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ABSTRACT
We study the problem of query evaluation with the help of
the crowd, when the value of the queried attributes is not
available in the database and is also hard for the crowd to
estimate. Rather than asking users directly about these at-
tributes, we propose a novel alternative approach that first
uses the crowd to dismantle the query attributes into finer
related ones (whose value estimation is easier), then assem-
ble them to yield better estimation for the query attributes.
We show that it is sometimes beneficial not to only disman-
tle the query attributes themselves, but rather to continue
dismantling newly discovered attributes. We provide a care-
ful statistical analysis to estimate the potential benefit (and
cost) of dismantling each of the so-far-discovered attributes.
Building on this analysis, we present an e↵ective algorithm
that balances between attributes dismantling and obtaining
essential statistics about them (for estimating properties like
“di�culty” and “contribution” of attributes) to decide how
many crowd members should be asked about each attribute
and how the answers should be assembled together. A thor-
ough experimental analysis demonstrates the feasibility and
e↵ectiveness of the approach.

1. INTRODUCTION
We consider the problem of query evaluation with the help

of the crowd, when the value of the query attributes is hard
to estimate. Rather than asking users directly about these
attributes, we propose a novel alternative approach that first
uses the crowd to dismantle the query attributes into finer
related ones (whose value estimation is easier), then assem-
ble them to yield better estimation for the query attributes.

To illustrate, assume that we want to evaluate a query
over a database of objects, testing and retrieving the val-
ues of certain attributes. This is a standard task when
the attribute values are available explicitly in the database,
but becomes challenging when they are not. For example,
consider an imaginary cooking website CrowdCooking.com
(CC) - a large recipes website where people can post their
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own recipes and other people can search and use them.
Up until now, CC only allowed basic keyword search, but
they now wish to upgrade their search capabilities to in-
clude more sophisticated searches, allowing people to search,
e.g., for dessert recipes that are easy to make, have less
than X calories and contain a certain amount of proteins.
While NLP/text-analysis techniques could be used to eval-
uate some of these search criteria, this may be costly and
inaccurate. An alternative approach that emerged in recent
years is to use the crowd of web users for finding the value of
the missing query attributes - Is a dish a dessert or not? How
many calories/proteins does it contains? Etc. As crowd an-
swers may be erroneous, a common approach is to ask mul-
tiple users about each missing query attribute and compute
some aggregation (usually average/median) of the answers.
The number of crowd members that need to be asked about
a given attribute is typically determined by the di�culty
of the question and the budget constraints1. For example,
three users probably su�ce to determine with a high prob-
ability that a certain dish is a dessert, but more are likely
to be required to determine its number of calories. In fact,
a key problem of this approach is that some attributes (like
protein amount) are so di�cult or un-intuitive for the crowd
to evaluate, that the convergence to the final answer might
be slow and thus require high budget [31]. Another disad-
vantage is that query attributes are handled separately and
potential mutual information (for example between dessert
and calories) which could be used to reduce the number of
required questions, or to improve accuracy, is ignored.

A first solution to this problem was proposed in [27]. In-
stead of asking the crowd directly about the attributes men-
tioned in the query, it was suggested to also ask for the
value of other (usually simpler) related attributes, and then
derive the value of the query attributes from the answers.
For example, to estimate the amount of protein in a certain
dish one may ask what quantities of high protein ingredi-
ents (such as meat, dairy, eggs, nuts and soy) does it con-
tains. In this solution, queries are processed in two steps:
(1) An o✏ine preprocessing phase that, given a query, de-
termines which object’s attributes should be asked about,
how many users should estimate each of those attributes
and how the obtained values should be assembled together,
and (2) an online query evaluation phase, where each object
in the database is processed using the scheme derived in the
o✏ine step. For example, consider a query about the protein

1In common crowdsourcing platforms, crowd questions have
some (small) monetary cost, and thus the number of ques-
tions per object is typically bounded by the allocated budget
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amount in recipes in CC. Assuming a budget of 20 questions
per recipe, the preprocessing phase may derive a formula of
the form: 0.5protein amount(10) + 0.13grams of meat(3) +
0.15grams of dairy(4) + 3number of eggs(3). In the formula,
attribute name(n) denotes the average value of n users an-
swers when asked about the given attribute. The formula
indicates that rather than using the full budget to ask users
directly about protein amount, a better estimation would be
obtained by asking only 10 crowd members, then averaging
the derived value with a linear combination of estimated
values for three other related attributes - grams of meat,
grams of dairy, number of eggs (computed by asking 3, 4
and 3 crowd members about them, respectively). We will
explain later how such formulas are derived.

While this approach is shown to provide results supe-
rior to those obtained by asking the same overall number
of questions only about the query attributes [27], a great
obstacle is that it requires the use a domain expert that
provides the list of related attributes for each query. This
use of experts-in-the-loop limits the scalability of the ap-
proach and its applicability to fully-automated crowd-only
platforms. In contrast, in the present paper, we provide a
solution which is entirely crowd-based. Our goal is to replace
the domain-expert by the Wisdom of Crowds, asking users
to assist in “dismantling” di�cult attributes and identifying
those related attributes that can assist in query evaluation.
Note that even harder related attributes may improve re-
sults they force di↵erent ways for estimations, which is one
of the foundations of the wisdom of crowds principle.

As we will show, a successful solution will need to ad-
dress two main challenges. The first is determining which
object attributes should we best ask the crowd to disman-
tle. We show that it is sometimes beneficial to not only dis-
mantle the query attributes themselves, but rather to con-
tinue dismantling newly discovered attributes. We provide
a fine hypothetical analysis to estimate the potential ben-
efit (and cost) of dismantling each of the so-far-discovered
attributes and thereby determining which questions to ask
the crowd. The second related challenge that we address
is budget management. Given a budget (e.g., number of
questions that can be asked to the crowd) for the o✏ine
preprocessing step, we need to use it both for dismantling
the query attributes, as well as for obtaining some statistics
about them (e.g., the distribution of user answers, the cor-
relations between attributes value, etc.). Such statistics are
required to estimate properties like “di�culty” and “contri-
bution”of each attribute in order to decide how many crowd
members should be asked about each attribute and how the
answers should be assembled together. Our algorithm pro-
vides a careful analysis that allows to balance the budget
between these two complimentary tasks.

We present in this article the following contributions:

1. We propose a simple and generic model for modeling a
database of objects with infinite unknown attribute names
and values, the type of questions that can be posed to the
crowd and the characteristics of those answers.

2. Given an online per-object budget and an o✏ine prepro-
cessing budget, we use the model to present an algorithm
that ideally uses the o✏ine budget for deriving linear for-
mulas (like the one illustrated above) that best exploit the
online budget for deriving the values of query attributes.
Our algorithm consists of five inter-related components

for which we explain what type of information is required
and what crowd questions may be used to obtain it. We
provide a generic black-box description for each compo-
nent (which allows to plug-in di↵erent implementations)
and propose a concrete implementation.

3. Since the success of our framework depends on the dis-
covery of relevant attributes, we focus our attention on
this problem. We formally show how the potential gain
(and cost) of each possible attribute dismantling ques-
tion can be estimated and how this estimation can then
be used to design an iterative algorithm that optimally
chooses which crowd questions should be asked at each
point. The estimation is based on a careful analysis of
the already gathered information as well as on predic-
tions about the potential e↵ect of each question on the
following algorithm components.

4. Of particular challenge are queries with more than one
attribute. There is a fine tradeo↵ here between the gain
that one may obtain by discovering underlying correla-
tions between attributes, and the cost (in terms of crowd
questions) required for such discovery. Our algorithm uses
a fine analysis of the current data to predict potential con-
tributions and to balance the two.

5. Finally, we present a thorough experimental analysis of
our approach over two real-life data sets as well as syn-
thetic data. We examine the various parts of our al-
gorithm and its performance as a whole. We compare
our algorithm to several existing/alternative approaches,
showing that it consistently outperforms them in achiev-
ing lower average error for the same budget. Our experi-
ments also demonstrate the necessity of di↵erent parts of
the algorithm for accurate attribute dismantling, which
later translates to accurate attribute value estimation.

The paper is organized as follows. The model and all rel-
evant notations are presented in Section 2. To simplify the
presentation we first consider in Section 3 the case where
the query contains a single attribute. Queries with multiple
attributes are then considered in Section 4. Our experimen-
tal study is presented in Section 5. We discuss related work
in Section 6 and conclude in Section 7.

2. PRELIMINARIES
We start by describing our model and notations, then for-

mally define the problem that we study.

Objects, attributes and queries. Our data set consists of
a set of objects. We use O to denote the possibly infinite
domain of objects, and o, oi to denote an individual ob-
ject in O. In our running example, O is the set of all food
recipes. An object may have attributes. We use A to de-
note the domain of attribute names and a,ai to denote an
individual attribute name in A. We focus here on numer-
ical attributes. Boolean attributes may be viewed here as
numerical attributes with a value between 0 and 1, whereas
multi-value attributes can be modeled by one such boolean
attribute per value. In our running example, A includes all
possible recipe properties such as time to prepare, is soup,
is tasty, protein amount, is brown, number of eggs, etc.

For an object o 2 O, an attribute name a 2 A, a set of
objects O ⇢ O and a set of attribute names A ⇢ A, we use
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the following notations: (1) o.a denotes the value of the at-
tribute a of the object o, (2) o.a(⇤) denotes an estimation of
that value (3) o.A ⌘ {o.a | a 2 A} denotes the set of values
for attributes in A of object o, (4) O.a ⌘ {o.a | o 2 O} is
the set of values of attribute a of the objects in O. We will
sometimes abuse notations and consider these sets as ran-
dom variables over objects in O (to be explained later). Fi-
nally (5) DO⇥A denotes a data table with rows correspond-
ing to objects in O and columns to attributes in A, along
with some representation for each object.

Given a query Q over some data table D, we define A(Q)
as the set of Q’s query attributes. W.l.o.g one may think of
Q as an SQL query and ofA(Q) as the set of attribute names
appearing in Q. In our running example Q might be, for in-
stance, select number of calories, protein amount from CC
where dessert=true. In this example, A(Q) = {is dessert,
number of calories, protein amount}. As some attributes
(and their values) may be missing from the data table D,
we will need to learn them from the crowd.

Crowd questions. Crowd workers may be asked four types
of questions:

Attribute Value Questions (for brevity, value questions)
- Here a crowd member is asked to provide an estimation
of the value of an o.a. An example of a value question
in our running example is showing a worker a recipe and
asking her for the value of number of eggs. For an ob-
ject o 2 O and an attribute a 2 A, o.a(1) denotes the
random variable representing the estimation of one ran-
dom worker’s when asked about o.a. We use the (1) nota-
tion also for estimations of groups of values (for example,
O.A(1) ⌘ {o.a(1) | o 2 O, a 2 A}).

Attribute Dismantling Questions (for brevity, disman-
tling questions) - A crowd member is given here an at-
tribute’s name and requested to give another attribute’s
name that may provide some information about the value
of the former. We assume (as later confirmed in our exper-
iments) that workers are more likely to provide attributes
that are correlative with the attribute in question. An
example for a dismantling question may be which recipe’s
attribute may help estimate its number of calories. An
answer may be is dietetic. For simplicity we assume that
answers that refer to the same property (like large, big,
grand) can be reasonably identified and merged to a single
representative. This may be done, e.g., using a common
thesaurus/NLP tools. (We will show however that our
technique can work even without this).

Dismantling Verification Questions (for brevity, verifi-
cation questions) - Here we use crowd workers to verify
that a previously suggested attribute ai may indeed help
in estimating the value of another attribute aj . An ex-
ample for a verification question is does knowing if a dish
is black may help in determining its number of calories.
The likely crowd answer here is No.

Example Questions - Here workers are given some at-
tributes’ names and are asked to provide an example of
an object o 2 O along with its values for the attributes.
An example for such a question is asking a user to upload
a recipe along with its calorie value. For simplicity we
will assume below that the given value is the correct one
(otherwise the it can be estimated via value questions).

For all tasks we assume workers are independent and that
spam filters are employed to avoid malicious workers.

Other notations. We further adopt and use some common
notations. From statistics we use EX [f(x)] for expectation,
VarX [f(x)] for variance, �X(f(x)) for standard deviation,
CovX,Y (f(X), g(Y )) for covariance and ⇢X,Y (f(x), g(y)) for
correlation. The lower indexes specify the random variables
and we omit them when they are clear from context. From
algebra, we use MT to denote a matrix M ’s transpose, M�1

to denote M ’s inverse and Diag(f(i)) for diagonal matrix
where the i’th value of the diagonal is equal to f(i).

Problem definition. A user allocates a per-object budget
B

obj

which is the number of value questions that can be
asked on a given object, in the online query evaluation phase,
for estimating the value of the query attributes. To deter-
mine how to best use this budget, the user also allocates a
preprocessing budget B

prc

2. An (o✏ine) preprocessing phase
uses this to gather some information from the crowd (using
the type of questions described above) and consequently de-

rive a set of formulas of the form o.a(⇤) =
P

A la(ai)o.a
(b(a

i

))

i

for each a 2 A(Q), which determine how objects should be
processed in the online query evaluation phase. The seman-
tics of such formula is to first ask the crowd b(ai) value
questions about each attribute o.ai, then calculate the av-
erage answer for each o.ai (denoted o.a

(b(a
i

))

i ) and finally
calculate an estimation for o.a using a linear regression[12]
with predictors la(ai). An example of such a formula, for
the attribute protein amount, was given in the Introduction.

The function b in the formulas determines how many ques-
tions (if any) will be asked about each object’s attribute, and
intuitively reflects the “di�culty” of each attribute. Since
the total value questions per object need to obey the B

obj

budget constraint, b must satisfy
P

a2A b(a)  B
obj

. We
call such function b a budget distribution of size B

obj

.
For a given budget distribution function b and a linear

regression formula l, we define an error in the estimation
of a single attribute’s value as Er(o.a(⇤) | b, l) = (o.a �P

A la(ai)o.a
(b(a

i

))

i )2. We then define the error of an at-
tribute estimation as the mean square error over all objects
Er(O.a(⇤) | b, l) = EO[Er(o.a(⇤) | b, l)] and the query er-
ror as Er(Q(D)(⇤) | b, l) = P

a2A(Q)

Er(O.a(⇤) | b, l). Note
that for simplification we assume the errors of all attributes
to be of equal importance. All our results also apply to a
weighted error definition, as discussed later. Our goal here
will be to minimize the query error Er(Q(D)(⇤)). Namely,
to find b and l which minimize it, and to do this using at
most a budget B

prc

.

3. OUR SOLUTION
We start by presenting a high-level informal description

of our algorithm, what data do we collect and what is that
data used for. Next, we provide a detailed formal descrip-
tion of the functionality of the di↵erent components, as well
as references to existing solutions for some of them. We
then return to the components that are in the heart of our
contribution and provide concrete novel solutions for them.

To simplify the presentation we will assume below that
the query contains only a single attribute, that we call the

2W.l.o.g. it is assumed that B
prc

>> B
obj
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target attribute, namely A(Q) = {at}. We consider the gen-
eral case afterwards. We also assume that no attributes are
initially available for the objects in the queried data table.
For instance, in our running example this means that we are
only given the recipes and no explicit attributes for them.
The algorithm can be naturally extended to the general set-
ting.

Data: Q,B
obj

, B
prc

1 E
B

 GetExamples(N
1

, k);
2 while CollectingAttributesCondition = True do

3 a GetNextAttribute(A,S,B
obj

);
4 A A [ a;
5 S  UpdateStatistics(S, a,E

B

);
6 b FindBudgetDistribution(S);
7 E

L

 GetExamples(N
2

, b);
8 l FindRegression(b, E

L

);
9 return l, b

Algorithm 1: The base case solution

Algorithm 1 depicts a general description of our solution.
Table 1 shows the di↵erent information items being collected
throughout its execution. It contains objects (first column),
true values of objects’ attributes (second column), and sets

of workers’ answers to value questions (denoted {oi.a(1)

j }n
1

in all other columns where n is the answers set size). We
use this table to illustrate what is done by Algorithm 1. We
later explain how exactly this is done (what crowd tasks are
involved, etc.). Note that some notations in Table 1 may
not yet be clear at this point, but will be explained later.

At the beginning, the only information available is the
name of the query attribute (Table 1’s “True Values for
A(Q)” header). We first collect a set of example objects
E

B

= {e
1

, . . . , eN
1

} 2 O along with their true value for at.
Those objects and values are shown in Table 1a. We then
iteratively add new attribute columns in Table 1a by disman-
tling existing attributes, thereby discovering new attribute
names (the “Value Questions Answers for A

final

” headers)
and then obtaining values for them from workers. During
this iterative process, we also use the crowd answers to cal-
culate some statistics (not shown in the table) on the discov-
ered attributes, which we use for deciding which attributes
need to be dismantled next. When this collection process
ends (we will explain later how this is determined), we use
the statistics again to calculate a budget distribution b. Fi-
nally, to compute the linear regression l we collect a second
set of examples E

L

, along with their value for at (Table 1b’s
Objects and True Value columns). We use b to collect crowd
answers for the remaining attributes, then use all the gath-
ered information to learn the linear regression l. Now that
we derived both b and l, the preprocessing phase ends.

Later, in the query evaluation phase, b and l are used
to collect estimations about the objects in the queried data
table D (the Answers in 1c) and use it to calculate and
return Q(D) (the “True Values” column in 1c).

3.1 The Algorithm Components
Algorithm 1 consists of five logical components: finding

relevant attributes (lines 3-4), collecting statistics about them
(lines 1 and 5), calculating a budget distribution (line 6),
learning a linear regression (lines 7-8) and managing the
preprocessing budget (line 2). We discuss them next.

objects
True Values Value Questions Answers
for A(Q) for A

final

a
1

a
1

a
2

· · · al

e
1

e
1

.a
1

{e
1

.a
(1)

1

}k
1

{e
1

.a
(1)

2

}k
1

. . . {e
1

.a
(1)

l }k
1

...
...

...
...

. . .
...

eN
1

eN
1

.a
1

{eN
1

.a
(1)

1

}k
1

{eN
1

.a
(1)

2

}k
1

. . . {eN
1

.a
(1)

l }k
1

(a) Data used to calculate b

objects
True Values Value Questions Answers
for A(Q) for A

final

a
1

a
1

a
2

· · · al

e
1

e
1

.a
1

{e
1

.a
(1)

1

}b(a1

)

1

{e
1

.a
(1)

2

}b(a2

)

1

. . . {e
1

.a
(1)

l }b(al

)

1

...
...

...
...

. . .
...

eN
2

eN
2

.a
1

{eN
2

.a
(1)

1

}b(a1

)

1

{eN
2

.a
(1)

2

}b(a2

)

1

. . . {eN
2

.a
(1)

l }b(al

)

1

(b) Data used to learn l

objects
True Values Value Questions Answers
for A(Q) for A

final

a
1

a
1

a
2

· · · al

o
1

? {o
1

.a
(1)

1

}b(a1

)

1

{o
1

.a
(1)

2

}b(a2

)

1

. . . {o
1

.a
(1)

l }b(al

)

1

o
2

? {o
2

.a
(1)

1

}b(a1

)

1

{o
2

.a
(1)

2

}b(a2

)

1

. . . {o
2

.a
(1)

l }b(al

)

1

...
...

...
...

...
...

(c) Data used in the online phase
Table 1: Data collected during the algorithm

Finding Attributes. We identify here a set of attributes
that may assist in estimating the value of the query at-
tribute. This is done using dismantling questions, followed
by corresponding verification questions. A key observation
here is that it is sometimes beneficial to not only ask users
to dismantle the query attribute itself, but rather to con-
tinue dismantling newly discovered attributes. Indeed, since
the human mind is associative, asking diverse questions is
important for better learning a domain [7]. For example,
in our CC example, when asking a user to dismantle pro-
tein amount, we may get the attribute meat content as an
answer, but the distinction between red meat and white meat
(which have di↵erent protein amounts) may be only ob-
tained when asking users to dismantle meat content.

We denote by Am the set of known related attributes af-
ter m iterations (and respectively A

0

= A(Q) and A
final

is
the final subset). We denote by Am+1|a

j

= Am [ ansj the
random variable representing this set, assuming the next
dismantling question is for attribute aj . Our goal will be
to choose aj such that Am|a

j

allows minimal error. More
formally, we wish to find

argmax ajEA
m|a

j

=A[ min
l,b

8a 62A b(a)=0

Er(Q|b, l)] (1)

As this choice obviously depends on how the budget distri-
bution b and the linear regression l are selected, we leave the
solution of expression 1 for section 3.2.1. For now we only
note that after asking the selected dismantling question and
getting a new attribute name for an answer, we use verifi-
cation questions to ensure that the obtained new attribute
name is indeed a relevant one. Here we use standard al-
gorithms such as [25] to determine the required number of
questions for making a decision.

Since a dismantling question in our setting is always fol-
lowed by corresponding verifications questions, from here on
whenever we use the term dismantling question we also refer
to its following verification questions.

Collecting Statistics. As mentioned, we need to collect
some information about Am - the set of known related at-
tributes after m iterations - and the way workers answer
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A(Q) Am

a
1

a
1

a
2

· · · al

Am

a
1

Sc[1] So[1] Sa[1, 1] Sa[1, 2] · · · Sa[1, l]
a
2

Sc[2] So[2] Sa[2, 1] Sa[2, 2] · · · Sa[2, l]
...

...
...

...
...

. . .
...

al Sc[l] So[l] Sa[l, 1] Sa[l, 2] · · · Sa[l, l]

Table 2: Statistics calculated during the algorithm

them. Our main tool for finding those statistics is gath-
ering samples of the crowd responses and analyzing them.
We do so by asking value questions about a set of exam-
ple objects collected using example questions. Formally, our
goal is to find an accurate estimation for the trio SA =
(SoA, SaA, ScA) (or just S when the index is clear from con-
text), depicted in Table 2 and defined as follow (for reasons
that will be clear later).

Sc - Statistics about agreement among crowd workers. More
precisely, a vector of the average variances of workers an-
swers to value questions. Formally, ScA is a vector of size
|A| where ScA[a] = EO[Var[o.a(1)]]). For instance, in our
example we can expect Sc[healthy] > Sc[tomato] as it is
easier to identify if a recipe contains a tomato. This is the
second column of Table 2.

So - Statistics about how informative are the attributes.
More precisely, this is the covariance vector between work-
ers answers to the di↵erent attribute and the query at-
tribute. Formally, SoA is a vector of size |A| and SoA[a] =
|CovO(o.a(1), o.at)|. For example, if at = dessert, we can

expect S
o

[sweet]

�(sweet)

> S
c

[cheese]

�(cheese)

as most desserts are sweet (and

most non-desserts are not) but cheese can be easily found
both in desserts and in non-desserts. This is the third
column of Table 2.

Sa - Statistics about how much distinctive are attributes (in
comparison to the other attributes). More precisely, this
is the covariance matrix over crowd’s answers to di↵erent
attributes. Formally, SaA is a matrix of size |A|⇥ |A| and
SaA[ai, aj ] = |CovO(o.a(1)

i , o.a
(1)

j )|. For example, we can

expect S
a

[Spicy, Sugar]

�(Spicy)�(Sugar)

> S
a

[Easy to make,Sugar]

�(Easy to make)�(Sugar)

as sugar
usually indicates a non-spicy food but does not imply
anything about the complexity of the recipe. This is the
fourth column of Table 2.

Our goal is to get relatively good estimations of these mea-
sures for a low budget. We describe how this is done in
section 3.2.2.

Calculating a budget distribution . Once the relevant at-
tributes are identified and the relevant statistics are calcu-
lated we run a strictly computational algorithm to find b. As
it was shown in [27], when applying the best linear regression

to some table D
(b)
O⇥A (a notation that means D

(b)
O⇥A[o, a] =

o.a(b(a))), the error is E[E.at]
2�So

T (Sa+Diag(Sc

(a)
b(a)

))�1So.
The first element is independent of b, so we have that the
best budget distribution is

argmax
b

So
T (Sa +Diag(

Sc(a)
b(a)

))�1So (2)

[27] also showed that finding this optimal b is Np-hard in
B

obj

and therefore an approximating algorithm is appropri-
ate. They provide such algorithm, which is a variation of the
well known greedy forward selection. We use this algorithm
as the FindQuestionsDistribution method in Algorithm 1.

Learning a Linear Regression. The last part of the algo-
rithm is deciding on a linear regression l. Since we can not
find the overall best linear regression, we minimize the error
over some training set representing the online phase data
(meaning that the estimation of each attribute a is done ac-
cording to b(a)). We get this set by using example questions
(getting object and target values) and value questions (get-
ting attribute values). To reduce costs we re-use previously
collected data. When collecting objects we skip the first N

1

example questions, and when collecting estimations we only
ask b(a) � k value questions for each e.a. This is line 7 in
Algorithm 1 and how we collect Table 1b’s data.

Once such training set exists, further computations are
applied to find a linear regression l that minimizes the error
over it. The problem of finding a linear regression that min-
imizes the mean square error is a well studied problem [12]
and there are many algorithms for it that we can just use.
Specifically, we used a singular value decomposition (SVD
[15]) algorithm, but since it is used as a black box other
algorithms can also fit. This is line 8 in Algorithm 1.

Managing the Preprocessing Budget. To fully understand
where and how budget is spent, one needs to first see the
actual implementation presented next. We thus postpone
this discussion to section 3.2.3.

3.2 Concrete Solutions
Finally, we can focus on our implementations. We wish to

remind that although they are described separately, all the
components are in fact intertwined.

3.2.1 Finding Attributes
Recall that our objective is to solve expression 1. Knowing

now, that the error behaves like expression 2 we can state a
more specific objective - finding

argmax
a
j

argmax
b

So
T
A

m|a
j

(SaA
m|a

j

+

Diag(
ScA

m|a
j

(a)

b(a)
))�1SoA

m|a
j

(3)

As an exact solution can only be made after asking all que-
tions and calculating all SA

m|a
j

, we use the current statistics

SA
m�1

and estimate the next statistics SA
m|a

j

, for every aj .

We also calculate the probability of it remaining the same as
only a first seen answer will e↵et it. We then use those esti-
mations and solve expression 3. Described here are general
schemes of the estimations. Full calculations can be found
in the our paper[22].

Pr(new | a
j

) - We need to estimate the probability to get a
new answer. We do so by assuming it depends only on the
number of questions asked so far and then using a simple
Bernoulli-Bayesian model with the number of questions
asked about aj so far (nj). The results are

Pr(new | aj) =
nj + 1

n2

j + 3nj + 2
(4)

S
o

Am|aj
- We need to estimate the covariance of the next

answer and the target (So[ansj ]). By definition of corre-

lation we have So[ansj ] =
⇢(a

t

,ans
j

)

⇢(a
t

,a
j

)

�(ans

j

)

�(a
j

)

So[aj ]. �(aj)

and So[aj ] are known. �(ansj) is assumed to be indepen-
dent with aj and can therefore be ignored. That leaves
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only the correlations’ ratio. We previously assumed ansj
is highly correlated to aj , we now approximate this as

E[⇢(aj , ansj)] ⇡ 0.5, which translates to
⇢(a

t

,ans
j

)

⇢(a
t

,a
j

)

⇡ 0.5.

We address this approximation later. This results in

SoA
m|a

j

[a] ⇡
⇢

0.5
�(a

j

)

SoA
m�1

[aj ] a = ansj
SoA

m�1

[a] otherwise
(5)

S
c

Am|aj
- We need to estimate the variance of the next an-

swer (Sc[ansj ]). Since there is no reason for it to change
over di↵erent dismantling questions we can use the same
distribution for every j. Because FindRegression is not
analytic (as we will see later), instead of measuring an
exact distribution (which will make it impossible to cal-
culate) we take an ’optimism in the face of uncertainty’
approach [20] and assume a very low constant value for it
(8j Sc(ansj) ⇡ 0). We then get

ScA
m|a

j

[a] ⇡
⇢

0 a = ansj
ScA

m�1

[a] otherwise
(6)

S
a

Am|aj
- We need to estimate the covariances between

the new answer and the previously discovered attributes
(Sa[ai, ansj ], ai 2 Am�1

). Again, since there is no rea-
son for this to change over di↵erent dismantling questions
we can just take the same distribution for every j. For
similar reasons (calculations practicality), we again take
the ’optimism in the face of uncertainty’ approach. We
(wrongfully) assume no correlation between the new and
the existing attributes. This assumption cannot be taken
for Sa[ansj , ansj ], but this factor cancelled anyway in the
Er(Q) calculation. We then get

SaA
m|a

j

[au, av] ⇡
8
<

:

1 au = av = ansj
0 ansj 2 {au, av}
SaA

m�1

[au, av] otherwise
(7)

By putting results 4, 5, 6 and 7 into expression 3 we get that
the best next dismantling question is

argmax
a
j

Pr(new | aj)[G(aj)� L(Am�1

, B
obj

, 1)] (8)

where Pr(new | aj) was described before, G(aj) =
0.25S

o

[a
j

]

2

�(a
j

)

2

and L(A, u, v) = maxb of size u SoA(SaA+Diag(Sc

A

b
))�1SoA�

maxb of size u�v SoA(SaA +Diag(Sc

A

b
))�1SoA.

Intuitively, when adding a new attribute, some of the record
budget moves from the old attributes to the new one. G
measures the gain from the new attribute and L measures
the loss caused by decreasing budget from the old attributes.
The reasons for those being the only changes are the low cor-
relation assumptions we took while estimating SA

m|a
j

.

As all of those values can be calculated, this concludes the
GetNextAttribute method in Algorithm 1. This is also how
we get each “Value Questions Answers” header in Table 1.
It is easy to see that one dismantling question at the end of
each iteration is the only crowd task.

3.2.2 Collecting Statistics
As explained, our goal in this part is to find a good ap-

proximation for (SoA, SaA, ScA) while using a minimal bud-
get. Following our iterative process for finding attributes, we
build S in an inductive way. Namely, for each new attribute

we calculate SA
m

based on SA
m�1

and questions about the
new attribute.

For our current simplified case, there exists an approx-
imation method in [27] that have proven itself before and
that we can easily adapt. When we later discuss the general
case, we will return to this part and refine the calculation.
The ideas we take from [27] are to estimate SA

final

(which is
defined over O) by calculating it over example set E

B

and
then, for each object, estimating the behavior of o.a(1) based
on k sample answers (for a very small k). We use those ideas
in an inductive way

A�1

- We leave Sc,Sa,So empty but collect a set of examples
E

B

with target at value by asking N
1

example questions
(N

1

is a parameter studied in [27]). This is line 1 in Al-
gorithm 1 and during it we collect Table 1a’s objects and
true values.

Am - For the new attribute a we ask k values questions
about e.a for every e 2 E

B

. We then update S by keeping
all previous values and adding (1) So[a] = EE

B

[e.a(k)·e.at],

(2) Sa[a, ai] = Sa[ai, a] = EE
B

[e.a(k) · e.a(k)
i ] for every

ai 2 Am and (3) Sc[a] = EE
B

[VarEstk(e.a
(1))]. This is

the UpdateStatistics method in algorithm 1. During each
step we get a sub-column in the answers column of Table
1a, a row in Table 2 and a sub-column in the right column
of Table 2.

It should be easy to see how this algorithm is compliant with
the ideas mentioned above. It should also be easy to see that
during this part we use the crowd for N

1

example questions
and kN

1

|A
final

| value questions.

3.2.3 Management of the Preprocessing Budget
In our algorithm the preprocessing budget is used for

• Finding A
final

by asking attributes and attributes verifica-
tion questions. This costs n dismantle questions where n
is the number of dismantling questions we choose to ask.

• Calculating the statistics SA
final

by asking example and
value questions. This costs N

1

example questions and
kN

1

|A
final

| value questions, where |A
final

| depends on n.

• Collecting a training set of N
2

samples for l’s learning.
This costs (N

2

�N
1

) example questions and (N
2

�N
1

)B
obj

+
N

1

(B
obj

�P
A min{b(a), k}) value questions.

As N
1

and k are external parameters, the only variables are
n and N

2

. Therefore, the only open question is when to
stop asking dismantling questions (line 2 in algorithm 1).
We solve this tradeo↵ by applying a common simple linear
lower bound for N

2

as a function of b ([16]). Note that as our
only tradeo↵ is n vs. N

2

, this mechanism is also appropriate
when considering di↵erent costs for di↵erent crowd tasks.
As to the case of di↵erent cost that may apply for di↵erent
questions of the same type (for example, numeric vs. binary),
the appropriate coe�cients need to be added. In this case,
we also follow [27] idea and, during all components, divide
each attribute’s contribution by its cost.

Remarks. We conclude this section by commenting on the
correctness and complexity of the algorithm. First, it is easy
to see that the algorithm operates within the preprocessing
budget B

prc

. Second, it is also easy to see that the algorithm
running time is polynomial with respect to the two budgets
B

prc

and B
obj

.
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4. EXTENDED SOLUTION
We focused so far on the simplified case where the query

has a single attribute. We next consider the general case of
multiple query attributes.

A naive solution is to equally split the online and o✏ine
budgets between the query attribute and solve the prob-
lem for each one separately. This however ignores possible
correlation between the query attributes and their compo-
nents. For example, consider a query with two attributes
A(Q) = {calories, is dessert}. It is easy to see that many
related attributes (e.g., sugar, fat,. . . ) are good indicators
for both target attributes, and budget would be saved if we
reuse values. To address this we consider all the query at-
tributes together, extending Algorithm 1 to handle multiple
target attributes. We first present below a simple exten-
sion, then discuss its shortcomings, and then generalize it
to overcome them. Our first extension generalized the algo-
rithm components as follows.

GetExamples - Instead of asking the crowd for examples
with one value for the single query attribute we now ask
for examples with multiple attribute values - one per query
attribute. (We later discuss what to do if users cannot
provide all these values simultaneously.)

GetNextAttribute - Expression 8 is refined to consider all
the attributes:

argmax
a
j

X

a
t

Pr(new | aj)[G(at, aj)� L(at, Am�1

, B
obj

, 1)]

(9)

UpdateStatistic - Instead of updating the So statistics of
a
new

for a single query attribute, we now need to update
Soa

t

[a
new

] for every query attribute at 2 A(Q). Note that
we added here the at notation to So since there are now
several query attributes. Sa and Sc remained the same
since they are independent of Q.

FindQuestionsDistribution - Instead of equation 2 we
now have a refined version

argmax
b

X

a
t

2A(Q)

So
T
(a

t

,A)

(SaA +Diag(
Sc[a]
b(a)

)�1So
(a

t

,A)

(10)

FindRegression - Since l is now a set of linear regressions,
we need to run this method |A(Q)| times. Since all la

t

are independent this yields an optimal solution.

Note that for GetExamples we assumed above that it is
possible to ask workers for examples with several attributes
values. This may be problematic in practice: If the number
of query attributes is too large, workers may not be willing
to make the e↵ort of providing all of their values; It may
also be the case that a single crowd member does not know
the value of all attributes, even for their own examples. To
overcome this, instead of using just one set of examples E

B

with all query attributes, we will collect multiple sets of
examples E

Ba
t

, one for each query attribute (or a small
subset thereof). In this case, the collected data in Table 1a
is replaced by the one depicted in Table 3.

Looking at this table we can see that although the in-
formation can be used to derive b, it comes with an ad-
ditional cost: It is easy to see that the amount of data

True Values for A(Q) Value Questions Answers for A
final
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Table 3: Data collected in the general case

we need to collect now depends both on |A
final

| and on
|A(Q)|. Therefore, if we want to allow A

final

to grow with
A(Q), our cost will grow quadratically. It is also easy to
see that most of this growth is due to cost of redundant
value questions. For example, consider A(Q) = {is dessert,
number of calories,protein amount, easy to make}. One can
assume that although there is likely to be a correlation be-
tween number of calories and is dessert this is not the case
for easy to make and protein amount so collecting statistics
for all pairs is a waste of budget. To reduce this redundant
overhead we take two steps. First, we choose carefully which
data to collect (i.e., which E

Ba
t

.a value questions should we
asked). Second, for pairs for which data had not been col-
lected, we estimate Soa

t

[a] based on the other collected data.
We explain this next.

Collection. Our choice of which data to collect is based on
the following observation. The two cases one wants to avoid
are (1) missing a highly correlated attribute-target pair and
(2) wasting budget on a poorly correlated attribute-target
pair. Therefore, whenever we get a new attribute aj we pair
it with all query attributes at for which we have a reason
to believe that Soa

t

[aj ] is not negligible. In our heuristic,
we define Soa

t

[aj ] as negligible i↵ its value is less than a
half of the maximal value maxa2A(Q)

Soa[aj ]. Our estima-
tion here for Soa

t

[aj ] is done in the same way we described
earlier in section 3.2.1. This results in the following rule
- when asking a dismantling question about ai and get-
ting an answer aj , ask value questions about E

Ba
t

.aj i↵
⇢(ai, at) > 0.5maxa2A(Q)

⇢(aj , a).

Estimation. Finally, to estimate the missing So’s values we
use a graph model and define G = (U, V,E) as a weighted bi-
partite graph with U(G) = A(Q) and V (G) = Am. The idea
is to make each edge’s weight w(a, at) represent the value of
Soa

t

[a] and then estimating missing edges by distances on a
graph. Ideally, we would have defined w(a, at) = Soa

t

[a].
However, since So is not normalized and also not a dis-
tance function, this is impossible. To overcome this, we
employ a method described in [29] and use angular dis-
tance as our weight function - w(at, aj) = �(O.at, O.aj) =

arccos
S
o

a

t

[a
j

]

�(a
t

)�(a
j

)

. The idea behind angular distance is to con-

sider an inner-product space where the vectors are random
variables and the inner-product is covariance. This allows
to prove that � is indeed a distance function that answer
what we looked for. Using the fact that in the angular dis-
tance space �

1

+�
2

= arccos(cos(�
1

) cos(�
2

)), we define our
estimation of So as

Soa
t

[aj ] = �(at) · �(aj) ·
8
<

:

cos(w(aj , ai)) edge exists
cos(S.P(at, aj)) path exists
0 otherwise

(11)
where S.P stands for (multiplication) shortest path.
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Weighted query attributes. To conclude, note that in our
discussion so far we assumed the errors of all attributes to be
of equal weight. In practice some normalization may be re-
quired. For example, is healthy is on a scale of [0, 1] whereas
number of calories may reach thousands. In this case, each
at 2 A(Q) is associated with a weight !t and our goal is to

minimize
P

a
t

2A(Q)

!tE[(O.a
(⇤)
t � O.at)

2]. When following
the previous calculation this simply results in adding weights
to expression 9.

5. EXPERIMENTS
We analyze our solution experimentally along through di-

mensions. We start with a general proof of concept - an
examination of our algorithm as a whole. We then move
to an analysis of its components, their necessity and their
quality. We conclude with an analysis of how di↵erent as-
sumptions and parameters can influence the results.

5.1 Experiments Settings and Datasets
We used three datasets - two with real life objects and

real crowd answers, and one synthetic. Crowd answers from
value and attribute questions were gathered through Crowd-
Flower[3] - a platform for presenting small tasks to crowds.
The answers collected in initial experiments was recorded in
a database and reused in following experiments, so that re-
sults of multiple runs/algorithms may be compared in equiv-
alent settings. To compare our performance to [27] that used
experts to obtain relevant attributes, we also added to our
database the data collected in that work. For example ques-
tions, in order to have a true ’gold standard’ (known target
answers), we used our lab members as crowd.

We designed our crowd interface and payment following
the guidelines in [13] and the work of [27]. Our crowd tasks
consist of a set of value (resp. dismantling) questions that a
crowd member needs to answer. We set the payment for bi-
nary value question to 0.1 and to 0.4 for general numeric
values. For dismantling and example questions, that were
not studied in [27], we set the payment to 1.5 per answer,
following our preliminary experiments that showed this to
be the minimal price that kept workers’ feedback positive,
and set the price of an example question to 5 as this is a
relatively hard task. (We will show however in the sequel
that the trends in our results are robust to changes in these
numbers). As for other parameters we used the following:
the number of value samples k used for estimating statistics
when deriving budget distributions was 2, as this is the rec-
ommended number for the corresponding black-box that we
used[27]. The number of examples N

1

was set to 200 to keep
our costs low while still having many examples. For learn-
ing the linear regression, the examples number N

2

was set
to 50+8⇤#attributes, a common practice in such tasks [16].
For attribute weights, unless otherwise stated, we gave each
query attribute a weight in reverse proportion to its vari-
ance (!t = 1

V ar(O.a
t

)

). This normalize all errors to a similar

scale (standard deviations), so that no query attribute will
be negligible. We will explicitly mention below where using
other weights a↵ects the results.

Human Pictures Data Set. In this set of experiments our
objects are people and the only information available for
them is their picture. The query attributes in the di↵er-
ent experiments include Weight, Height, Age, Bmi (body

Ques-

tion

Answer

Fre-

quency

Bmi

Weight 33%
Height 33%
Age 6%

Attrctive 2%

Height

Age 22%
Shoe Size 9%

Taller Then
You

7%

Weight 6%

Age

Wrinkles 15%
Gray Hair 10%

Old 10%
Children 3%

Attractive

Good Facial
Features

17%

Fat 6%
Has Good Style 6%

Works Out 1%

(a) Pictures Domain

Ques-

tion

Answer

Fre-

quency

Calories

Has Eggs 8%
Low Calories 4%

Dessert 2%
Healthy 2%

Protein

Has Meat 13%
Number of

Eggs
4%

High Protein 4%
Vegetarian 2%

Healthy

Low Salt 8%
Natural 8%

Fat Amount 4%
Bitter 4%

Easy To
Make

Number of
Ingredients

17%

Fast 10%
Tasty 5%

Expensive 2%

(b) Recipes Domain
Table 4: Attribute dismantling questions and their answers

Sc So�(ai)�(aj) Sa�(ai)�(aj)
Bmi Age Bmi Weight Heavy Attractive Works Out Wrinkles

Bmi 30 0.88 0.63 1 0.94 0.86 0.48 0.4 0.26
Weight 189 0.86 0.7 0.94 1 0.82 0.53 0.39 0.28
Heavy 0.14 0.89 0.6 0.86 0.82 1 0.44 0.46 0.27

Attractive 0.13 0.45 0.44 0.48 0.53 0.44 1 0.32 0.28
Works Out 0.11 0.36 0.29 0.4 0.39 0.46 0.32 1 0.15
Wrinkles 0.16 0.25 0.52 0.26 0.28 0.27 0.28 0.15 1

(a) Pictures Domain
Sc So�(ai)�(aj) Sa�(ai)�(aj)

Calories Protein Calories Low Calorie Desset Healty Vegetarian Eggs
Calories 80707 0.41 0.34 1 0.2 0.07 0.15 0.18 0.03

Low Calorie 0.06 0.18 0.08 0.2 1 0.1 0.26 0.1 0.13
Desset 0.08 0.26 0.5 0.07 0.1 1 0.44 0.34 0.38
Healthy 0.2 0.02 0.16 0.15 0.26 0.44 1 0.06 0.27

Vegetarian 0.13 0.26 0.52 0.18 0.1 0.34 0.06 1 0.14
Eggs 0.05 0.11 0.26 0.03 0.13 0.38 0.27 0.14 1

(b) Recipes Domain
Table 5: Examples for statistics in the di↵erent domains

mass index, defined as weight(kg)

height(m)

2

) and Attractiveness. The

objects O were taken from the publicly available Photo-
graphic Height/Weight Chart [4], where people post pictures
of themselves announcing their own height and weight. We
used reported value as the true values for Height, Weight
and Bmi. For other target values, we used an average over
many value question estimations.

Examples of answers received when asking workers to dis-
mantle various attributes are depicted in Table 4. The
first column depicts the attribute to dismantle, the sec-
ond column contains some related attributes suggested by
the crowd, the last column shows the percentage of all an-
swers that each attribute name was returned. Examples of
statistics gathered for the attributes are depicted in Table
5 (this is a concrete example of Table 2, but unlike Table 2
it shows attributes correlation and not covariance to make
things more intuitive for the reader).

Recipes Data Set. In this set of experiments our objects
are recipes and the data available for them in the database
is the recipe’s name, picture and unstructured ingredients-
list. The query attributes in the di↵erent experiments in-
clude Proteins, Calories, Good for kids, Easy to make and
Healthy. The objects are the 500 most popular recipes in
allrecipes.com[1] website, normalized to one serving. We
used nutritious values found in this website as true values for
the matching query attributes. For other query attributes
we again used average value derived from multiple value
questions. Here again, examples of some answers obtained
for dismantling questions and statistics on the attributes are
depicted in tables 4 and 5 respectively.
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Synthetic Data. To neutralize our own subjectivity/belief
w.r.t which object attributes are hard/easy, we also ran ex-
periments on a synthetically generated domain. For this
we automatically generated a set of objects and attributes
(with some dependencies between them) and mocked crowd
answers about them (in compliance with the assumptions
on crowd’s answers mentioned in the paper). The details of
this process can be found in the full paper [22]. The experi-
ment results are consistent with those for real-life data and
are thus omitted here.

5.2 Proof of concept
We compared our algorithm, which we call DisQ (short

for Dismantling queries), to existing practices. We use the
following algorithms as baselines:

NaiveAverage - In this common approach, the online phase
simply asks questions about the attributes in A(Q) and

returns their average o.a
(B

obj

)

t . For |A(Q)| > 1 we split
the budget by the weights. This algorithm has no o✏ine
preprocessing phase.

SimpleDisQ - This is a simplified version of our algorithm,
which captures the best that can be done today without
using an expert. It runs similar to DisQ, but without the
attribute dismantling phase.

We compared these two algorithms to our algorithm. We
did so for all three data sets and for di↵erent query attributes
and query sizes. We also tested with di↵erent preprocess-
ing budgets B

prc

and di↵erent per-object budgets B
obj

. For
B

obj

we used the range of 0.4-10 . The lower bound was
set to match 1 numeric value-question. The upper bound
was set as it is a fairly large amount and as most of the ex-
periment graphs show stagnation after it. For B

prc

we used
the range of $10-35. We have taken those values since the
graphs stagnate outside those boundaries. For each value we
executed 30 experiments and took the average result. Note
that although we took the average, all observations are true
in general as most results are very close to the average.

Varying B
prc

. Figure 1a shows results for a query with
A(Q) = {Bmi} (using the pictures data set) for varying
preprocessing budgets. We will show more results later. We
start with an example where |A(Q)| = 1 to isolate di↵erent
e↵ects. We fixed B

obj

to 4 and used di↵erent B
obj

values.
We used B

obj

= 4 as it is over the graph’s knee (as we will
see later). Note that since NaiveAverage does not involve
learning and since the number of examples in SimpleDisQ is
always N

1

(since A
final

is very small), DisQ is the only al-
gorithm that changes with B

prc

. One can easily see that for
every B

prc

value our algorithm has the lowest average error.
The di↵erence is especially significant for large B

prc

values
as for those ranges A

final

is bigger. We can also see that
the improvement is slowly stagnating which is the expected
result if the “important” attributes are found quickly.
To ilustrate how an algorithm’s output looks like, we provide
here an example for one of the dismantles when B

prc

= $25.
Bmi(⇤) = 0.6Bmi(5) + 11.9Heavy(10) + 0.4Works Out(1) +
0.2Age(1) � 2.7Attractive(3) � 0.2Tall(2) + 10.6.

Varying B
obj

. We continue with the same Bmi example but
now considering varying online per-object budget. Figure 1d
show the errors for this case. We used B

prc

= $30 as it is
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SimpleDisQ DisQ 

Figure 2: Necessary B
obj

for achieving target errors

again over the graphs’ knee, but similar behavior is shown
for other values. First, note that all algorithms improve as
B

obj

increases and that this improvement is slowly decaying.
This is what one could expect as a bigger B

obj

means a big-
ger crowd (and should therefore mean better accuracy) and
since it is known that every additional worker has declining
marginal utility. Second, note that both SimpleDisQ and
DisQ achieve lower error than NaiveAverage. This clearly
shows how combining artificial intelligence with the wisdom-
of-crowds leads to improved results. Finally, It is easy to see
that the average results from our algorithm are superior to
those of the other algorithms. This is especially noticeable
for lower B

obj

budget but is also true for higher B
obj

. And
again, although the we show results for the average case,
this is true for most cases. One can see, for example, that in
order to achieve an accuracy of less than 0.067 one needs to
spend 10 per object in SimpleDisQ but only 6 per object
in our algorithm. This statement is still true after including
the extra budget for the preprocess phase, since the cost of
learning a regression when B

obj

= 10 exceed the $30 used
in our algorithm for B

obj

= 6 . In figure 2 we show more
examples of the budget necessary for achieving di↵erent ac-
curacies in the di↵erent algorithms.

Other Examples. Figures 1c and 1f show equivalent graphs
for a case of two query attributes (Bmi, Age) and figures 1b
and 1e show equivalent graphs in the recipes domain (for
the query attribute Protein). It is easy to see that all of our
observations about the first example (Bmi) are also true
when adding to it a second attribute (Age). In the case of
Protein, however, this is only partly true. Consider first fig-
ure 1e. At a first glance it looks di↵erent from figure 1d.
However, a closer look shows that all our observation still
hold. The only di↵erence is that NaiveAverage performs
much worse and this changes the proportions of the graph.
We believe this is because Protein is much less intuitive than
Bmi. Next, consider figure 1b. Here, in addition to the dif-
ferent proportions we also see a di↵erent trend. Unlike the
previous cases where we saw that increasing B

obj

always de-
creased the error, in the case of proteins we see increase in
error for B

obj

> 4 . The reason for this lies in CollectingAt-
tributesCondition. Since our stopping criteria for discover-
ing new attributes depends on B

obj

, for higher B
obj

we have
less budget for the dismantling which in turn result in less
attributes and therefore in a larger error. The e↵ect of a
smaller attributes set A

final

also exists for Bmi, but in that
case its e↵ect was smaller than the e↵ect of the increased
B

obj

. A reasonable conclusion is that for large B
obj

budget
one should also provide a large B

prc

budget.

The experiments described above demonstrate the trends
in all of our experiments: In all settings our algorithm out-
performs the competing algorithms. Increasing improve-
ments are observed when query attributes are di�cult and
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Figure 1: Error in query estimation for varying B

prc

(top row) and varying B
obj

(bottom row)

the relative improvement normally grows with the budget al-
located to the preprocessing increases, in particular in cases
when the per-object online budget is small.

5.3 Algorithm Components
We next examine the individual algorithm components.

In particular we analyze our attributes dismantling method
and the processing of multiple query attributes.

5.3.1 Dismantling Attributes
We considered two dimensions here.

Finding Relevant Attributes. We first tested if the crowd
can give good answers to attribute dismantling questions,
and if so, then how. We created gold standard attributes
sets for di↵erent data domains and query attributes, and
tested the crowd coverage for these attributes (percentage
of discovered attributes). We computed the performance of
our dismantling process and of a naive approach that asks
questions only about the attributes explicitly appearing in
the query. For defining the gold standard in the pictures do-
main (for the query attributes Height and Weight) we used
the expert-provided attributes from [27]. For the gold stan-
dard in the recipes domain (for the query attributes Proteins
and textitCalories) we used an expert dietitian.

For all queries our algorithm yielded over 80% coverage,
and we compensated for the missing attributes by other
discovered attributes not mentioned by the experts. This
shows that the crowd could indeed replace the experts for
this task. In contrast, the coverage for the naive algorithm
fell below 50%, demonstrating the necessity of our choice to
dismantle additional attributes. We further validated these
observations by considering two additional real-life attribute
domains: house prices (using [18] as a gold standard), and
laptop prices (using [9]), obtaining similar results.

The GetNextAttribute Method. We next compared our
technique for choosing the next attribute to dismantle to
a simpler alternative where the only attributes considered

are the ones appearing explicitly in the query. We call this
variant OnlyQueryAttributes. (We also considered variations
of OnlyQueryAttributes and DisQ that chose questions at
random, but since those variation are very naive and were
consistently inferior to our algorithm we omitted those re-
sults). Two example experiment, for the recipes domain
with and the query attribute protein are shown in figure
3b (for B

prc

= 30 and varying B
obj

) and figure 3a (from
B

obj

= 4 and varying B
prc

). First, it is easy to see that our
previous observations on DisQ in figures 1b and 1e also hold
for OnlyQueryAttributes. Second, DisQ consistently outper-
form OnlyQueryAttributes illustrating again the necessity of
our approach. This intensifies as B

prc

grows since there exist
enough budget to learn many attributes so the low variety
of answers to the dismantling question only about protein
becomes apparent. Similar trends were observed in all set-
tings - di↵erent query attributes, query length and domains.
The only thing to note is that in some specific cases, when
the answers to the dismantling questions about the query
attributes were varied enough the di↵erence between the al-
gorithms became noticeable only for large B

prc

.

5.3.2 Statistic Estimation
We next examine our method for collecting partial statis-

tics in queries with multiple attributes. As the main issues
here are which attributes should be paired with which query
attributes, and how to compensate for the missing pairs, we
compared our solution to the following baselines.

TotallySeparated - This is the naive solution that solves
the problem separately for each query attribute, splitting
the budget equally between them.

Full - This is a simplified variant of our algorithm that does
not optimize the computation and simply gathers statis-
tics for all attribute pairs.

OneConnection - This is another simplified variant that
does consider only some of the pairs, but uses a more
naive heuristic for choosing them: When a new attribute
is discovered, it is paired only with one query attribute.
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Figure 3: Error in estimation for A(Q) = {Protein}

NaiveEstimations - Finally, this variant selects the pairs
using our technique, but rather than inferring individual
values for the missing pairs, it assigns to all a default value
that equal to the average So value.

A sample of the results, for the pictures domain and the
query attributes Bmi andAge are shown in figures 4a (B

obj

=
4 , varying B

prc

) and figure 4b (B
prc

= $50, varying B
obj

).
We set here B

prc

to $50 to highlight the trends, as we will
shortly discuss. First, note that all the variations follow the
general trends of our algorithm as discussed above, in regard
for their dependencies in B

prc

and B
obj

. Second, it is easy
to see the relatively bad performances of the TotallySeper-
ated baseline (especially for lower B

prc

) which demonstrates
the advantage of asking about several query attributes to-
gether. Third, in comparison to Full, our algorithm con-
sistently achieves better (or at least as good) results when
considering reasonable B

prc

(as in figure 4a). This e↵ect was
even more noticeable in the synthetic domain where we could
test large queries. For some queries, however, these trends
change for very high B

prc

as the saved budget from the non-
important pairs is wasted on even more non-important new
attributes. Next, in compare to OneConnection, our algo-
rithm achieves at least as good results for all budgets, and
better results for high B

prc

. The reason for that is that
for large budgets OneConnection saves budget in the be-
ginning on redundant connections, but that budget is then
referred to even more redundant attributes. In some cases,
however, and for low B

prc

, OneConnection did get better
results, but only very marginally. The reason is the tradeo↵
between B

obj

and flexible-B
prc

we discussed before which
e↵ects DisQ more. Finally, our algorithm consistently out-
performs NaiveEstimations. This is true for every budget
since our estimation method incures no crowd cost.

5.4 Dependency on Assumptions
Our last set of experiments examined the robustness of

our algorithm to some changes in underlying our assump-
tions. We briefly discuss the assumptions considered and
our conclusions. A detailed description of the experiments
and results can be found in our full paper [22].
Attributes Quality: We tested resilience to receiving also
some irrelevant attributes in the dismantling process. This
did not a↵ect the previous trends, but as expected required
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Figure 4: Error in estimation for A(Q) = {Bmi,Age}
somewhat higher preprocessing budget (B

prc

) for obtaining
same error rates.
Normalization Mechanism: We tested the necessity of iden-
tifying di↵erent answers about the same property as one.
Here again, our algorithm can work with imperfect (or even
no) unification and the trends stay the same. Somewhat
higher B

prc

is again needed for obtaining same error rates.
Answer’s Correlation Parameter: We used di↵erent con-
stants (instead of just 0.5) for E[⇢(aj , ansj)] when estimating
SA

m|a
j

. The results remained similar.

Crowd-Tasks Payment: We tested how a di↵erent pricing
models for crowd tasks impact the results. Change in prices
changed some of the gradients in the varying-B

prc

graphs
but the trends remained the same.

6. RELATED WORK
Using the crowd as a source of knowledge, and for solving

problems, has attracted much research in recent years [11].
The crowd was shown to be a useful tool for many types
of tasks, including, but not restricted to, value estimation
[24], data filtering [25], information collection [5], natural
languages processing [6] etc. However, to our knowledge, our
work is the first to consider using the crowd for discovering
query-related attribute names. There has also been much
work dealing with the collection of data via various platforms
(e.g., payment [2] or games [10]), and the e↵ective collection
of such data (e.g., how to best present questions [13], how
to filter spam [19], when to stop asking [30] etc.). Our work
exploits these platforms and previous results. The concept of
removing experts from crowd processes was also researched
before[14], but not in the context of query estimation.

Our work is also influenced by previous work in machine
learning, and on the use of supervised learning for regression
learning (e.g., [12]). A more specific problem related to our
challenge is feature selection [17] - how to e↵ectively narrow
a set of attributes for some learning process. Two models
that are particularly interesting are budget learning ([23]),
where the issue is deciding which is the most valuable feature
to measure next under a limited budget, and meta-features
(e.g., [28]), where the issue is trying to predict unseen fea-
tures behavior based on some properties and similarity to
other features. All of those problems, however, focus on a
given predefined set of attributes. They also do not con-
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sider the selection of the same attribute name more than
once (required here due the uncertainty of crowd answers).

Previous work has also dealt with the combination of
crowd and learning (e.g., [8]). The common combinations
are to use the crowd to label a data set (e.g., [32]) or for
filling attributes values (e.g., [21], [26]).Closest to our work
is that of [27] which also deals with estimating one attribute
value by asking about others, but, as explained in the Intro-
duction, requires experts-in-the-loop. While we use some of
their results as basic building blocks, a major contribution
here is our crowd-based attribute dismantling along with
the careful statistical analysis that allows for an e↵ective
experts-free algorithm.

7. CONCLUSION AND FUTURE WORK
We studied in this paper the problem of query evaluation

when the value of the queried attributes is not available in
the database and is also hard for the crowd to estimate. We
proposed a novel approach that uses the crowd to dismantle
the query attributes into finer related ones (whose value es-
timation is easier), then assembles them to yield better esti-
mation for the query attributes. Given an online per-object
budget and an o✏ine preprocessing budget, we presented an
algorithm that ideally uses the o✏ine budget for dismantling
the query attributes and deriving linear formulas that best
exploit the online budget for deriving the values of query
attributes. We have also demonstrated the e↵ectiveness of
the approach through experimental study on both real-life
crowd and synthetic data.

We focus in the paper on the minimization of the expected-
mean-square-error. Other error measures may also be of in-
terest for future research. For example, a recall-precision
measurement may fit more for boolean query attributes like
gluten free (for recipes), or for a categorical attribute like
cousin type where the number of possibilities may be large.
We also considered only linear formulas for assembling at-
tributes values. While this has proved to provide good ex-
perimental results, more general rules may be useful in cer-
tain situations and we intend to study this in future work.
In our development we assumed that we are given an on-line
per-object budget and an o✏ine preprocessing budget and
used the later to optimize the usage of the former. Deter-
mining automatically what these budgets should be and the
ideal ratio between them is an intriguing future research.
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