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ABSTRACT
Many modern applications involve collecting large amounts
of data from multiple sources, and then aggregating and
manipulating it in intricate ways. The complexity of such
applications, combined with the size of the collected data,
makes it difficult to understand how the resulting informa-
tion was derived. Data provenance has proven helpful in
this respect, however, maintaining and presenting the full
and exact provenance information may be infeasible due to
its size and complexity. We therefore introduce the notion
of approximated summarized provenance, which provides a
compact representation of the provenance at the possible
cost of information loss. Based on this notion, we present
a novel provenance summarization algorithm which, based
on the semantics of the underlying data and the intended
use of provenance, outputs a summary of the input prove-
nance. Experiments measure the conciseness and accuracy
of the resulting provenance summaries, and improvement in
provenance usage time.

Categories and Subject Descriptors
H.2 [Database Management]: Miscellaneous; I.1.1 [Symbolic
and Algebraic Manipulation]: Expressions and Their
Representation—representations (general and polynomial),
simplification of expressions

Keywords
Provenance;Provisioning;Crowd-sourcing applications

1. INTRODUCTION
Complex applications that collect, store and aggregate

large-scale data, and interact with a large number of users,
are found in a wide variety of domains. Notable examples
are crowd-sourcing applications such as Wikipedia, social
tagging systems for images, traffic information aggregators
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such as Waze, or hotel and movie ratings such as TripAdvi-
sor and IMDb.

In the context of such applications, several questions arise
related to how data was derived. As a user of the informa-
tion, what is the basis for trusting it? How do contributions
vary among crowd members based on characteristics such
as age or gender? If some contribution seems wrong, how
does the information change if we discard it? These ques-
tions are fundamentally important to better understand the
application and its results.

At its core, the answer to these questions is based on the
provenance of the collected data and resulting information,
that is, who provided the data in what context and how the
information was derived. However, provenance goes well
beyond simply providing a log of the application execution.
In particular, the algebraic model of provenance based on
semirings of [21, 7] can be used to explain results by corre-
lating input with output data, and tracking important de-
tails of the computational process that took place. As shown
in [17], it can also be used to provision the result with re-
spect to hypothetical scenarios, i.e. to observe changes to
the result based on changes to the input without re-running
the process. Detailed tracking of provenance is therefore an
essential vehicle for the applications mentioned above.

As an example, consider a crowd-sourced application for
movie reviews, where the number of movies, and number of
reviews for each movie, may be very large. An aggregated
score for each movie is computed by combining the scores of
multiple different users, possibly accounting for their previ-
ous reviews and for their preferences. These features, and
the way in which they are used in the computation, should
all be reflected in the provenance. In turn, this provenance
may be presented to explain results such as the computed
recommendations of movies, or to provision them, e.g. to
determine how the average movie rating would change if we
ignore ratings by some group of users.

Unfortunately, the large amount of data and complexity
of processing the data means that the resulting detailed
provenance information can be overwhelming. Presenting
it in full, as an explanation for a computation, may make
it extremely hard for users to understand. In this paper
we therefore introduce the notion of approximated summa-
rized provenance, which provides a compact representation
of provenance at the possible cost of information loss. This
compact representation will enable the user to see trends, for
example that women aged 20-25 tended to rate a particular
movie more highly than men aged 20-25.
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Contributions. We present a novel algorithm that provides
approximated summarization of provenance information for
complex applications. The summarization is based in part
on the semantics of the underlying data (such as gender,
age or occupation of users), where annotations of “similar”
data items are intuitively more amenable to be grouped to-
gether. More importantly, it is also geared towards the in-
tended use of provenance (namely explanation and/or provi-
sioning): we define a distance function between provenance
expressions that is based on the intended use, and optimizing
this distance while still obtaining small expressions guides
the summarization. We have conducted experiments with
three datasets - MovieLens, Wikipedia and DDP (Data De-
pendent Process), in which we compared our algorithm to
other approaches and showed that our approach gives better
summarizations in terms of distance and size.

Paper Organization. The rest of the paper is organized
as follows. Section 2 describes workflow provenance and
the provenance model. Section 3 describes the notion of
provenance summarization through mappings and the qual-
ity measurements for such summarization. In section 4 we
present a few propositions that, combined together, lead to
our summarization algorithm. We end this section with an
example of the full algorithm flow. Section 5 describes the
datasets we used and also includes interesting use cases. We
later describe our experimental results in section 6. Finally,
related work and conclusions are discussed in Section 7.

2. MODEL DESCRIPTION
We now give an overview of the semiring provenance model

of [21], and its extension to queries with aggregates in [8,
7]. This will serve as the basis for our work.

2.1 Workflows
We capture applications logic by a standard notion of

workflows. One possible model for workflow [15, 7] con-
sists of a specification and an associated set of executions.
The specification can be thought of as an FSM (Finite State
Machine), in which modules represent processing steps and
edges indicate potential dataflow between the output port
of one module to the input port of another module. In the
model of [7], the workflow operates in the context of some
global persistent state, i.e. some underlying database. Mod-
ules may be atomic, meaning that they are a query on the in-
puts to the module as well as the underlying database. Mod-
ules can also update the underlying database. A workflow
execution (or “run”) is a repeated application of modules,
which are ordered according to the workflow specification. 1

Example 2.1. Consider a movie rating application, in
which users rate movies and the ratings are aggregated using
the application logic described by the workflow in Figure 1.

Certain information about users is known, such as gender
and type (movie critic, director, audience, etc.), and stored
in the Users table in the underlying database.

Reviews are collected by different reviewing modules, which
crawl different reviewing platforms such as IMDb and news-
paper web-sites. Each such module updates statistics in the
Stats table in the underlying database, e.g. how many re-
views the user has submitted (NumRate), what their max
1This departs from the representation of executions and
their provenance as multigraphs in [15]

ReviewingModule1 

Prov MaxRate NumRate UID 
S1 3 5 1 

S2 5 3 2 

S3 4 13 3 

… … … … 

Aggregator 

(Alice,MatchPoint,3) 

ReviewingModule2 

ReviewingModule3 

Prov Gender Type User UID 
U1 Female Audience Alice 1 

U2 Female Critic Carol 2 

U3 Male Audience Bob 3 

… … … … … 

Stats Users 

ReviewingModule4 

Movies 
MaxRate NumRate Movie 

5 150 MatchPoint 

4 85 BlueJasmine 

… ... … 
(Carol, BlueJasmine, 4) 

(Carol, MatchPoint, 5) 

(Bob, MatchPoint, 3) 

Figure 1: Example Workflow

score is (MaxRate), etc. (alternatively, we could use sum
or any other aggregation function). A reviewing module also
consults Stats to output a sanitized review by implementing
some logic. The sanitized reviews are then fed to an aggre-
gator, which computes an aggregate movies scores.

There are many plausible logics for the reviewing modules;
we exemplify one in which each module sanitizes the reviews
by joining the users and statistics relations (depending on
the module), keeping only reviews of users listed under the
corresponding role (audience/critic) and who are “active”,
i.e. who have submitted more than 2 reviews. The aggregator
combines the reviews obtained from all modules to compute
overall movie ratings (num, max).

2.2 Provenance Model
We next explain in general what a provenance model is

and then use examples to illustrate the concepts described.
We start by fixing a finite set Ann of provenance annota-
tions, corresponding to the basic units of data manipulated
by the application, and which can be thought of as abstract
variables identifying the data. Depending on the applica-
tion, these annotations may correspond to different tuples
in a database, to different users, to different questions, etc.

A correspondence between data manipulation and alge-
braic operations in the structure of a commutative semiring
can then be defined. A commutative semiring is a struc-
ture (K,+K , ·K , 0K , 1K ) where (K,+K , 0K ) and (K, ·K , 1K )
are commutative monoids. This means that the operations
are associative and commutative with 0 and 1 standing for
the neutral elements for addition and multiplication, respec-
tively. In addition, ·K is distributive over +K , and a ·K 0K =
0 ·K a = 0K .
Given our set Ann of basic provenance annotations, the

provenance semiring is the semiring of polynomials with nat-
ural coefficients, with indeterminates from the set Ann. It is
denoted (N [Ann],+, ·, 0, 1), and was shown in [21] to cap-
ture provenance for positive relational queries. Intuitively,
the + operation corresponds to the alternative use of data
(as in union and projection) and · to the joint use of data (as
in join); 1 annotates data that is present, and 0 annotates
data that is absent.

To capture aggregate queries, K-relations were further
generalized by extending their data domain with aggregated
values [8]. In this extended framework, relations have prove-
nance also as part of their values, rather than just in the
tuple annotations. Such a value is a formal sum

∑
i ti ⊗ vi,
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where vi is the value of the aggregated attribute in the ith

tuple, while ti is the provenance of that tuple. We can think
of ⊗ as an operation that pairs values (from a monoid M)
with provenance annotations. Each such pair is called a ten-
sor. The formal sum, presented by the ⊕ operation is used
to capture the aggregation function.

In [8, 17] the framework was also used to define provenance
for nested aggregates and negation by introducing equation
and inequality elements. Intuitively an equation such as
[(d1 · d2) ⊗ m > 3] is kept as an abstract token and can
be used in conjunction with other semiring elements. Given
concrete values for d1, d2 and m one may test the truth value
of the equality and replace the equation by the truth value 2.
A precise algebraic treatment of aggregated values and the
equivalence laws that govern them is based on semimodules
and is described in [8]. We will focus, for simplicity, on the
case where the values monoid M is that of real numbers with
numbers addition and 0.

Example 2.2. The basic provenance annotation set Ann
consists here of U1, ...., S1, ....
The provenance-aware value stored as MaxRate in the aggre-
gator’s output table, the Movies table, for the “MatchPoint”
tuple would be:
P = U1 · [S1 · U1 ⊗ 5 > 2]⊗ (3, 1)⊕

U2 · [S2 · U2 ⊗ 3 > 2]⊗ (5, 1)⊕
U3 · [S3 · U3 ⊗ 13 > 2]⊗ (3, 1)⊕ ...

where Ui is a user identifier, Si is the provenance of the
user’s Stats tuple, and as aggregation we use a monoid of
pairs to capture the aggregated rating (MAX with value 3
in the first tensor) and how many users contributed to this
value (1 per tensor here but we will next show examples with
other values). Intuitively, each rating is associated with the
provenance of the tuple obtained as the output of the review-
ing module, namely the Ui annotation identifying the user.
Each such sub-expression is multiplied by an inequality term
serving as a conditional guard, indicating that the number of
reviews recorded for the user is above the threshold of 2. Ap-
plying aggregation then results in coupling values (numeric
reviews) with annotations to form the expression above.

2.3 Valuations and Provisioning
An important use of semiring provenance is for provision-

ing, i.e. examining changes to the application’s execution
that are the result of some hypothetical modifications to
the data (e.g. “How would the movie ratings change if we
ignore some reviews suspected as spam?”). This is formal-
ized in [21] through the notion of truth valuations applied
to annotations. Intuitively, specifying that U1 is a spammer
corresponds to mapping it to false (and that U1 is reliable to
mapping it to true), and recomputing the derived value w.r.t
this valuation. Such valuation can again be extended in the
standard way to a valuation V : N [Ann] �→ {true, false}
using the following intuitive rules: (1) 0 ⊗m is interpreted
as 0; (2) 1 ⊗ m is interpreted as m; and (3) A comparison
expression is interpreted as 1 if satisfied and as 0 otherwise.

Note that given a truth valuation for annotations, we ob-
tain a real number for the expression by simply performing
the substitution as defined above, and applying the basic
semiring axioms 3.
2The obtained semiring is denoted by KM in [8]. For sim-
plicity we will abuse notation here and just use K
3Similarly, the provenance can capture scores of multiple
movies and valuation then leads to a vector of values.

Example 2.3. Consider the provenance expression P of
Example 2.2 and partial truth valuation that maps S1 to 0
and U1 to 1. Then U1 · [S1 · U1 ⊗ 5 > 2] ⊗ (3, 1) maps to
0 ⊗ (3, 1) ≡ 0: Although U1 is mapped to 1, S1 · U1 ⊗ 5 is
mapped to 0 and so the inequality does not hold, and the
inequality expression is mapped to 0. In contrast, if S1 is
mapped to 1 then the condition would hold and we would
have (1 · 1)⊗ (3, 1) ≡ 3 (notice that (3, 1) ≡ 3 since we apply
aggregation on a single user with score 3). Intuitively the
second case corresponds to keeping the review, while the first
one corresponds to discarding it.

3. PROVENANCE SUMMARIZATION
The provenance model described in the previous section

provides full documentation of the transformations that took
place. Since the resulting expression may be extremely long
and complex, we would like to summarize the provenance
expression, at the possible cost of information loss. We start
by formalizing summarization through a notion of mappings,
and then discuss how to quantify the quality of a summary.

3.1 Summarization Through Mappings
Let Ann be a domain of annotations (for the N [Ann]

semiring) and Ann′ be a domain of annotation summaries.
Typically, we expect that | Ann′ |<<| Ann |. We then de-
fine a mapping h : Ann �→ Ann′ which maps each annota-
tion to a corresponding summary. Abusing notation, this ex-
tends naturally to a homomorphism h : N [Ann] �→ N [Ann]′,
i.e. define h(a+ b) = h(a) + h(b) and h(a · b) = h(a) · h(b).
This further extends to N [Ann]′ ⊗M by the standard con-
struction h(k⊗m) = h(k)⊗m. Essentially, to apply h to a
provenance expression p, each occurrence of a ∈ Ann in p is
replaced by h(a). The mapped expression, h(p), is a sum-
mary of the real provenance, in the sense that we lose track
of some exact annotations and summarize the provenance
using the abstract annotations in Ann′.

Example 3.1. Consider the provenance-aware expression
P obtained in Example 2.2. To simplify the example we fo-
cus on the reviews of users U1, U2, U3 for the movie “Match
Point”, and map all Si annotations to 1 so we can discard
the inequality terms. We thus obtain a simplified version of
the provenance expression P :
Ps = U1 ⊗ (3, 1)⊕ U2 ⊗ (5, 1)⊕ U3 ⊗ (3, 1)
Next, we map user annotations to annotation summaries
that intuitively reflect values of attributes of the correspond-
ing users. Mapping U1 and U2 to an annotation summary
called “Female” 4, and applying congruences in the tensor
structure, we obtain an expression that includes a maximum
score of 5 collected from two female users:
P ′

s = Female⊗ (5, 2)⊕ U3 ⊗ (3, 1)
Another summary results from mapping annotations U1 and
U3 to the annotation “Audience”:
P ′′

s = Audience⊗ (3, 2)⊕ U2 ⊗ (5, 1)

In the example, we used two possible mappings h that com-
bine reviews based on gender or role. In general there may
be many possible mappings and the challenge is, given a
provenance expression p, to (a) define what a good mapping
h is (correspondingly, what is a good summary h(p)), and
(b) find such good h.

4We later describe which mappings are possible and which
are preferable to ours.
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3.2 Quantifying Summary Quality
Several, possibly competing, considerations need to be

combined in quantifying the quality of a summary.
Provenance size. Since the goal of summarization is

to reduce the provenance size (measured as the number of
annotations), it is natural to use the size of the obtained
expression (after simplifications) as a measure of its quality.

Semantic Constraints. The provenance expression ob-
tained may be of little use if it is constructed by identifying
multiple unrelated annotations. It is thus natural to impose
constraints on which annotations may be grouped together.
One simple example of such a constraint is to allow two an-
notations a, b ∈ Ann to be mapped to the same annotation
in Ann′ (or to 0 or 1) only if they annotate tuples in the same
input table, intuitively meaning that they belong to the same
domain. Other constraints may be specified in the form of
taxonomies, where available. Taxonomies give semantic re-
lations between the underlying objects (users, movie, etc.),
and are used to constrain homomorphisms by requiring that
all annotations that are grouped together by mapping to the
same annotation share a common ancestor.

Additional constraints involve restricting mappings based
on the original input data, by requiring that annotations
that are mapped together reference tuples that share values
in some (or one of some) specified attributes. For example,
we may specify that users that are grouped together must
share a common attribute out of gender, age group, etc. This
allows us to give a meaningful name to the new annotation
for presentation purposes, based on the joint attribute.

Taxonomic information may also be useful for deciding
between choices of mappings, and may be incorporated as
part of the computation. For example, we may take into ac-
count the taxonomic distance between annotations and the
annotation they are mapped to by using the MAX or SUM
of these distances, and prefer mappings of annotations to a
new annotation that is relatively close to them (e.g. map-
ping user annotations to annotation ’Guitarist’ is preferable
to mapping them to annotation ’Person’).

Distance. Depending on the intended use of provenance,
we may quantify the distance between the original and sum-
mary expressions. For that we again use the notion of val-
uations, and define distances with respect to a set VAnn of
valuations to the original annotations Ann.

Example 3.2. Consider a distance function designed to
use provenance for provisioning in the presence of spam-
mers. To simplify the example, we assume that there is a
single spammer. In this case, the class of valuations con-
sidered consists of those assigning 0 to a single user anno-
tation, and 1 to all others. A concrete aggregated value for
each movie may then be computed by simply canceling every
summand in which the mapped annotation is 0, and taking
the aggregate values for the rest. (We use here the congru-
ences 0 ⊗ m ≡ 0, 1 ⊗ m ≡ m, and the ability to embed the
result in M , see [8].)

A central issue is how we transform a valuation in VAnn,
on the original annotations to one in VAnn′ , on the new an-
notation summaries. We propose that this will be given by a
combiner function φ that sets a boolean value to a′ ∈ Ann′

based on the truth values assigned to a annotations that
were mapped to it. For example, if φ is a disjunction of
the truth values, then intuitively an annotation summary is

cancelled only if all of the annotations it summarizes are can-
celled. More formally, let Ann,Ann′ be two domains of an-
notations and let h : Ann �→ Ann′. Further let φ : Ann′ �→
N [Ann] be a function such that for every a′ ∈ Ann′, φ(a′) is
a polynomial only in elements of {a ∈ Ann | h(a) = a′}. In a
sense, φ complements h, by specifying how the elements that
are mapped to an annotation a′ should be combined. Now,
any valuation vAnn ∈ VAnn uniquely extends to a valuation
vAnn′ ∈ VAnn′ by defining vAnn′(a′) = vAnn(φ(a

′)); note
that the use of vAnn refers to its extension to the domain of
N [Ann]. We use vh,φ to denote the valuation obtained in
such a way from a valuation v and mappings h, φ.

We next define the distance between a provenance expres-
sion p and its summary h(p) as an average over all truth
valuations, of some property of p, h(p), and the valuation.
This property is based on yet another function we call VAL-
FUNC, whose choice depends on the intended provenance use.
We only require that it is a computable function fed as an
additional input to the algorithm.

Definition 3.3. Let p be a provenance expression over a
set of annotations Ann, and let p′ = h(p), we define:

disth,φ(p, p′) =

∑
v∈VAnn

VAL-FUNC(v, vh,φ, p, p′)

| VAnn |
where VAL-FUNC is some function measuring a property of

the effect of the valuation over the two polynomials.

VAL-FUNC functions. We next give examples for natural choices
of VAL-FUNC(v, v′, p, p′). In all examples w(v) is some weight-
ing over the valuation, e.g. the joint probability of the truth
values it defines.
(1) Expected error: w(v)· | v(p)−v′(p′) |. Using w(v) = 1
leads to comparing the overall error over all truth valuations
out of the given set. This scenario makes sense when prove-
nance is likely to be performed for multiple valuations, and
it is all right to suffer some small error in each computation.
(2) Weighted fraction of disagreeing valuations: 0 if
v(p) = v′(p′) and w(v) otherwise. Using w(v) = 1 would be
a reasonable choice if the user is to uniformly sample val-
uations and is interested in the probability of obtaining a
correct/incorrect answer.
(3)Euclidean distance: euclidean-dist(v(p), v(p′)). This
is well-defined when v(p) and v(p’) are aggregation vectors
rather than aggregation values (e.g. a vector of aggregated
ratings of different movies of same genre).

Example 3.4. Observe that using | v(p) − v′(p′) | as the
VAL-FUNC, P ′′

s is at distance 0 from Ps w.r.t. valuations
that map only a single user annotation to False. All these
valuations yield the same value w.r.t. the two provenance
expressions – if U2 is mapped to True then the aggregated
MAX value is 5 regardless of other truth values, and other-
wise both U1 and U3 are mapped to True and so is Audience.
In contrast, P ′

s differs from Ps for the valuation that maps
U2 to False and the rest to True.

Putting it all together. In addition to obtaining a prove-
nance summary with small distance, we of course wish to
minimize the provenance expression size. The distance and
size measurements are combined together to form a weighted
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average, where the weights are given as input parameters,
that is used as a score given to candidate mappings. We later
describe how this score is used in our summarization algo-
rithm and also how taxonomy distances are incorporated in
the computation.

Definition 3.5. Let p0 be an input provenance expres-
sion and let pcand = h(p0). Also, let wDist and wSize be
user-defined weights (wDist+wSize = 1), rDist the approx-
imated distance rank of pcand and rSize its size rank. We
define a candidate mapping score as follows:
CandidateScoreh,φ(p0, pcand) =
wDist× rDisth,φ(p0, pcand) + wSize× rSize(pcand)

Computational problems. Given a provenance expression
p0 with a set of annotations Ann, φ and VAL-FUNC functions,
our goal is to explore the tradeoff between distance and size.
This is studied in three flavors:
(1) using input weights for size and distance, for obtaining
a homomorphic expression p′, in each algorithm iteration,
that minimizes the function CandidateScore.
(2) minimizing the distance while obtaining a summary p′

of size less than some size bound TARGET-SIZE.
(3) minimizing the size while obtaining a summary p′ of dis-
tance less than some distance bound TARGET-DIST.
These three flavors are all studied using the summarization
algorithm. To use the first flavor the user can choose weights
and bounds according to her preferences. For the second fla-
vor, the user must set the distance weight to 1 and TARGET-

DIST to the maximal distance (1). For the third flavor, the
user must set the size weight to 1 and TARGET-SIZE to the
minimal size (1). We study both a variant where the dis-
tance is computed with respect to all possible valuations
(and then VAnn is not an explicitly given input) as well as a
variant where a subset VAnn of valuations is given as input.

4. COMPUTING PROVENANCE SUMMA-
RIZATIONS

There are two main building blocks in a solution that
summarizes a provenance expression. The first is, given a
summary, compute its quality based on the measurements
discussed above. The second is a search algorithm that ex-
plores multiple possible expressions, uses the first building
block to compute the quality for each, and aims at finding
the best ones. We next detail the two components.

4.1 Computing Summary Quality
Recall that a summary quality was defined through the

notion of distance. Let DIST-COMP be the problem of
computing the exact distance (w.r.t. all possible valuations)
between two provenance expressions p and p’=h(p), given
input p, h, φ and VAL-FUNC.

Proposition 4.1. DIST-COMP is �P-hard in the size
of the input provenance p. This is true even if p includes no
tensor elements.

The proof (in [2]) is by reduction from �-DNF. On the
other hand, approximating the distance is feasible.

Proposition 4.2. Given a provenance expression p and
a homomorphism h on its annotations, and given 0 < ε, 0 <

δ < 1, one can compute d′ such that Prob(| d′−dist(p, h(p)) |>
ε) < 1−δ. The computation of d′ may be performed in poly-
nomial time with respect to | p |, δ, and 1

ε
.

The proof (in [2]) is constructive in the sense that it in-
volves a simple sampling-based approximation algorithm,
that will be used as a building block in our summarization
algorithm.

4.2 Finding a Summarization
Towards a summarization algorithm, we recall that the

set of truth valuations VAnn may be restricted, guided by
the intended use (in the sequel we will assume that VAnn

is given as input). In this case, we observe that VAnn may
already dictate some simplifications that may be performed
(see below).

Proposition 4.3. Given a provenance expression p, find-
ing a minimal p′ such that distance(p, p′) = 0 is in PTIME
in p and in VAnn.

Equivalence Classes. The proof for the above proposition
(in [2]) is based on computing equivalence classes of anno-
tations with respect to a set of valuations, with every two
annotations being equivalent if they agree for every valuation
in the set. The intuition is that there is no need to maintain
these different annotations, since they in any case may not
be differentiated. Replacing them by (“mapping them to”)
the same annotation will further allow simplifications of the
expression based on the algebraic identities. This calls for a
first step in the summarization algorithm, grouping together
provenance annotations that are equivalent. Of course, this
may still yield expressions of large size; we will thus perform
a A∗-like search ([26]) of expressions, motivated by the next
proposition.

Input: A provenance expression p0 with a set of
annotations Ann, φ and VAL-FUNC functions,
distance and size weights, size bound
TARGET-SIZE and distance bound TARGET-DIST

Output: Summary provenance expression p1
1 p′ := GroupEquivalent(p0, VAnn) ;
2 while Size(p′) > TARGET-SIZE or

ApproxDistance(p0, p
′, VAnn) < TARGET-DIST do

3 for every h ∈ CandidateHom(p′) do
4 pcand := h(p′) ;
5 if CandidateScoreh,φ(p0, pcand) is minimal

then
6 p′prev := p′ ;
7 p′ := pcand ;

8 end

9 end

10 end
11 if ApproxDistance(p0, p

′, VAnn) ≥ TARGET-DIST then
12 return p′prev;
13 end
14 return p′ ;

Algorithm 1: Provenance Summarization Algorithm

Monotonicity. Let p0, p1, ..., pn be provenance expressions
such that pi = hi(pi−1) for some sequence of homomor-
phisms hi. We define monotonicity of the distance and
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size functions, as follows: the distance function is increasing
monotone iff for all i > j: distance(p0, pi) ≥ distance(p0, pj)
and the size function is decreasing monotone iff for all i > j:
size(pi) ≤ size(pj).

Proposition 4.4. All the VAL-FUNC functions described
in section 3 yield increasing monotone distance and decreas-
ing monotone size functions.

Naturally, not every choice of VAL-FUNC leads to mono-
tonicity, e.g. a function that returns alternating constants,
but, as the above proposition indicates, natural choices of
functions do.

Provenance Summarization Algorithm. The above propo-
sition (proof in [2]) leads to Algorithm 1. Starting from the
original set of annotations Ann and the given provenance ex-
pression p0, the heuristic algorithm constructs the homomor-
phism h gradually, essentially by deciding on grouping of an-
notations. First, we obtain p′ by grouping annotations that
are equivalent w.r.t. the set of truth valuations (GroupE-
quivalent in line 1), as indicated by Proposition 4.3. Then,
we iterate and in each step examine a set of possible single-
step mappings (in CandidateHom) of two annotations to
the same, new annotation name (line 3). For each such
mapping we apply the obtained homomorphism to the cur-
rent expression, computing h(p′) (line 4) and approximating
the distance between p0 and pcand = h(p′). The pcand with
the smallest CandidateScore value is chosen (lines 5-8) and
the process repeats until the stop condition is met. The
stop condition for TARGET-SIZE (TARGET-DIST) is when the
expression meets the size (resp. distance) bound (line 2).

If multiple candidates have minimal candidate scores, in-
put taxonomies, if given as input, are used to break ties.
For each such candidate, the taxonomy distances of the an-
notations from the new annotation they are mapped to are
computed and the MAX (or SUM) of these distances is com-
puted. The candidate that minimizes this value is chosen.
If no taxonomies are given as input, we arbitrarily choose a
candidate with minimal score.

Example 4.5. Returning to our running example, assume
now that the Movies table also includes a movie genre col-
umn. Further assume that the user would like to view scores
of movies of certain genres and so the aggregator now aggre-
gates multiple movies of the same user-specified genre. We
next exemplify the algorithm flow, using the following prove-
nance expression for the movies “Match Point” and “Blue
Jasmine”: P0 = PMP⊕MPBJ where PMP = Ps is the prove-
nance expression from Example 3.1 that consists of the three
user reviews for the movie “Match Point”, PBJ = U2⊗ (4, 1)
is the added review for the movie “Blue Jasmine” and ⊕M is
a formal sum for combining reviews of different movies (we
will later see how this formal sum is used).

In each step, the algorithm examines the set of possible
mappings of two annotations to the same new annotation.
The mappings U1, U2 → Female and U1, U3 → Audience
discussed in Example 3.1 are such possible single-step map-
pings that are examined by the algorithm. For simplicity,
assume these are the only possible mappings. The algorithm
computes the new provenance expressions that the candidate
mappings yield:
P ′

0 = P ′
MP ⊕M P ′

BJ = Female ⊗ (5, 2) ⊕ U3 ⊗ (3, 1) ⊕M

Female⊗ (4, 1)

P ′′
0 = P ′′

MP ⊕M P ′′
BJ = Audience ⊗ (3, 2) ⊕ U2 ⊗ (5, 1) ⊕M

U2 ⊗ (4, 1)
Also, a candidate score for each such candidate is computed.
Assuming wDist = 1 and wSize = 0, the candidate that is
chosen in each step in the one that minimizes the distance
from the original provenance P0.

Assume we compute the distance w.r.t. the class of valu-
ations that cancel a single annotation and the euclidean dis-
tance VAL-FUNC. Keep in mind that evaluating a valuation on
this kind of provenance, that consists of reviews for different
movies, results in a vector of aggregated ratings where each
coordinate holds the aggregated rating of a certain movie. In
this setting, P ′′

0 is at distance 0 from P0 while P ′
0 differs from

P0 for the valuation that cancels U2. This is due to the fact
that by canceling U2 in P0 we cancel the maximum rating
for “Match Point” and the only rating for “Blue Jasmine”.
Canceling U2 in P ′

0 does not have a similar effect since we
use a disjunction of the truth values (of U1, U2) as our φ
function, and so the new annotation “Female” is assigned
the value true. Obviously, the euclidean distance between
the aggregation vectors that are the result of evaluating this
valuation on P0 and P ′

0 is greater than zero and so the over-
all distance over all considered valuations is greater than
zero. This leads to the conclusion that the algorithm would
choose P ′′

0 over P ′
0 so the provenance for the next algorithm

iteration is P1 = P ′′
0 and so the algorithm continues.

5. DATASETS AND USE CASES
We next describe the three provenance datasets that we

used and show provenance examples for these datasets.

Datasets. We used three datasets: (1) MovieLens dataset,
that includes ratings of different movies by users of Movie-
Lens movie recommender that is based on collaborative fil-
tering ([1]). (2) Wikipedia dataset - collected using the Me-
diaWiki web API which is a Web service that provides con-
venient access to wiki features, data, and meta-data over
HTTP. We also used YAGO Taxonomy ([5]) that contains
rdfs:subClassOf facts derived from Wikipedia and WordNet.
This taxonomy was used in our provenance summarization
algorithm in order to improve the choices made by the al-
gorithm when the input is a Wikipedia provenance expres-
sion. We used Wu-Palmer method for measuring semantic
relatedness ([28]) in order to compute the distance between
WordNet concepts in the taxonomy. (3) Data-Dependent
Processes (DDP’s) dataset - we generated provenance ex-
pressions that represent data-dependent processes based on
the structure described in [17].

Example 5.1. A Wikipedia provenance expression repre-
sents different user edits of Wikipedia pages that belong to
different categories. Each user edit can either be minor (0)
or major (1). Consider the following provenance expression:
P0 = (SalubriousToxin ·Adele)⊗ (0, 1)⊕
(Dubulge · CelineDion)⊗ (1, 1)⊕
(Dr. Back-In-The-Street · LoriBlack)⊗ (1, 1)⊕
(JaspertheFriendlyPunk ·AlecBaillie)⊗ (1, 1).
This provenance includes 3 major (Dubulge, Dr. Back-In-
The-Street and Jasper the Friendly Punk) and 1 minor (Salu-
brious Toxin) user edits of 4 Wikipedia pages - 2 pages whose
title is a famous singer (Adele and Celine Dion) and 2 whose
title is a famous guitarist (Lori Black and Alec Baillie).
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To simplify the example, assume we only map user anno-
tations to the same annotation if the associated users have a
similar number of edits and then the new annotation would
describe their contribution level, e.g. “Top-Contributor” and
“Reviewer”. Also assume we map Wikipedia pages to a new
annotation only if the corresponding pages have the same
parent WordNet concept in the taxonomy. Moreover, assume
we use SUM aggregation and that we compute the distance
w.r.t. φ = ∨ and the class of valuations that cancel a single
annotation and are consistent with the taxonomy. A valua-
tion is considered to be inconsistent if it assigns false to a
Wikipedia category/WordNet concept A, but assigns true to
a Wikipedia category/WordNet concept B s.t. B is a child
of A in the taxonomy. A summarization is:

P ′ = (Top-Contributor· <wordnet guitarist>)⊗ (2, 2)⊕
(Reviewer· <wordnet singer>)⊗ (1, 2).
According to the summary, two users that are top contrib-
utors edited Wikipedia pages of guitarists (one major edit
each) and two simple reviewers edited Wikipedia pages of
singers (one major edit and the other minor).

By obtaining such a provenance summary it is easier to
answer questions such as: what are the most controversial or
interesting topics, what are relatively popular topics among
top contributors, do top contributors make more major edits
relative to other users, etc (e.g. obtaining a summary sim-
ilar to the above summary for many Wikipedia users might
lead us to the conclusion that top contributors prefer to edit
guitarist pages than singer pages). These are questions that
are much harder to answer using the original long prove-
nance expression. We can also present such summaries in a
ui that makes it easier for the user to understand the sum-
mary and get insights on the underlying data.

Example 5.2. A DDP (Data Dependent Process), described
in [17], models an application whose control flow is guided
by a finite state machine, as well as by the state of an under-
lying database. DDP provenance expressions are summaries
of executions where an execution is a multiplication of tran-
sitions. Each transition is either based on a user’s choice or
on a database query result. A user dependent transition is of
the form 〈ck, 1〉 where ck is the cost associated with the tran-
sition (the user’s effort). A database dependent transition is
of the form 〈0, [di ·dj ] �= 0〉 or 〈0, [di ·dj ] = 0〉. Consider the
following DDP provenance example of two executions (each
consisting of two transitions):
〈c1, 1〉 · 〈0, [d1 · d2] �= 0〉+ 〈0, [d2 · d3] = 0〉 · 〈c2, 1〉.

The aggregation function used is based on the semirings
described in [17]. The “attributes” that are used as con-
straints here are the mappings of different database variables
to new database variables and the mappings of cost variables
to new cost variables. If two database variables are mapped
to a single one, it means that either both tuples need to be
present for the database query to be satisfied or both should
be missing. Similarily, if we know that user transitions have
more or less the same cost, it is possible to map the two cost
variables to a new cost variable. Also, assume we use the
“Cancel Single Attribute” class of valuations.

The following is a possible summary for the above prove-
nance, obtained by mapping d1, d3 to D1 and c1, c2 to C1:
〈C1, 1〉 · 〈0, [D1 · d2] �= 0〉+ 〈0, [d2 ·D1] �= 0〉 · 〈C1, 1〉
which is equal to: 〈C1, 1〉 · 〈0, [D1 · d2] �= 0〉.
This final summary represents a single execution that con-

sists of two transitions - one user dependent transition and
one database dependent transition.

By summarizing this kind of provenance, analysts can test
and explore the effect of hypothetical modifications to a DDP’s
state machine and/or to the underlying database (e.g. using
the above summary, analysts can explore the effect of remov-
ing the database dependent transition). Exploring the effect
of such modifications using the original provenance expres-
sion can be much more complicated.

6. EXPERIMENTS
The main purpose of our experiments was to examine the

effectiveness of our summarization algorithm, compared to
other approaches, in terms of: (1) conciseness of the ob-
tained provenance expression (measured by size), (2) ac-
curacy of evaluations (measured by distance from original
provenance), (3) faster provenance usage (“Usage Time” ex-
periment) and (4) feasibility of summarization (“Summa-
rization Time” experiment). The first two were examined
as functions of the wDist weight (wDist experiment), and of
the TARGET-DIST and TARGET-SIZE stop conditions (TARGET-
DIST and TARGET-SIZE experiments). This covers the three
computational problems that we have presented in section
3. Each experiment was conducted for the three datasets -
MovieLens, Wikipedia and DDP. For each dataset, we gen-
erated multiple input provenance expressions, executed the
experiments and averaged the results.

Algorithms Examined. In each experiment that we con-
ducted, we executed the following algorithms for each dataset
and compared different parameters of the result summary
provenance: (1) Prov-Approx (Algorithm 1) - our prove-
nance summarization algorithm. (2) Clustering - using only
the MovieLens andWikipedia datasets, since the DDP dataset
is not suitable for the clustering experiment (it is not clear
how to construct feature vectors to be used as input to the
clustering algorithm). (3) Random - in which every pair
of annotations was chosen randomly from the list of pairs
that satisfy the mapping constraints. All three algorithms
take into account the user-specified size and distance bounds
(TARGET-SIZE and TARGET-DIST) and stop if and when they
reach these bounds.

Clustering Algorithm. We used a library for hierarchi-
cal agglomerative clustering called HAC ([4]). This library
supports the following linkage criteria (i.e. a criteria that
determines the distance between sets of observations as a
function of the pairwise distances): Single Linkage, Aver-
age Linkage, Centroid Linkage, Complete Linkage, Median
Linkage, Ward Linkage and Weighted Average, described in
[13]. All linkage criteria were examined in the experiments,
but since they all yield similar results compared to our ap-
proach we present the “Single Linkage” results. Next we
describe how the clustering approach was implemented for
the MovieLens dataset. Similarly, it was also implemented
for the Wikipedia dataset. Not all provenance datasets are
suitable for a Clustering algorithm, e.g. our DDP dataset.
Each user, that rated k movies, was associated with a fea-
ture vector of the following form:
(UID,Gender,AgeRange,Occupation, ZipCode,
(MovieT itle1 = Rating1, ...,MovieT itlek = Ratingk)), e.g.
(UID278,M, 45− 49, tradesman/craftsman, 60482,
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Figure 3: Summarization and Candidate Computation Time (MovieLens Dataset)

(TheFury = 4.0, NearDark = 4.0)).
In addition, we implemented a dissimilarity measure for
computing the distance between each pair of feature vec-
tors. We used Pearson Correlation Coefficient as a measure
of similarity between the ratings vectors, that the feature
vectors include as a single feature. Moreover, we added our
mapping constraints to the clustering algorithm so that both
our algorithm and the clustering algorithm would take into
account the same constraints (we do not allow two clusters
to merge if the users that belong to these clusters do not
have at least one attribute in common).

We next describe how we obtain the Clustering’s prove-
nance summary in order to compare its quality to ours.
Similarily to our summarization algorithm, each step of the
Clustering algorithm, in which two clusters are merged, cor-
responds to a mapping of 2 annotations to an annotation
summary. According to this mapping, we compute the ob-
tained provenance expression and use it to check the stop
conditions - TARGET-DIST, TARGET-SIZE, etc.

Experimental Settings. The experiments were conducted
for different combinations of datasets, valuation classes and
aggregation functions and all combintaions have similar re-
sults. Specifically, two valuation classes were examined: (1)
“Cancel Single Annotation”- each valuation in this class can-
cels a single annotation by assigning it false and assigning
true to the rest. (2) “Cancel Single Attribute” - the class of
valuations that cancel all annotations that share the same
attribute and assigns true to the rest (e.g. the valuation that
cancels all Male users). For space constraints, we present a
set of representative results. It is important to note that the
distance values we present, represent average error over all
valuations, which we divide by the maximum possible error
in order to normalize to [0,1]. Presenting the un-normalized
distances results in the same graph trends.

We next describe our experimental results for the Movie-
Lens dataset. Later we show some experimental results for
the other two datasets.

6.1 wDist Experiment
The purpose of this experiment is to check the effect of the

wDist and wSize weights on the summary distance and size.
For that purpose, we bounded the maximum number of al-
gorithm steps, the TARGET-DIST was set to 1 (max distance)
and the TARGET-SIZE was set to 1 also (minimum size) so
that they would have no effect as stop conditions. Figures
2a and 2b show the results for the MovieLens dataset using
“Cancel Single Attribute” valuation class, MAX aggregation
and at most 20 steps. As expected, using Prov-Approx,
greater values of wDist yield smaller distance values and
greater size values. The wDist has no effect on the Cluster-
ing and Random approaches (they do not take this param-
eter into account) so we averaged their results for different
wDist values. As the wDist used increases, Prov-Approx
yields smaller distance compared to the Clustering (starting
from wDist = 0.1 as presented in the graph), as expected.
Also, the Clustering approach yields greater size compared
to our approach. The Random approach yields much greater
distance and size values.

6.2 TARGET-SIZE Experiment
This experiment checks the problem variant in which the

user aims to reach a certain TARGET-SIZE value while keep-
ing the result relatively “close” to the original provenance.
For that purpose, we set the wDist and TARGET-DIST val-
ues to 1. Figure 2c shows the results of the experiment for
the MovieLens dataset. As expected, since the wDist was
set to 1, our approach gave better distance values compared
to the Clustering and Random approaches. The Random
approach gave the worst results. For the Prov-Approx and
the Clustering algorithms, as the TARGET-SIZE increases, the
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size increases (the algorithms stop earlier) and as a result
the distance is smaller. This is not always the case for the
Random approach. Since this approach does not make the
same choices for all the TARGET-SIZE values but just ran-
domly chooses a pair, there could be better distance choices
made when smaller TARGET-SIZE values are used (e.g. the
distance that Random achieved using TARGET-SIZE 130 is
actually smaller than the one achieved using 140).

6.3 TARGET-DIST Experiment
This experiment checks another variant, in which the user

wishes to bound the distance with the TARGET-DIST value
while obtaining a small provenance expression. For that
reason, wDist was set to 0 and TARGET-SIZE was set to 1
also. Figure 2d shows the results of the experiment for the
MovieLens dataset. As expected, as the TARGET-DIST in-
creases the size decreases until we reach a point from where
we cannot decrease the size further. Moreover, as a result
of using wDist = 0 the choices made were the ones that
minimize the next expression’s size and that reflects in the
results, where our approach reaches the smallest size values.
Random gives the worst results. Also, Random does not
make the same choices for all TARGET-DIST values, so it is
also possible that it would make better choices for smaller
TARGET-DIST values and that would yield better size, just
like in TARGET-DIST 0.03.

6.4 Usage Time Experiment
This experiment examines the ratio between the average

evaluation time of valuations on the summary and original
expressions, as a function of wDist. Figures 3c and 3d show
the results for the MovieLens dataset using 20 and 30 max-
imum number of steps respectively. The TARGET-DIST was
set to 1 and the TARGET-SIZE to 1 so that the only rel-
evant stop condition would be the number of steps. The
experiment was conducted as follows: we randomly chose 10
valuations, evaluated these valuations on the original and
summary expressions for the three approaches and exam-

ined the ratio of evaluation time. As expected, using Prov-
Approx, as the wDist increases, the result’s size is greater
and the distance is smaller. For that reason, the expression
is closer to the original expression and so the ratio in eval-
uation time is greater. Also, using more algorithm steps,
the ratio is smaller; using 30 steps the range is 0.3-0.5 (30%
- 50% improvement in evaluation time) compared to 0.45-
0.65, when using 20 steps. To conclude, the summary usage
time is faster than the original provenance usage time. In
addition, the Random and Clustering approaches are not af-
fected by wDist, so we averaged the results for all the wDist
values. As expected, our approach yields smaller ratio com-
pared to the Random approach using smaller wDist values.
The Clustering approach yields much greater ratio than ours
for all wDist values (less improvement in usage time).

6.5 Summarization and Candidate Computa-
tion Time Experiment

This experiment examines the summarization time and
also the average candidate computation time (distance and
size computation for a candidate pair of annotations) as
functions of provenance size. Figures 3a and 3b show the
results for the MovieLens dataset, wDist weight set to 1 and
50 maximum number of steps. As expected, as the expres-
sion size decreases, the number of pairs to consider in each
step decreases and so the number of distance calculations
decreases and as a result the summarization time decreases.
Also, as the expression size decreases, the distance compu-
tation is faster, as expected.

6.6 Other Datasets
All the figures so far show results for the MovieLens dataset;

we next describe results for the other two datasets. Figures
4a, 4b, 5a and 5b show the results of the wDist experi-
ment conducted on the Wikipedia and DDP datasets using
20 and 10 maximum number of steps respectively. Figures
4c, 4d, 5c and 5d show the results of the TARGET-SIZE and
TARGET-DIST experiments for these datasets, using “Cancel
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Single Annotation” valuation class and sum aggregation for
the Wikipedia dataset and “Cancel Single Attribute” for the
DDP dataset. All results are similar to those obtained for
the MovieLens dataset. Note that the DDP dataset is the
only one that wasn’t compared to the Clustering approach
since it’s unclear how to construct a Clustering competitor
for this complex-structured data provenance.

7. RELATED WORK AND CONCLUSIONS
Provenance models have been extensively studied in mul-

tiple lines of research such as provenance for database trans-
formations (see e.g. [18, 11, 9, 21, 10, 12]), for workflows (see
e.g. [16, 14, 6, 22, 19, 27, 23]), for the web [3], for data min-
ing applications [20], and many others, but typically full and
exact provenance is presented (sometimes in an optimized
form, e.g. factorized as in [24]). Provenance views have
been proposed in context of workflows (see e.g.[16]), but
the summarization obtained through these views is based
on a notion of granularity levels, and is lossless rather than
approximate. A notion of approximate provenance was pro-
posed in [25], and somewhat resembles ours, but is limited
to UCQs (and in particular allows no aggregates), geared to-
wards probabilistic computation, and does not account for
semantic constraints. Our notion of mapping to summa-
rized annotations is also reminiscent of clustering, however
the function that we optimize is one that depends on the
provenance expression itself and its intended uses, which
leads to different design choices and to different results.

We have studied in this paper summarization of prove-
nance information. We have identified three desiderata for
the assessment of candidate summaries: conciseness, seman-
tic constraints satisfaction and small distance from original
provenance. This has led us to the development of our sum-
marization algorithm that finds an “optimal” summary ac-
cording to these quality measurements. After comparing our
approach to other approaches (Clustering and Random) by
conducting different experiments using different provenance
datasets, we conclude that our approach is indeed better -
it finds better quality summaries compared to the others
and allows the user to control the desired tradeoff between
distance (that affects evaluation accuracy) and size (that
affects presentation and usage time). As future work, we
intend to explore a generalized version of the algorithm in
which in each iteration we map k annotations to a new anno-
tation rather than just 2. An additional line of future work
is to acheive further theoretical bounds on the algorithm’s
performance and output quality.
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