
Navigating through Mashed-up Applications
with COMPASS

1 Tel-Aviv University
2 IBM Haifa Research Labs

Abstract— Mashups integrate a set of complementary Web-
services and data sources, often referred to as mashlets. We
consider here a common scenario where the integrated mashlets
are part of larger Web-applications, and their integration yields a
set of inter-connected applications. We refer to them as Mashed-
up Applications (abbr. MashAPP). The inter-connections between
the mashlets enrich the individual Web-applications, but at the
same time make the user navigation within them more intricate
as actions in one application may affect others. To address this
difficulty, we present COMPASS, a system that assists users in
their navigation through MashAPPs. The system employs a novel
top-k algorithm to propose users the most effective navigation
paths for their specified goals. The suggestions are continually
adapted to choices taken by the users while navigating.

I. INTRODUCTION

Mashups integrate a set of complementary Web services
and data sources, often referred to as mashlets. For instance,
consider the following simple components: (1) a patient’s
personal list of prescribed drugs, (2) a pharmacies directory
and (3) a map service. A mashup may glue these mashlets
together by feeding the drugs list to the (search facility of
the) pharmacies directory, to get a list of pharmacies offering
this drug, and feeding the addresses of retrieved pharmacies
to the map service, to present their location on a map. Such
connections are called Glue Patterns (GPs) [1].

Mashlets are typically viewed as isolated “black box” com-
ponents [1], [2], [3]. In real-life, however, such services are
often incorporated within larger applications. For instance, the
patient drugs list may be part of an Electronic Health Record
application (EHR); the pharmacies directory may be part of
a pharmaceutical Web site, etc. The gluing of mashlets, in
this case, yields a set of inter-connected Mashed-up Appli-
cations (abbr. MashAPP). Users of MashAPPs may navigate,
in parallel, in several, interacting applications. For instance,
consider a patient wishing to find out where her prescribed
drugs are sold. She could navigate separately within the EHR,
pharmacies, and map applications: this may require her to
login to her EHR account, retrieve the prescribed drugs, then
login to the pharmaceutical application, manually searching for
pharmacies that offer these drugs, then turn to the map service
and repeatedly seek for the location of relevant pharmacies.
Alternatively, she can exploit the MashAPP inter-connections
to achieve her goal much faster: she may still need to first
login to her account at the EHR and at the pharmaceutical
application, due to security constraints, but now a single click
on each prescribed drug feeds the data to the pharmaceutical
application, that retrieves pharmacies offering this drug, and

the pharmacies locations will instantly appear on the map.
The above example illustrates two connections within the

MashAPP, but there may be many others (e.g. information on
pharmacies offering deals may be found in medical forums,
payment may be done online, etc.). This implies that the
number of possible relevant navigation flows in a MashAPP
may be very large (even in a single application, the number
of flows is large [4] and inter-connections between the appli-
cations further increase it). Some of these navigation options
are significantly better than others (e.g. save work, induce less
errors, etc.), but identifying them may be non-trivial.

To address this difficulty, we present here COMPASS, a sys-
tem that assists users in their navigation through MashAPPs.
Users of COMPASS are presented with a flow-map of the
MashAPP, namely an abstract graphical representation of the
mashlets within each application, their logical flow and the
inter-connections between mashlets. By clicking on this flow-
map, users may choose goals (points within the applications)
which they want to reach during navigation (e.g. view pre-
scribed drugs in EHR, purchase drugs, etc.). These user goals
are compiled into a query, evaluated over the MashAPP spec-
ification. The system then computes, and presents to the user,
the top-k recommended navigation flows within the MashAPP.
Two ranking metrics are currently employed in COMPASS:
the first reflects the popularity of flows among users - actions
done by previous users sharing goals similar to these of the
current user, are likely to be of interest to her as well; the
second ranking metric measures the incurred navigation effort
(number of clicks and the amount of input required from the
user) - users often prefer flows that minimize their work. We
note however that our underlying top-k algorithm is generic
and we do not place any restrictions on the ranking metric
except that it satisfies standard notions of monotonicity.

The user then continues her navigation in the MashAPP,
taking into account the presented recommendations, but may
also follow paths different than those proposed by the sys-
tem. In this case, new recommendations, consistent with the
actual choices made by the user, are automatically computed.
Namely, COMPASS dynamically proposes new top-k continu-
ations that are up to date with the user current navigation.

Demonstration Scenario: We demonstrate the operation
of COMPASS on a real-life patient portal developed at IBM
[5]. The portal integrates many real-life applications, including
a personalized Electronic Health Record, Pharmaceutical Web
sites, map applications, etc, forming a MashAPP. In our

Daniel Deutch 1, Ohad Greenshpan 1,2, Tova Milo 1

978-1-4244-5446-4/10/$26.00 © 2010 IEEE ICDE Conference 20101117

demonstration, we will first present the original portal, ask
the audience to navigate within it to achieve some particular
goals, and show the difficulties encountered during navigation.
Then we shall turn on COMPASS to assist the users in
navigation: we will present the MashAPP flow-map and ask
users to choose navigation goals by clicking on a set of points
within it. COMPASS will then provide a top-k list of relevant
navigation flows (displayed along-side the application) and we
shall exemplify navigation within the MashAPP following the
recommendations. We will also show the adaptive nature of
COMPASS when different navigation paths are chosen. Finally,
we will compare the navigation courses, with and without
COMPASS (in terms of number of clicks, required user input,
time spent), illustrating the improved user experience.

As a last part of the demonstration, we allow users to look
under the hood of our system. Specifically, we will show
queries constructed out of the user requests and illustrate main
features of our adaptive top-k query evaluation algorithm.

II. TECHNICAL BACKGROUND

We provide here some technical background on our model
for MashAPPs and for queries over their navigation flows.
These serve as the basis for COMPASS.

Previous works have suggested models for mashups con-
necting atomic services [1], [3], [6] and for (Web) applications
[7], [8], [9] and their execution. Our model for MashAPPs
integrates 4 main ingredients from these models: Mashlets
and Glue Patterns adapted from [1], and application graphs
and their flows adapted from [7]. We informally explain these
ingredients and the way they are put together.

S

Drugstore.com

EHRs1
s2

Show clinical

details

Show

drug list

Choose

a drug

Search

drugs

Print drug

name

Browse

drugs

Drugs

in A

Add drug

to cart

Choose

a drug

Buy online

Buy with

credit
Buy with

cash

s4

Pharmacies

online

Search

by drug

Search by

pharmacy

Show

pharmacies

Pharmacies

in A

Show

drugs

Choose a

pharmacy
Choose

a drug

drugs

in A

Buy

online

Buy with

cash
Buy with

credit

B C B C

Show deal

details

Show

personal

details

Show phone

number

Choose

a drug

s3MAP

Edit

address

Show on

map

Zoom

Show pharmacy

details

Show drug

details

login

login

login

Main page

B C

Fig. 1. Real-Life MashAPP

A. Mashlets, Glue Patterns, and Applications

A mashlet is a module implementing some functionality
and supporting an interface of input and output variables.
Its input variables must be fed for it to operate properly.
Following [1], we model the interface of mashlets as a set
of relations. Glue Patterns (GP for short) describe which
output data is fed into which input relation and when (using a
set of active rules). Then, following [7], we model a Web-
Application as a node-labeled, directed graph describing a
set of mashlets and the flow thereof. Each application has a
distinguished start point, with no in-going edges, and may have

some nodes marked as accepting. Last, a MashAPP is a set of
Web applications, accompanied by a set of GPs gluing some
mashlets and possibly crossing applications. Fig. 1 depicts
a graphical abstract view of a part of real-life MashAPP,
namely a patient portal [5]. This partial MashAPP consists of
four applications (Drugstore.com, Electronic Health Record,
a Map application and Pharmacies Online). Regular edges
detail the logical flow within each application (e.g. in the
Map application, the “Show on map” mashlet may receive its
input from its ancestor “Edit address”). Dashed edges represent
cross-applications GPs (e.g. the same mashlet may also receive
input from “Show pharmacy details” in Pharmacies online).

Fig. 2. Navigation Flow

B. Navigation Flows

A Navigation Flow is an actual instance of navigation within
a MashAPP, consisting of a sequence of navigation steps.
Intuitively, a valid flow at a single stand-alone application
starts at its starting point and follows the application edge
relation, at each step activating a following mashlet, with
its input being fed either by the output of some previously
activated mashlets, or by the user. We model this using a
Program Counter (PC) signifying the current location (node)
of the flow. A navigation flow in a MashAPP induces a parallel
navigation in all participating applications and is captured by
a vector of Program Counters, one for each application.

In the absence of GPs, a navigation step in a MashAPP
is simply a single step in one application, updating the
corresponding PC and keeping all others intact. However, GPs
allow mashlets to receive some of their input values from
different applications. Thus, a mashlet m in an application
A may be activated even if the PC of A has not reached it,
but rather the combination of the output of its predecessors
in A (or of input provided by the user) along with that of
some mashlet (in application B) that is glued to it, feeds its
required input. In this case, we allow the PC of A to “jump”
to m, continuing the flow from that point.

For instance, a partial navigation flow is depicted in Fig.
2, where PCt

m denotes the PC of application m at time
t of navigation. Focusing on the “Buy online” mashlet in
Drugstore.com, we assume that its required input consists of
user login information (as only registered users can buy drugs
using this service), as well as a requested drug name. We
note that at time t + 1, the user navigation had advanced in
the EHR application to “Choose a drug” node, supplying to

1118

“Buy online” the name of a chosen drug. Since the PC at
Drugstore.com already passed the “login” mashlet, user login
information was also provided, thus the flow of Drugstore.com
“jumps”, at time t + 2, to “Buy online”.

We say that a navigation flow in a MashAPP is accepting
if it reaches an accepting state in all applications for which
such accepting state is defined.

C. Top-k qualifying Navigation flows

We have briefly described our model for MashAPPs, and we
now turn to the analysis of their flows. As mentioned in the
Introduction, our system allows users to specify points of inter-
est within the MashAPP. This specification is compiled into a
navigation pattern, an adaptation of tree patterns, common for
querying XML, to MashAPP graphs. These navigation patterns
are used to filter, out of all possible navigation flows, those of
interest. As the set of results may still be large, we introduce
weights over all flow edges and GPs (e.g. capturing popularity,
or number of incurred user clicks). We define a flow weight
as the aggregated weight over all choices and GPs within it,
and identify the top-k weighted navigation flows out of those
corresponding to the pattern.

We can show that such top-k query evaluation is]P -hard
(data complexity) by reduction from 3-SAT. Nevertheless, we
can handle this intractability in practical cases: a finer analysis
shows that the evaluation complexity must only be exponential
in c1, the number of GPs in-between applications, and c2, the
number of applications that contain accepting states. Indeed,
we constructed a Dijkstra-style, Dynamic Programming algo-
rithm of time complexity O(min(|s| ∗ c1! ∗ 2c1 , |s|c2)), with
|s| being the total size of the MashAPP.

To gain intuition on practical sizes of the exponent in the
above formula, 99% of the mashups in ProgrammableWeb.com
[10], the largest online Mashup repository, contain at most 6
applications (i.e. c2 ≤ 6), thus the complexity is in effect
polynomial (bounded by |s|c2) for practical needs (we found
no published statistics for c1, but as the complexity is the
minimum of |s|c2 and |s| ∗ c1!∗2c1 , |s|c2 is an upper bound).

D. Related Work

Previous work on mashups focused mostly on tools that
assist developers in mashups design and construction [1],
[3], [11]. The present work takes a different angle, assisting
users in using the constructed mashups. Works on Web-service
composition also typically aim at easing the composition task
[12], or at statically verifying its correctness [9]. Our use of
Program Counters resembles the model of Petri Nets [13].
However, works analyzing this model typically focus on ver-
ification rather than recommendations, and additionally suffer
from very high complexity. In contrast, our model is tailor-
made for mashups, and while having weaker expressive power,
it allows efficient query evaluation. The work in [4] studied
recommendations for navigation in a single Web-site, but did
not consider interactions between actions taking place in paral-
lel, even in a single-application context. The inter-connections
between different applications in a MashAPP introduce further
computational difficulty, addressed by COMPASS.

III. SYSTEM OVERVIEW

We next present a brief overview of the system architecture.
COMPASS is developed on top of Mashup Server developed
in IBM Haifa Research Labs. The server allows to compose
mashups (and thereby MashAPPs) and use them. The architec-
ture of COMPASS is depicted in Fig. 3. We describe below the
main system components and explain how they work together.

User Navigation

Goals

Flow Map

Top-K Recomm.

Screens, Actions

User Selection

User Navigation

Goals

Top-K

Recomm.

User Interface

User

Adaptive Query
Engine

Flow Map

IBM Mashup
Server

MashAPP model

User Selection

Flow

Map

COMPASSCOMPASS

Mashups

Data Widgets

Screens, Actions

Fig. 3. System Architecture

COMPASS UI: This component is the user interface
for navigating through MashAPPs. To construct the UI of
COMPASS, we used as a basis the user interface of the
Mashup Server, and enhanced it with plug-ins enabling the
user to (1) view the flow-map of a given MashAPP, (2) set
navigation goals; (3) obtain from COMPASS top-k navigation
recommendations and (4) examine various recommendation by
clicking on them and viewing their (highlighted) image on the
MashAPP flow-map (see Fig. 5).

MashAPP abstract Model: The MashAPP model, stored
in the COMPASS database, includes the flow-map of each
participating application, as well as the GPs connecting them.
The first component, namely the flow-map for each applica-
tion, was manually configured for all applications participating
in the demonstration, following their logical structure. We
note however that many Web applications are specified in
declarative languages such as BPEL [14], allowing automated
extraction of their flow-map. The GPs connecting the appli-
cations mashlets were retrieved from Mashup Server, along
with input and output specifications of each mashlet. Last, we
consider the construction of a weight function over flows. We
demonstrate here two weight functions: the first weigh flows
by the total number of navigation steps (user clicks and input)
taken, and the second captures the total popularity of user
choices. Weights accounting for navigation steps are easily ob-
tained from the applications flow-map; the popularity weights
were obtained as follows: for flow edges connecting services
of a Web application, we obtain information about transition
popularity by an experimental study, collecting and statistically
analyzing user logs. For GPs, we employ the MatchUp system
[1] that computes popularity ranks for connections in-between
two mashlets.

MashAPP Adaptive Query Engine: This last component
computes and provides users with recommendations. This

1119

engine, querying the abstract model Database, is incorporated
as a plug-in to the Mashup Server. Queries are received
through the COMPASS UI, directed to the Query Engine that
processes them and returns the result back to the COMPASS
UI for presentation. Furthermore, the Query Engine remains
active throughout the navigation process, to receive from the
UI a report on each user navigation step. Then, new recom-
mendations consistent with the user choices are computed and
sent to the UI, and so forth.

IV. DEMONSTRATION SCENARIO

We demonstrate a scenario that exemplifies how COMPASS
significantly eases the navigation in MashAPPs. The MashAPP
depicted in Fig. 4 is a real-life patient portal [5] developed in
IBM, enabling users to manage data, services and applications
relevant to their health. The mashlets composing the portal
include, among others, the patient Electronic Health Record
(EHR) storing the history of the patient diagnoses, treatments
and status; applications that suggest medical-related online
services, such as purchasing drugs and finding details about
pharmacies; personal applications such as a calendar, a map
and an image viewer; and applications that enable communi-
cation and collaboration, such as SMS and online messaging.
We use real-life applications, but the underlying personal and
medical data is synthetic due to confidentiality constraints. The
applications in the demonstrated MashAPP are strongly inter-
connected, inducing many possible ways to address a given
goal and making the choice of best navigation difficult.

PharmaciesOnline(Main page),

PharmaciesOnline(Search by drug), …
4

Drugstore.com(login),

Drugstore.com(Browse drugs), …
3

EHR(login), EHR(Show clinical details),

EHR(Show drug list) , …
2

Drugstore.com(login),

Drugstore.com(Search drugs),

Drugstore.com(Choose a drug)

1

Navigation DescriptionRank

more >>

Fig. 4. COMPASS Top-K Recommendations

We start the demonstration by showing the flow-map of
the patient portal applications along with the inter-connections
between them, and present the audience with the following
goal: order, from some nearby pharmacy, your prescribed drug,
and show the chosen pharmacy location on the map to allow
pick-up of the drug. We then allow users to navigate within
the patient portal, in two modes. In the first, the user navigates
by herself, with no guidance from COMPASS. While doing so,
the system will collect information on the navigation quality,
such as the number of user clicks, the popularity of her choices
according to previous users choices, and the proximity of her
chosen pharmacy to the conference venue. Then, we turn on
COMPASS. The user will now be able to view the portal flow-
map alongside the applications (see Fig. 4). By clicking on

nodes in the flow-map, she will define navigation goals and
have COMPASS assisting her in obtaining them. The system
will provide recommendations on navigation flows, in a textual
form; the user may click on a recommendation to have the
relevant navigation flow lit up on the flow-map (see Fig. 5,
where F denotes flow-paths and GP denotes Glue Patterns).
The user then continues her navigation in the MashAPP, taking
into account the presented recommendations, but may also
follow paths different than those proposed by the system,
in the latter case the system will adapt its recommendations
to the actual choices made. We will collect here the same
statistical data on the navigation quality as before. At the end
of the process, we will present to the user a comparison of
her navigation with and without the assistance of COMPASS,
in terms of the collected statistics.

To conclude the demonstration and explain the top-k algo-
rithm underlying COMPASS, we will pick one of the suggested
navigation flows and explain its computation.

Fig. 5. Recommending Navigation Flows

REFERENCES

[1] O. Greenshpan, T. Milo, and N. Polyzotis, “Autocompletion for
Mashups,” 2009, to appear in VLDB ’09.

[2] J. Yu, B. Benatallah, F. Casati, and F. Daniel, “Understanding Mashup
Development,” IEEE Internet Computing, vol. 12, no. 5, 2008.

[3] B. Lu, Z. Wu, Y. Ni, G. Xie, C. Zhou, and H. Chen, “sMash: semantic-
based mashup navigation for data API network,” in WWW ’09, 2009.

[4] D. Deutch, T. Milo, and T. Yam, “Goal Oriented Website Navigation
for Online Shoppers,” 2009, to appear in VLDB ’09.

[5] O. Greenshpan, K. Kveler, B. Carmeli, H. Nelken, and P. Vortman,
“Towards Health 2.0: Mashups To The Rescue,” in NGITS ’09, 2009.

[6] J. Yu, B. Benatallah, R. Saint-Paul, F. Casati, F. Daniel, and M. Matera,
“A framework for rapid integration of presentation components,” in
WWW ’07, 2007.

[7] D. Deutch and T. Milo, “Type inference and type checking for queries
on execution traces,” in VLDB ’08, 2008.

[8] D. Calvanese, G. D. Giacomo, M. Lenzerini, M. Mecella, and F. Patrizi,
“Automatic Service Composition and Synthesis: the Roman Model,”
IEEE Tech. DE, 2008.

[9] A. Deutsch, L. Sui, V. Vianu, and D. Zhou, “Verification of communi-
cating data-driven web services,” in PODS ’06, 2006.

[10] “Programmbleweb,” http://www.programmableweb.com/.
[11] R. J. Ennals and M. N. Garofalakis, “MashMaker: mashups for the

masses,” in SIGMOD ’07, 2007.
[12] D. Berardi, D. Calvanese, G. De Giacomo, R. Hull, and M. Mecella,

“Automatic composition of transition-based semantic web services with
messaging,” in VLDB ’05, 2005.

[13] T. Murata, “Petri nets: Properties, analysis and applications,” Proc. of
IEEE, vol. 77, no. 4, 1989.

[14] “Business Process Execution Language for Web Services,”
http://www.ibm.com/developerworks/library/ws-bpel/.

1120

