked) “Star Wars” on Netflix also bought (and
liked) a space-ship model at Toys“R”Us, and thus recommend
this toy to similar viewers that have not purchased it yet.

To support such collaboration, we present in this paper C2F (Col-
laborative, Collaborative Filtering), a recommender system that re-
tains the simplicity and efficiency of classical CF, while allowing
distinct organizations to collaborate and boost their recommenda-
tions. Note that a naive solution that accumulates all data sets into
one centralized location (then applies classical CF) is typically not
feasible due to the excessive amounts of (constantly updated) data
and the independence of the organizations. Instead, C2F employs
CF in a distributed fashion that maximizes the quality of the gen-
erated recommendations, while minimizing the amount of data ex-
changed between the collaborating parties. Key ingredient of the
solution are succinct signatures that can be computed locally for
items (users) in a given organization and suffice for identifying sim-
ilar items (users) in the collaborating organizations.

We describe here the operation of C2F and present an experi-
ential analysis, performed on real-life data, demonstrating the im-
provement in recommendations quality that it achieves, relative to
those computed when only the local organization data is consid-

ered. We also show that the use of compact signatures not only
reduces data exchange but also allows to speed up, by over 50%,
the recommendations computation time.

We note that the aggregating of rating predictions from multiple
sites has been previously proposed in the literature in a different
context: For semantically-similar sites, where a given [user,item]
pair belongs to multiple sites, it was suggested to compute its rate
prediction by aggregating the predictions of the individual sites for
this pair [7]. A main difference with our work is their focus on sim-
ilar domains with common (user,item) pairs. In contrast, our solu-
tion allows for inter-domain collaboration, exchanging only a small
amount of data between the collaborating parties, yet sufficient for
effectively identifying and exploiting the relevant information.

It should be stressed that our aim here is not to invent yet another
CF algorithm, but rather to present a generic novel technique that
allows one to better exploit existing CF algorithms in a distributed,
multi-organization setting. Indeed, while our implementation uses
specific neighborhood metric/rate aggregation functions to gener-
ate recommendations, the technique that we propose can similarly
be used for other functions.

The paper is organized as follows. Section 2 provides the nec-
essary background on classical CF and presents the adjustments
required to support a distributed setting. Section 3 presents our al-
gorithms and Section 4 describes the system implementation and
experiments. Finally, Section 5 concludes with related work.

2. PRELIMINARIES
We start with some background on classical CF, then explain the

adjustments required to support a distributed setting and present
our algorithms.

2.1 Classical CF
Given a set U of users and a set I of items, we use u, v to denote

users in U and i, j to denote items in I . A rating ru,i is a numeric
value given by a user u to an item i. The ratings are given in the
form of a matrix R of size |U | × |I|. Note that this matrix is typ-
ically very sparse (usually less than 1% of the possible ratings are
known) and the goal is to predict the unknown ru,i ratings as accu-
rately as possible. We consider two popular types of CF prediction
algorithms, referred to as Item-Based and User-Based CF.

Item-Based CF is based on the intuition that an unknown rating
ru,i can be estimated using the actual ratings that u gave to items j
similar to i. Formally,

ru,i =

∑
j∈N(i;u) si,jru,j∑

j∈N(i;u) si,j
(1)

where N(i; u) is the set (neighborhood) of items similar to i that
were rated by u (i.e. ru,j is known for each j ∈ N(i; u)), and si,j

is a measure of the similarity between items i and j. Note that the
similarity between different items is used not only to weight the
ratings, but also to choose the neighborhood N(i; u). For example,
we could choose N(i; u) as the set of items whose similarity value
to i is above some given threshold.

User-Based CF is analogous to item-based, but instead of look-
ing at similar items we look at users v similar to u, which have
rated i. The prediction of ru,i is then symmetrically obtained by
aggregating their ratings for i.

In both approaches, similarity between two items (users) plays
a key role in determining the neighborhoods and for weighting the
existing ratings. In principle, any similarity measure can be used
here (e.g. Cosine or Li distance) but Pearson’s Correlation Coeffi-
cient [13] seems to be the preferred choice in most major systems.
The basic intuition behind Pearson’s measure is to give a high sim-

ilarity score for two items (users) that tend to be rated the same by
many users (resp., tend to rate the same many items). Formally, for
two items i and j, it is computed as follows.

si,j =

∑
u∈U(i,j)

(ru,i − r̄u)(ru,j − r̄u)
√∑

u∈U(i,j)
(ru,i − r̄u)2

√∑
u∈U(i,j)

(ru,j − r̄u)2
(2)

where U(i,j) is the set of all users u who rated both items i and j
(i.e. ru,i and ru,j are both known), and r̄u is the average rating of
user u. r̄u is subtracted here from ru,i to “normalize" the rating
values for those users that tend to always give high (or low) grades.
When U(i,j) = ∅, namely there are no users that rated both i and j,
we define si,j = 0.

Pearson similarity of two users u, v is computed symmetrically.

2.2 Collaborative CF
Consider an organization o that wishes to improve its rating pre-

dictions using information available in another organization o′. For
o and o′ to collaborate, they should have some common denomi-
nator w.r.t. which they can share information. We focus on two
scenarios here: The first, called shared users, assumes that o and
o′ share a (relatively large) set of common users. The examples we
have seen earlier of Netflix, Blockbuster and Toys“R”Us
comply to this scenario, since many customers shop in several of
these stores. The second scenario, called shared items, is the case
where o and o′ share a (relatively large) set of common items.
For example, assume that Blockbuster branches in different
countries maintain individual local information repositories. Two
branches o, o′ here serve different customers (users) but may carry
many common movies (items), e.g. American films.

We next explain how shared users (resp. items) can be used to
boost Item-based (User-based) CF. We start with some intuition,
then explain the optimizations required to make things practical.

We denote below by O the set of collaborating organizations and
use o, o′ to denote individual organizations in O. A rating of user
u to item i in organization o is denoted ro

u,i. Finally, the similarity
between two items i in o ,j in o′ (where o may be the same or
different than o′) is denoted s

(o,o′)
i,j ; similarly, s

(o,o′)
u,v denotes the

similarity between two users u in o, v in o′.
Item-based CF with shared users is a generalization of the cen-

tralized version: Instead of considering only the local neighbor-
hood of items, we improve the prediction by considering also the
corresponding neighborhoods in the collaborating organizations.
Namely, equation (1) is refined as follows

ro
u,i =

∑
o′∈O

∑
j∈No′ (i;u) s

(o,o′)
i,j ro′

u,j

∑
o′∈O

∑
j∈No′ (i;u) s

(o,o′)
i,j

(3)

where No′(i; u) is the set (neighborhood) of items similar to i in
organization o′ that have been rated by u. As before, the similarity
between items is used not only to weight the final prediction, but
also to choose the neighborhood.

The similarity to an item j that resides locally in o can be com-
puted as before. Things are more complex for items j that reside in
some remote organizations o′. Observe that every item can essen-
tially be viewed as a vector of ratings, in a multi-dimensional space,
where each dimension corresponds to a specific user, and holds her
rating. Similarity between two items i and j thus amounts to com-
puting the similarity of the two corresponding vectors (w.r.t. the
similarity measure of interest.) A straightforward solution is thus
to send i’s vector to every site o′ ∈ O, and have each such site com-
pute and return its

∑
j∈No′ (i;u) s

(o,o′)
i,j ro′

u,j and
∑

j∈No′ (i;u) s
(o,o′)
i,j

values (i’s vector is used to compute the similarly of items in o′ to

i, thereby determining both the neighborhood set No′(i; u) and the
similarity values s

(o,o′)
i,j for the neighborhood members).

It is important to note however is that these vectors are very large
(their size equals the number or users that rated a given item, which
can be hundreds of thousands [6]). To minimize communication,
C2F sends, instead, a concise, much smaller vector (which we call
a signature) that suffices for identifying similar items in the collab-
orating organizations. We will see that a further positive result of
use of concise signatures is a speed up of over 50% in the recom-
mendations computation time.

The construction of signatures is explained in the next section.
But before we explain this, let us first briefly consider the symmet-
ric User-based scenario.

User-based CF with shared items works analogously. Each
user is viewed as a vector of ratings, where the dimensions cor-
respond to items and hold the user’s ratings for the items. Here
again, rather than sending the full vector of the user, C2F sends a
smaller signature that suffices for identifying similar users in the
collaborating organizations.

3. COMPUTING SIGNATURES
C2F employs two main algorithms for computing users (items)

signature, inspired, resp., by works on Dimension Reduction [4]
and Features Selection [11]. We explain them below.

3.1 Dimension Reduction
Dimension reduction is a common technique where a set of points

(represented by vectors) in a given multi-dimensional space is mapped
to a lower-dimensional space, by multiplication with a special ma-
trix M [10]. M is chosen so that the distance (similarity) between
the input vectors (measured, e.g., by Cosine or Li) is preserved up
to a small constant.

Recall that, in our setting, every item (resp. user) can be viewed
as a vector of ratings, in a multi-dimensional space, where each
dimension corresponds to a specific user (item), and holds her (its)
rating. Specifically, consider a set O of collaborating organizations.
Let us consider first a shared-users scenario (the shared-items case
is handled symmetrically, see below). For simplicity, assume that
they have exactly the same set U of users. 1 Each organization
o ∈ O handles a set Io of items and its ranking matrix Ro is thus
of arity |Io| × |U |. In other words, we have |Io| item vectors, in a
|U | dimensional space. If all organizations use the same matrix M
of arity k×|U | (for some small k < |U |) to reduce the dimensions
of their data, the reduced k-ary vectors could then be exchanged
between the sites, instead of the original ones, and used to identify
similar items/users.

More formally, consider the reduced matrices R̂o = Ro × M ,
o ∈ O (of arity |Io| × |k|). Suppose that site o wants to estimate
what rank user u would give to item i (denote above ro

u,i). Rather
than sending the original U -ary vector Ro[i] to the collaborating or-
ganizations, o sends the reduced k-ary vector R̂o[i] (= Ro[i]×M).
Now, a collaborating organization o′ may compute the similarity
value s

(o,o′)
i,j between i and the items j in o′ by measuring the the

distance between R̂o[i] and R̂′o[j]. The remaining of the computa-
tions continues as before.

Similarly, in a shared-items scenario, each organization o ∈ O
handles a set Uo of users and the ranking matrix Ro is of arity
|Uo| × |I| (rows now corresponds to users). M here is of arity
k × |I|. The rest stays as above.

1Otherwise, let U denote the union of the users sets.

Difficulties and (partial) solution.. Standard Dimension Re-
duction algorithms, like SVD [9], need to analyze all the input vec-
tors for constructing the distance-preserving matrix M . Namely,
the vectors in all the Ro, o ∈ O, matrices, have to be examined.
This is impossible here given the distributed setting and the exces-
sive amount of data. To overcome this, C2F employs a recently
developed algorithm called the Fast Johnson-Lindenstrauss Trans-
form (FJLT) [4] that randomly generates a matrix M that is guaran-
teed, with high probability, to have the desired properties. The crux
is that the matrix is generated independently of the input vectors
and no access to the actual data is required. It can thus be created
by an arbitrary site and disseminated to all others. Moreover, the
FJLT matrix is extremely sparse (hence highly compressible), so
the transmission incurs only little communication overhead.

Some difficulties nevertheless still exist. First, it is important to
note that FJLT requires the number of original dimensions to be
smaller than the number of vectors. In actual systems, however, the
number of users always exceeds the number of items, thus FJLT is
applicable to the case of shared items but not to shared users.

Second, observe that, when multiplying matrices, the value of
all entries must be defined. Since the rating matrices are sparse,
some default value (i.e. the average user/item rating) is used for
the missing entries [10]. This is common practice when employing
similarity measures such as Cosine or Li distance, but is precisely
what Pearson’s Correlation Coefficient tries to avoid. (Recall that
formula 2 ignores users for which one of the ru,i or ru,j value is
missing.). Thus the technique is applicable to the case of Cosine-
or Li-based similarity measures but not for Pearson.

3.2 Dimension Selection
The second algorithm employed by C2F is applicable for both

shared items and shared users scenarios and can also handle Pear-
son. This however comes at the expense of the theoretical worse-
case guaranties on the distance error. But we will see that in prac-
tice the error turns out nevertheless to be very marginal.

Given an item (user) vector, rather than mapping it to another
lower-dimension domain, the algorithm chooses a subset of the
original dimensions that best describe the given item (user). Namely,
given an item i (user u), the algorithm chooses a small subset of the
users (items) such that the similarity of i (u) to other items (users),
based solely on this subset of users (items), is close to the “real”
similarity value when considering the full users (items) set. We can
now send to the collaborating sites a small vector consisting only
of the ratings of this reduced set of users (items). The key chal-
lenge here is to choose the best set of users/items (one that makes
the similarity values as close as possible to the original ones).

To illustrate the idea, let us consider the shared-user scenario.
(The shared-items scenario is symmetric). To make things formal,
we use the following notation: Recall that in standard (and dis-
tributed) CF, the similarity si,j between two items i, j ∈ I reflects
the correlation between the ratings for these items, given by the full
set of users U . Let Uk ⊆ U denote a set of users, of size k, belong-
ing to all the collaborating organizations. We use s

Uk
i,j to denote

the similarity of items i and j when computed based solely on the
ratings of users in Uk.

Given an item i and some number k, our goal is to choose a
set Uk of users, such that the similarity values s

Uk
i,j , for the items

j ∈ I , are as similar as possible to the real similarity values si,j

(computed with the full users set U). As before, we may use Pear-
son’s correlation coefficient to measure the similarity between the
two sets of similarity values. We overload notation and, given an
item i, use sU,Uk (i) to denote this value.

sU,Uk (i) =

∑
j∈I(si,j)(s

Uk
i,j)

√∑
j∈I(si,j)2

√∑
j∈I(s

Uk
i,j)2

(4)

Note that, unlike in the Pearson equation 2, where the rating had
to be normalized (by subtracting the average users rating), the val-
ues compared here are unbiased (reflecting the calculated similarity
values), hence the simpler shape of the present formula.

Given item i and a number k, we call a set of users Uk, of size k,
that has a maximal sU,Uk (i) value, an optimal k-set. Unfortunately,
an optimal k-set is expensive to find. Clearly, a naive algorithm
may simply test all possible k-size sets, namely O(|U |k) such sets,
and choose one with the highest score. Since the number of users
may be extremely large, this is too time consuming. Unfortunately
we can show that unless P=NP, the exponential dependency in k is
unavoidable. Indeed, we can show (by reduction to Set-Cover [2]),

THEOREM 3.1. The problem of testing, given number k and a
bound b, whether there exists a set of k users Uk s.t. sU,Uk (i) > b,
is NP-complete in k.

While there are known PTIME approximation algorithms for
Set-Cover which could in principle be considered here, our experi-
ments showed that even algorithms that considered just a quadratic
(in |U |) number of sets were too expensive to be applicable. We
have thus chosen to use the following simpler, greedy heuristic: In-
stead of calculating the similarity value of each possible k-sized
subset to U , we consider singleton sets, consisting each of a single
user. We calculate their similarity to U , then choose for Uk those k
users having sets with highest similarity score. 2.

Difficulties and solutions. Some difficulties nevertheless still
exist. First, to evaluate equation 4 for k = 1 (i.e. a set U1 = {u},
consisting of a single user u), the corresponding items similarity
scores, s

{u}
i,j , need to be computed. Note however that not all simi-

larity measures behave well when only one user is considered. For
instance, given a set of users consisting only of one user u, Co-
sine and Pearson both yield a constant similarity value of 1, for all
item pairs i, j rated by u, regardless of the actual rating values (see
equation 2) We must thus use a more adequate similarity measure
for the single-user sets, e.g. Li. Note however that if a different
measure, e.g. Cosine or Pearson, was employed for full set of users
U , we have to make the two similarly values comparable before we
can evaluate formula 4. For example, to compare an L1 similarity
with a Pearson one, we need to map the similarity values of the
former to the range [−1, 1] of the later (with 1 being the best score
and −1 worse). Namely,

s
{u}
i,j = 1− 2 L1(i, j)

MaxRating −MinRating
(5)

where L1(i, j) = |ru,i − ru,j |.
A second difficulty is overfitting [15]. Intuitively, we would like

the selected set of users Uk to “cover" as many items as possible
(so that we can use their ranking for the items to determine simi-
larity). However, according to formula 4, a set Uk that ranked only
very few items may still get high score if the similarity between
these few items, as reflected by these ratings, happens to be the
same as their overall similarity value. Following common practice,
we solve this problem by applying a compensation function to the
computed similarity measure, that reflects how many items, out of
the relevant ones, are covered by Uk. Namely,

2This set may not be unique in the case of multiple users with iden-
tical scores, in which case we chose one such set arbitrarily

s′U,Uk
(i) = sU,Uk (i) ◦ |Items(Uk, i) |

| Items(U, i) | (6)

where Items(Uk, i) (resp. Items(U, i)) is the set of items j s.t.
Uk (resp. U) contains some user u that rated both i and j. (Recall
from Equation 2 that only such items are useful for the similarity
computation).

3.3 Signatures Update
We conclude this section by considering updates. The rating ma-

trix gets updated, e.g. when new user ratings are added/updated or
when a new user/item is added or deleted. To stay in sync, the
relevant signatures need to be correspondingly updated.

For signatures computed via Dimension Selection, updates have
a local effect, in the sense that the only signatures affected by the
update are those of the site where the update had occurred. Things
are more complex for Dimension Reduction. Some updates here
also have local affect. For instance, when a new user is added, or
when the ratings of an existing user are updated, the new signa-
ture of the user is computed by simply multiplying its new/updated
vector by the reduction matrix M . In contrast, the addition of new
items have a more global affect. Note that the addition of a new
item here changes the dimension of the user vectors. To account
for this, a new reduction matrix has to be generated (with corre-
sponding dimensions) and disseminated to the collaborating sites
(to recompute their signatures accordingly).

The re-computation and dissemination of signatures/reduction
matrix with each update, may naturally cause a significant over-
hand. To avoid this we take lazy approach and update/diseminate
the signatures/matrix only periodically, when sufficiently large num-
ber of updates had been accumulate. (In between, the old signatures
may still be used for estimating the similarity between the corre-
sponding vectors.) For that, we periodically prob locally some of
the updated users/items. We compute their accurate new signa-
tures and compare the respective distance that they entails to that
obtained using the old signatures. Only when the error exceeds
a given threshold, a full re-computation and dissemination is trig-
gered.

4. EXPERIMENTAL EVALUATION
The C2F system allows distinct organizations to collaborate for

improving the quality of the recommendations that they provide to
users. The system is implemented in Java and designed to be de-
ployed on any CF system implementing its local interface. The ex-
periments were performed on an Intel quad-core machine (Q9400)
with 2.66 GHz CPUs, 4GB memory and Windows XP x64 edition.

Acquiring adequate real-life data for the experiments was non
trivial. Although several public data sets are available online (e.g.
Netflix, Delicious, etc.), which in principle could be ideal for sim-
ulating an inter-domain collaboration, the user ids in these data
sets are masked, thus common users cannot be identified. We have
thus decided to use instead a single data set, and split it into sev-
eral seemingly uncorrelated subsets. We used the Netflix public
data set [6] which provides over 100 millions different ratings of
movies by 500,000 users, to 18,000 different movies. To simulate
a multi-domain scenario we split the data (using information gath-
ered from the IMDB database [1]) into five seemingly uncorrelated
sub-domains (kids movies, documentary, thrillers, etc.) each repre-
senting the database of one organization “specializing” in the given
area. To compare this to a setting where organization in similar do-
mains are collaborating, we had also considered alterative random
splits of the data, once by user and once by movie.

The Netflix data has two parts, a public data set (called the train-
ing set) and a private set (called quiz set) of unreviewed ratings.

Figure 1: Dimension Selection (multi-domain)

The quality of a recommender system is measured by comparing
its predictions, for the unrevealed ratings in the quiz set, to their
true value. The Root Mean Squared Error (RMSE) metric is used
to measure accuracy. A lower RMSE value means better results.
We note that even a small improvement in the RMSE value (e.g.,
∼ 0.01) translates to a significant improvement in the quality of the
top-k recommended products [12].

Recall, from the Introduction, that our aim here is not to invent
yet another CF algorithm, but rather to present a generic technique
that allows one to better exploit existing CF algorithms in a dis-
tributed, multi-organization setting. Specifically, we experimented
with the basic CF algorithm from section 2.1 as well as with more
sophisticated variants such as [12]. Our algorithms provided, in all
cases, similar relative improvement. We show below a representa-
tive sample of the results for the CF algorithm of Section 2.1.

We first consider the Item-based shared-users setting, then User-
based shared-items one.

4.1 Item-based CF with shared-users
Recall from section 3 that dimension reduction is not applicable

here and may only apply dimension selection. We start with the
multi-domain case where movies are split into seemingly uncorre-
lated organizations.

Figure 1 depicts the RMSE values for increasing signature sizes
(number of selected users), in logarithmic scale. The left-most end,
when the signature size is 0, represents the classical case where
each organization computes its predictions locally, with no infor-
mation sharing. At the right-most size, the full item vectors are
exchanged. It is evident that collaboration here yields better rat-
ing prediction (a drop from RMSE of 1.0207 to 0.9548). We can
furthermore see that even the exchange of very small signatures, of
size just 50, yields already a significant reduction to 0.97 (a further
improvement would requires signatures of size over 50, 000).

To better understand how the size of the signature affects the
computation, we examined the item neighborhoods determined by
the signatures. As the base for comparison, we consider the neigh-
borhoods determined by the full item vectors. Figures 2 and 3 show
the precision (the number of common items divided by the size of
the neighborhood determined by the signature) and recall (the num-
ber of common items divided by the size of the neighborhood deter-
mined by the full item vectors), for increasing threshold values (i.e.
smaller neighborhoods) and signatures of size 50, 200 and 500.

Larger signatures naturally yield better precision, as they provide
more information about the item whose neighborhood is computed.
We can also observe some decrease of precision as the threshold
value increases. This is because high threshold implies a smaller
neighborhood, which is effected more by even small differences of
the similarity values. Note however that that the recall is gener-
ally very high, (i.e. the neighborhood contains a large percent of
the “real" neighbors) and even increases as the threshold increases
(as less “noise" is included in the neighborhood). We note that
the results depicted in Figure 1 were obtained with neighborhood
threshold of 0.9. But our experiments with smaller neighborhood

Figure 2: Neighborhood Precision

Figure 3: Neighborhood Recall

thresholds yielded similar results: This is because the effect of the
noise introduced by smaller thresholds is practically eliminated as it
is weighted (see Equation 1) according to its (low) similarity value.

Finally, let us consider performance. Recall that rank prediction
in classical centralized CF consists of three main tasks: (1) Com-
puting the similarity between items pairs, (2) determining the items
neighborhood based of these values, and (3) consequently comput-
ing the rank predictions. In the case of C2F , tasks (2) and (3)
remain exactly the same, while task (1) splits into two sub-tasks:
(1’) signature computation and (1”) computing similarity using the
(significantly smaller) signatures. Interestingly, our experiments
show that the overhead of signature computation (task 1’) is com-
pensated by the reduction in the similarity computation time, due
to the small size of the compared signatures. This yields an im-
provement of the overall performance. Figure 4 shows the overall
computation time for step 1 (for all item pairs i,j), for varying sig-
nature sizes, (compared to the time task 1 takes with the full item
vectors). We note that once the similarity values are computed,
steps 2 and 3 take just 5 seconds (for the whole data set - 1.4M
predictions). So the overall saving, e.g. when using signatures of
size 50, is over 50%.

To consider a setting where organizations in similar domains are
collaborating, we re-run the above experiments with an alterative
random splits of the movies into five subsets. The results were
similar to what have seen above, showing that our techniques are
applicable to both inter- and intra-domain collaboration.

4.2 User-based CF with Shared items
Here one can use both dimension reduction and dimension selec-

tion. Before describing our results, recall that in user-based CF, one
needs to compute similarities between pairs of users. We first note
that due to the huge number of users in the Netflix database, com-

Figure 4: Running times for Dimension selection

Figure 5: Running times for Dimension reduction

puting similarity values for all user pairs is a very intensive task.
Specifically, the number of pairs is too big to store all similarity
values in memory, and requires storing them on disk (yielding sig-
nificant I/O overhead). The use of small signatures, (and the shorter
time it takes to computed similarity based on such signatures), be-
comes essential here. In fact, all our attempts to compute simi-
larities with the full user vectors failed, as the computation never
terminated. In contrast, things become feasible with small signa-
tures, even when taking into consideration the extra time it takes to
generate them. To illustrate, Figure 5 shows the over all compu-
tation time with signatures computed using dimension reduction.
(Users are randomly split here into five organizations). The results
for dimension selection were similar.

In terms of recommendations quality, we observed improvements
similar to what we have seen in Figure 1, for the Item-based case,
(up to signatures of size 200, after which the computation was no
longer feasible here). Interestingly, the improvement for signatures
generated via dimension selection was slightly better than that of
dimension reduction(0.97 vs. 0.98). This is because dimension se-
lection allows using the more accurate Pearson similarity measure
(see previous section).

To conclude, recall that the dimension reduction algorithm pro-
vides a worse case bound on the error in neighborhood values,
whereas dimension reduction does not. In practice however the
precision and recall values (for the computed neighborhoods) that
both algorithm exhibit are similar, and behave as what we have seen
above for the Item-based setting.

4.3 Updates
To evaluate the sensitivity of signatures to updates, we started

with partial ranking matrix consisting overall of 100K users (20%
of the full data set). Then, we gradually added the remaining rank-
ings. At each point we compared the quality of the predictions
obtained with the signatures computed based on the initial data set,
to the one obtained with current signatures. We repeated the exper-
iment for signatures computed via dimension selection and reduc-
tion and of varying sizes. Our experiments consistently showed that
the increase in RMSE value was fairly small - just 0.001 for 100K
added users. This demonstrate the adequacy of our lazy update
propagation policy, and follows from the typical fairly consistent
distribution of user opinions w.r.t. the large number items.

5. RELATED WORK AND CONCLUSION
We considered in this paper a popular class of recommender sys-

tems, based on Collaborative Filtering. We argued that a multi-
organization collaboration, even for organizations operating in dif-
ferent subject domains, can greatly improve the quality of the rec-
ommendations that the individual organizations provide to their
users. To substantiate this claim, we presented C2F , a system
that employs CF in a distributed fashion and improves the quality
of the generated recommendations, while reducing the amount of
data exchanged between the collaborating parties.

Extending our approach to content-based systems that also use
information about item semantics is a challenging future research.

Previous work on CF in a distributed setting focused on P2P ar-
chitecture, typically aiming to speed up the computation. A com-
mon solution is to decentralize the P2P network w.r.t the users
(items), maintaining a “buddies” table at each pier, pointing to the
closest users (items) which are believed to share the same taste (be
similar) [8, 17, 16]. Another architecture is presented [5] where
the authors describe the recommendation mechanism of the popu-
lar TiVo: The network here consists of a centralized server which
first accumulates the ratings from all the devices periodically, and
then evaluated the similarity between all items (shows). In all these
works the network architecture differs fundamentally from our set-
ting: they consider network of thousands computers, each holding
an assigned small part of the data, (useless by itself), whereas we
target a much smaller set of collaborating organizations (servers),
each holding an entire data set from its corresponding domain.

Closest to our work is [7] that considers the aggregation of rate
predictions from multiple sites. The focus however on similar do-
mains with common (user,item) pairs, whereas our solution allows
for inter-domain collaboration, exchanging only a small amount of
information between the collaborating parties, yet sufficient for ef-
fectively identifying and exploiting the relevant information.

A complementary line of research considers privacy. For in-
stance, [14] the authors show how to preserve the privacy of the
users by aggregating the data (ratings) among several users, thus
eliminating the identification of the ratings, and then uploading the
combined information to the server. We note that our dimension
reduction algorithm also aggregates user ratings (the multiplication
with the matrix M transform the individual user ratings into linear
combination of such ratings) and we intend to study its implication
to privacy in future research.

6. REFERENCES
[1] Imdb interface. http://www.imdb.com/interfaces/.
[2] Set-cover problem. http://en.wikipedia.org/wiki/Set_cover_problem.
[3] G. Adomavicius and A. Tuzhilin. Towards the next generation of

recommender systems. IEEE TKDE, 2005.
[4] N. Ailon and B. Chazelle. Faster dimension reduction.

Communications of the ACM, 2010.
[5] K. Ali and W. van Stam. Tivo: Making show recommendations using

a distributed collaborative filtering architecture. KDD, 2004.
[6] J. Bennet and S. Lanning. The netflix prize. KDD Cup, 2007.
[7] S. Berkvosky, T. Kuflik, and F. Ricci. Distributed collaborative

filtering with domain specialization. RecSys, 2007.
[8] A. E. H. Byeong Man Kim, Qing Li. A decentralized cf approach

based on cooperative agents. WWW, 2006.
[9] S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer, and

R. Harshman. Indexing by latent semantic analysis. JASIST, 1990.
[10] I. Fodor. A survey of dimension reduction techniques.

Communications of the ACM, 2002.
[11] I. Guyon and A. Elisseeff. An introduction to variable and feature

selection. JMLR, 2003.
[12] Y. Koren. Factorization meets the neighborhood: a multifaceted

collaborative filtering model. KDD, 2008.
[13] J. L. Rodgers and W. A. Nicewander. Thirteen ways to look at the

correlation coefficient. The American Statistician, 1988.
[14] R. Shokri, P. Pedarsani, G. Theodorakopoulos, and J.-P. Hubaux.

Preserving privacy in collaborative filtering through distributed
aggregation of offline profiles. RecSys, 2009.

[15] T. I. V., L. D. J, and A. I. Luik. Comparison of overfitting and
overtraining. American Chemical Society, 1995.

[16] J. Wang, J. Pouwelse, R. L. Lagendijk, and M. J. Reinders.
Distributed collaborative filtering for peer-to-peer file sharing
systems. SIGIR, 2005.

[17] J. Wang, M. J. Reinders, R. L. Lagendijk, and J. Pouwelse.
Self-organizing distributed collaborative filtering. SIGIR, 2005.

