
MatchUp: Autocompletion for Mashups
Serge Abiteboul1 Ohad Greenshpan2 Tova Milo 2 Neoklis Polyzotis3

1INRIA Futurs & University of Paris XI
2 Tel-Aviv University

3 University of California, Santa Cruz

Abstract— A mashup is a Web application that integrates data,
computation and GUI provided by several systems into a unique
tool. The concept originated from the understanding that the
number of applications available on the Web and the need for
combining them to meet user requirements, are growing very
rapidly. This demo presents MatchUp, a system that supports
rapid, on-demand, intuitive development ofmashups, based on a
novel autocompletion mechanism. The key observation guiding
the development of MatchUp is that mashups developed by
different users typically share common characteristics; they use
similar classes of mashup components and glue them together in
a similar manner. MatchUp exploits these similarities to predict,
given a user’s partial mashup specification, what are the most
likely potential completions (missing components and connection
between them) for the specification. Using a novel ranking
algorithm, users are then offered top-k completions from which
they choose and refine according to their needs.

I. I NTRODUCTION

A (music) mashup is a composition created from the com-
bination of music from different songs.Web mashups, in a
similar spirit, stem from the reuse of existing data sourcesor
Web applications, with an emphasis on GUI and programming-
less specification. As described in [1], the concept of mashups
originated from the understanding that the number of appli-
cations available on the Web is growing very rapidly, and
so is the need to combine them to meet user requirements.
Such applications are typically complex, access large and
heterogeneous data, and have varied functionalities and built-
in GUIs. As a result, it often becomes an impossible task for
IT departments to build them in-house as rapidly as they are
requested to. The role of mashups is to facilitate this rapid,
on-demand, software development task.

A mashup consists of several smaller components, namely
mashlets, implementing specific functionalities. For instance,
a mashlet may model a data source, e.g., a news RSS feed. It
may implement some visual functionality, e.g., draw a map,
or it may realize a specific operator, e.g., extract location
information from an RSS feed input. It may also contain logic
that “glues” together other mashlets, in which case we refer
to it as aglue pattern(GP for short). As an example, a GP
may combine the aforementioned three mashlets in order to
present a map with the locations of recent news feeds.

Following the previous model, a user builds a mashup by
selecting specific mashlets and specifying the GPs that link
them. Given the large number of available mashlets, however,
selecting the right components and the appropriate connections
between them can be a daunting (and error-prone) task for
inexperienced users. To address this issue, we draw inspiration

from integrated development tools and propose the use of
autocompletion. The idea is simple and intuitive: The user
selects some initial mashlets that are indicative of the mashup
that he/she aims to build, and the system proposes possible
completions with GPs and perhaps other mashlets. The user
can then select one or more of the possible completions,
perform some refinements, and continue building the mashup
in this iterative fashion.

Our goal is to demonstrate a system that implements
the aforementioned autocompletion functionality. The system
generates possible completions from a large database of real
mashlets and GPs available on the Web. The important point
is that it employs an intelligent recommendation engine that
takes into account the incomplete specification of the user,
the interactions among mashlets in the database, and also the
“collective wisdom” of previous users that have successfully
built mashups. Thus, even if there is no GP that links directly
the mashlets selected by the user, the system will identify
GPs that seem relevant to the incomplete specification, and
are also favored by the user community in the creation of
other mashups.

The demonstration will illustrate the proposed approach
through the interactive design of an Extended Patient Health
Record (xPHR) mashup. A screenshot of the (completed)
mashup is shown in Figure 3. The mashup itself is a rich
application that involves several mashlets and GPs. Among
other things, the mashlets access various clinical data of a
patient, compare them against survey data, allow the user to
search the Web for doctor services and related information.
The demonstration will illustrate both the user interaction with
the system, showing how autocompletion greatly simplifies
the mashup development task, as well as the system internals,
showing the operation of the algorithms that support this useful
autocompletion paradigm.

Autocompletion is a classical problem found in various
domains, e.g., phrase prediction [2], email fields [3], file
locations [3]. However, we are not aware of any work on
autocompletion for mashups. Some related work in the context
of Web services has studied how to substitute a Web service
for another or how to fulfill a particular goal by composing
Web services [4]. Our contribution is different: it recommends
the best possible GPs or other mashlets to gradually improve
a current mashup. Finally, we note that there exist several
tools for the creation of mashups, e.g., MashMaker [5] and
DAMIA [6]. However, none of the developed tools supports
the autocompletion mechanism that we propose in this paper.



The paper is organized as follows. Section II describes the
data model we use for the specification of mashlets (including
GPs) and introduces the notion of mashletinheritance, an
important ingredient of our approach. Section III introduces
the problem of mashup autocompletion and describes our
solution. Section IV describes the demo scenario, and the high-
level system architecture ofMatchUp.

II. M ODEL INGREDIENTS

We first propose a formal model of mashups and their
composition. We then discuss an important aspect of the
model, inheritance. Due to space limitations, the presentation
will be very brief.

A. Mashlets and Glue Patterns

The formal model has been designed to facilitate (dynamic)
modular mashlets composition, interaction, inheritance and
reuse. The basic components of the model areatomic mashlets.
An atomic mashlet is a module that implements a specific
functionality, and supports an interface of variables and meth-
ods that are visible to other mashlets. More concretely, an
atomic mashlet has the following components:

1) Input and Output Variables: they define the input and
output fields respectively of a mashlet. This constitutes
the external interface of the mashlet that is manipulated
by other mashlets or users in the system.

2) Mashlet data: they define local data of the mashlet. They
can be specified as visible or not outside the mashlet.

3) Rules: they specify the logic implemented by a mashlet.
This logic describes how the output variables are set
based on the values of the input variables and the
local data. One possibility is to encode this logic using
datalog-style active rules, which enables taking advan-
tage of advanced existing technology, notably query
optimization. It is also possible to implement the logic
using a high-level programming language such as Java
or C++. In that case, the mashlet behaves like a “black
box”. We do not discuss further this aspect of our model,
as it is not relevant to the proposed demonstration.

4) Inheritance relationship: We elaborate on this in the next
section.

The left column of Figure 1 shows two example atomic
mashlets named “Map” and “Yahoo! Map”. The “Map” mash-
let may contain input coordinate variables, such as “longitude”,
“latitude”, and “zoom”, that control the location displayed on
the map. The “Yahoo! Map” mashlet may in addition contain
a “view” input variable that controls whether the map displays
a satellite view or a normal view.

A compound mashlet is typically composed of other (atomic
or not) mashlets. Thus, in addition to the above mentioned
components, a mashlet may includeimportedmashlets, as well
as rules to specify how its imported mashlets interact with
each other (e.g. how the output of one mashlet is transformed
into the input of another). Since the main contribution of
such mashlets reside in the “glue” they provide between the
mashlets they use, we call themGlue Patterns(GPs for short).

Fig. 1. Inheritance of Mashlets and Glue Patterns

Figure 1 shows three GP examples. For instance,GP1
combines the basic “Map” mashlet with a “Simple Marker”
mashlet to display a list of locations on a map using simpler
markers.GP2 performs the same task except that it uses the
“Video Marker” mashlet for the markers. In both cases, the
GP passes information from one mashlet to the other using
the corresponding external interfaces.

B. Inheritance of Mashlets and their Glue Patterns

Similar to software components, mashlets may share prop-
erties with other mashlets and comply with the inheritance
paradigm. As an example, observe that the “Map” and “Yahoo!
Map” mashlets implement very similar functionality, and it
may be actually possible to use a “Yahoo! Map” in any GP
that uses a “Map” as one of its components. Based on this
intuition, we analyzed in detail Programmableweb.com [7],
currently the most extensive collection of mashups on the
Web. This lead us to the understanding that a large number of
mashups are similar to each other, in their components and in
the logic they offer to users. For example, at the time of our
study, 1669 mashups (39% of all mashups) included maps
provided by various vendors (Google, Yahoo!, etc.). Since
their characteristics are often standard, it is easy to reuse the
composition logic defined for one, for another one. Even if
some of the functionalities may not be enabled, the core logic
should be reusable.

Motivated by the previous observation, we introduce in
our model an inheritance relationship among mashlets. More
specifically, mashletm2 inherits from mashletm1 if the
interface ofm2 (input/output variables) is a superset of the
interface of m1. This definition of inheritance implies that
mashletm2 can be used in any composition that employs
an instance of mashletm1. We note that inheritance can be
achieved using explicit language means, e.g., by importingthe
code of a mashlet and refining it in subclasses. It can also be
realized by simply “cloning” the interface of a mashlet.

Similarly, our model supports inheritance among GPs. In
this case, the inheritance relationship is defined based on the



mashlets linked by a GP. Informally, GPg2 inherits from GP
g1 if it connects mashlets that inherit from those ofg1 plus
possibly some additional new mashlets. As an example,GP2
in Figure 1 inherits fromGP1, in the sense thatGP2 can also
link a “Map” to a “Simple Marker”, and thus it can be used
in any composition that usesGP1.

We henceforth represent a set of mashlets and GPs as a
directed graph. Mashlets and GPs are represented as nodes,
and GPs are connected to the mashlets that they glue together.
Moreover, the graph contains inheritance edges among mash-
lets and GPs.

III. T HE MASHUP AUTOCOMPLETIONPROBLEM

At an abstract level, the mashup autocompletion problem
can be defined as follows: Given a database of mashlets and
glue patterns, and a set of mashlets selected by the user,
identify and rank Glue Patterns that link a subset of the
selected mashlets. Clearly, the generation of autocompletions
involves two interrelated tasks:

Identification of GPs that match the selected mashlets:
Intuitively, a good GP would glue all the mashlets selected
by the user without introducing additional mashlets in the
mashup. Such a GP, however, may not exist in the database,
in which case the system should try to generate relaxations of
this ideal solution. For instance, a GP may link a proper subset
of the selected mashlets, or introduce additional mashlets.
Another option is to use a GP that does not link the mashlets
directly, but instead links mashlets they inherit from. As an
example, assume that the user selects “Yahoo! Map” and
“Video Marker” as the starting mashlets. As shown in Figure 1,
there exists no GP that links the two mashlets directly, but it
is possible to useGP2 since “Yahoo! Map” inherits from
“Map”. The downside, of course, is thatGP2 does not take
full advantage of the map’s capabilities.

Ranking of Candidate GPs:By ranking candidate GPs, the
system can propose to the user a meaningful short list of
completions. The rank of a candidate GP intuitively depends
on its “tightness”, i.e., its coverage of the selected mashlets.
Hence, the omission of mashlets or the introduction of addi-
tional mashlets penalize the quality of a candidate. At the same
time, it is important to take into account the generality of the
GP with respect to inheritance relationships. Going back toour
previous example,GP2 should be ranked higher thanGP1,
since the latter links generalizations of both “Yahoo! Maps”
and “Video Marker”, whereasGP2 can take advantage of the
capabilities of the video markers. Finally, it is importantto take
into account the “collective wisdom” of the user community
when presenting choices to the user. For instance,GP1 might
be more frequently used and rated as more stable by users
compared toGP2, in which case it might have to be ranked
higher even if it is a little less specific. We refer to this concept
as thestatic importanceof a mashlet.

The following sections describe our solution to the autocom-
pletion problem. We first describe an algorithm to compute
the top-k candidates, assuming that we are given a function

Imp that reflects the static importance of a mashlet. Next, we
discuss possible choices for computingImp.

A. Identifying and Ranking Completions Efficiently

As a first step, we define a rank metric that quantifies the
quality of a candidate GP relative to a set of user-selected
mashlets. Our approach is to map each GP in the database to a
point in a multi-dimensional space that captures the inheritance
relationships in the database relative to the selected mashlets.
The “ideal” GP that links just the selected mashlets is also
mapped to a point in this space. The distance between this
point and a GP point is used as the rank value for the GP.

Our approach is best illustrated with an example. For
simplicity, we assume that all importance values are in the
range[0, 1]. Suppose again that the user selects mashletsm2
and m4 (“Yahoo! Maps” and “Video Marker” respectively).
We consider the three-dimensional unit cube, where the di-
mensions correspond to (1)m2, (2) m4, and (3) the glue
pattern that would link the two mashlets. The ideal candidate
is represented as the point(1, 1, 1), meaning that it links pre-
cisely the two mashlets. The candidateGP2 is mapped to the
point (1−1/Imp(m1), 1, Imp(GP2)), which is interpreted as
follows. GP2 links m1 that is a generalization ofm2, but the
penalty of generalization, as measured by the deviation from
the ideal coordinate value1, depends on the importance of
m1. Hence, the penalty is low ifm1 is an important mashlet,
as judged by the community. The second coordinate is1 since
GP2 takes full advantage ofm4. Finally, the third coordinate
is equal to the importance ofGP2. The distance between
(1, 1, 1) and(1− 1/Imp(m1), 1, Imp(GP2)), e.g., measured
by cosine similarity or simple Euclidean distance, provides the
rank ofGP2. Hence, a candidate gets a good rank if it covers
precisely all the selected patterns and the corresponding GP
has a high static importance.

We can extend the previous example to GPs that omit
selected mashlets by setting the respective coordinates to0.
Also, it is possible to model the introduction of mashlets,
by adding a distinct dimension for each added mashlet and
setting the coordinate of the ideal candidate to 0. (This
transformation preserves the computation of distances to other
candidates.) Longer inheritance paths can also be handled
directly, by increasing the penalty of generalization witheach
super mashlet. Finally, it is possible to scale the dimensions
so that they reflect the relative importance of mashlets, e.g., so
that the omission of an important mashlet increases the penalty
of the candidate. We do not discuss these technical details
further, because of space limitations. Overall, the proposed
metric is intuitive and has the nice property that it takes into
account both the interactions of mashlets through inheritance,
and also the static importance of mashlets.

We have developed an algorithm that computes efficiently
the top candidates given the metric defined above. The efficient
computation of the top completions is important in our setting,
in order to maintain short interaction times with the user. The
algorithm operates on an index of the database that is built
off-line, and it is based on the general idea of threshold-based



top-k algorithms [8]. The interesting aspect of our algorithm
is that it uses a non-monotonic ranking function, yet we are
able to prove strong theoretical guarantees on its performance.
While we omit details due to space constraints, we note that
part of the demonstration will be focusing on the algorithm.

B. Computing Importance

Up to this point, we have assumed the existence of an
Imp function that measures the static importance of a mashlet
or GP, i.e., its quality as measured by its usage in mashups
created by the user community. One obvious idea is to use
the download count of a mashlet as a value forImp, based
on the intuition that importance follows the frequency of use.
Another idea is to maintain an explicit rating system, where
users are asked to rate mashlets based on different criteria.

We utilize a different approach that is based on the mashlet
graph. The intuition is that a mashlet is important if it is
referenced by important GPs, and a GP is important if it
is referenced by important mashlets. This is essentially the
PageRank [9] idea applied to the mashlet graph. We thus
assign an initial importance to each mashlet, e.g., using the
download count or an explicit rating, and then use a set of
recursive equations to transfer importance along the edges
of the mashlet graph. Note that the graph is much less
connected than the Web graph, so one has to be a bit careful
in the PageRank computation. We bias it at each stage with
these initial importance values. An interesting point is that
importance may flow through inheritance edges as well, i.e.,
a mashlet that inherits from an important mashlet may get a
boost in its importance. We regulate this type of flow with
a weight in the recursive equations, which allows the metric
to be more or less conservative with respect to inheritance
relationships.

IV. D EMO SCENARIO

Our demo shows theMatchUp system that enables incre-
mental composition of mashups, based on the autocompletion
mechanism presented above.

The system architecture is shown in Figure 2. It includes
a database of real mashlets (that includes the mashups of
ProgrammableWeb), and a recommendation engine that tracks
the user’s actions and proposes GPs as possible completions.
The front-end of our system is implemented using Adobe
R© Flex TM2, Rich Internet Application development tool set.

The demonstration is structured as follows. First, we will
show and analyze a sample of the imported mashlets using
the model presented in Section II. The goal is to show the
applicability of our model to real-world mashlets, and in
particular to demonstrate the characteristics of GPs and atomic
mashlets. Moreover, this analysis will illustrate the validity of
the inheritance model which is central in our approach.

Second, we will demonstrate the development of an Ex-
tended Patient Health Record (xPHR) mashup using our tool.
The development will be done incrementally, meaning that the
user will place some mashlets on the screen, obtain possible
completions, proceed with adding more mashlets, and so on,

until the application is complete. The goal is to demonstrate
the interaction between the system and the user, showing how
autocompletion greatly simplifies mashup development.

The third and final part will demonstrate the workings
of the underlying completion algorithm, including the multi-
dimensional model for mashlet ranking and the top-k algo-
rithm. Essentially, we will perform a fast forward replay of
the previous part, showing at specific points how completions
are computed and ranked. We will also demonstrate the effect
of our model’s parameters on the generation of completions,
by comparing the completions for different settings of the pa-
rameters (e.g., with and without inheritance, or using different
functions forImp).

Fig. 2. MatchUp System Architecture

Fig. 3. Example of an autocompletion

REFERENCES

[1] J. Anant, “Enterprise information mashups: Integrating information, sim-
ply,” in VLDB, 2006.

[2] A. Nandi and H. V. Jagadish, “Effective phrase prediction,” in VLDB,
2007.

[3] B. Myers, S. E. Hudson, and R. Pausch, “Past, present, andfuture of user
interface software tools,”ACM Trans. CHI, vol. 7, no. 1, 2000.

[4] X. Dong, A. Halevy, J. Madhavan, E. Nemes, and J. Zhang, “Similarity
search for web services,” inVLDB, 2004.

[5] R. Ennals and M. Garofalakis, “Mashmaker: mashups for the masses.” in
SIGMOD, 2007.

[6] M. Altinel et al., “Damia - a data mashup fabric for intranetapplications,”
in VLDB, 2007.

[7] “Programmableweb,” http://www.programmable.com/.
[8] R. Fagin, A. Lotem, and M. Naor, “Optimal aggregation algorithms for

middleware,” inPODS, 2001.
[9] S. Brin, R. Motwani, L. Page, and T. Winograd, “What can youdo with

a web in your pocket?”Data Eng. Bulletin, vol. 21, no. 2, 1998.


