
PROX: Approximated Summarization of
Data Provenance

Eleanor Ainy
Tel Aviv University

eleanora@mail.tau.ac.il

Pierre Bourhis
CNRS CRIsTAL UMR 9189
pierre.bourhis@univ-

lille1.fr

Susan B. Davidson
University of Pennsylvania
susan@cis.upenn.edu

Daniel Deutch
Tel Aviv University

danielde@post.tau.ac.il

Tova Milo
Tel Aviv University

milo@post.tau.ac.il

ABSTRACT
Many modern applications involve collecting large amounts
of data from multiple sources, and then aggregating and ma-
nipulating it in intricate ways. The complexity of such appli-
cations, combined with the size of the collected data, makes
it difficult to understand the application logic and how infor-
mation was derived. Data provenance has been proven help-
ful in this respect in different contexts; however, maintaining
and presenting the full and exact provenance may be infea-
sible, due to its size and complex structure. For that rea-
son, we introduce the notion of approximated summarized
provenance, where we seek a compact representation of the
provenance at the possible cost of information loss. Based
on this notion, we have developed PROX, a system for the
management, presentation and use of data provenance for
complex applications. We propose to demonstrate PROX in
the context of a movies rating crowd-sourcing system, let-
ting participants view provenance summarization and use it
to gain insights on the application and its underlying data.

1. INTRODUCTION
Complex applications that collect, store and aggregate

large-scale data, and interact with a large number of users,
are commonly found in a wide range of domains. Notable
examples are crowd-sourcing applications such as Wikipedia,
social tagging systems for images, traffic information aggre-
gators such as Waze, or recommendation sites such as Tri-
pAdvisor and IMDb. In the context of such applications,
several questions arise relating to how data was derived. As
a user, what is the basis for trusting the presented informa-
tion? How do crowd contributions vary among the crowd
members, based on their characteristics? If some contribu-
tion seems wrong, how does the information change if we
discard it? These questions are of fundamental importance
for better understanding the application and its results.

c©2016, Copyright is with the authors. Published in Proc. 19th Inter-
national Conference on Extending Database Technology (EDBT), March
15-18, 2016 - Bordeaux, France: ISBN 978-3-89318-070-7, on OpenPro-
ceedings.org. Distribution of this paper is permitted under the terms of the
Creative Commons license CC-by-nc-nd 4.0

At its core, the answer to these questions is based on the
provenance of the collected data and resulting information,
that is, who provided the information, in what context and
how the information was manipulated. As shown in e.g. [10,
4], provenance is much more powerful than simply a log of
the application execution. In particular, the algebraic model
of provenance (based on semirings) has been shown to allow
to correlate input data with output data; to track important
details of the computational process that took place; and to
further ([8]) provision the computation result with respect
to hypothetical scenarios, namely to observe changes to the
result based on changes to the input (without actually re-
running the process). Detailed tracking of provenance was
thus proved to be a suitable (and necessary) vehicle for the
applications that we have mentioned above.
Consider a crowd-sourcing application for movie reviews.

The number of movies may be quite large and so is the
number of reviewers for every movie; the aggregated score
for the movie is computed by combining the scores of multi-
ple users, possibly accounting for their previous reviews and
for their preferences. These features and the way in which
they are used in the computation should all be reflected in
the provenance. In turn, provenance may be presented to
explain results (computed ranking of movies), or to provision
them (e.g. “how would the average movie rating change if
we ignore ratings by some (group of) users?”).
However, the complexity of processing and the large scale

of data also mean that detailed semiring provenance infor-
mation is extremely intricate; and so presenting it in full, as
an explanation to the computation, would be extremely diffi-
cult to understand. To this end, we present PROX, a system
that provides approximated summarization of provenance
information for complex applications. The summarization is
based in part on the semantics of the underlying data (such
as gender, age or occupation of users), where annotations
of “similar” data items are intuitively more amenable to be
grouped together. But importantly, it is also geared towards
the intended use of provenance (namely explanation and/or
provisioning): we define a distance function between prove-
nance expressions that is based on the intended use, and
optimizing this distance (while obtaining small expressions)
is an important consideration guiding the summarization.
Demonstration. We will demonstrate the system in the

context of a movies recommendation website called Movie-
Lens [1]. We will show that while full provenance is too large

Demonstration

Series ISSN: 2367-2005 620 10.5441/002/edbt.2016.63

http://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2016.63

to present, PROX allows for a summarized representation of
the provenance that provides a concise explanation of the re-
views, and further allows for approximate provisioning.

We next provide details on the technical background un-
derlying PROX (Sec. 2), on the system implementation
(Sec. 3), and on the demonstration scenario (Sec. 4).

2. TECHNICAL BACKGROUND
We (informally) introduce the main technical notions in-

volved in the development of PROX, through examples. The
full details can be found in [3].

Semiring provenance model. We first explain in general
the provenance model described in [10, 5, 4]. We start by
fixing a finite set X of provenance annotations, correspond-
ing to the basic units of data manipulated by the application,
and which can be thought of as abstract variables identifying
the data. Depending on the application, these annotations
may correspond to different tuples in a database, to differ-
ent users, to different questions, etc. Given our set X of
basic provenance annotations, the provenance semiring is
the semiring of polynomials with natural coefficients, with
indeterminates from the set X. It was shown in [10] to cap-
ture provenance for positive relational queries. Intuitively,
the + operation corresponds to the alternative use of data
(as in union and projection) and · to the joint use of data (as
in join); 1 annotates data that is present, and 0 annotates
data that is absent. To capture aggregate queries, in [5],
relations were further generalized by extending their data
domain with aggregated values. In this extended framework,
relations have provenance also as part of their values, rather
than just in the tuple annotations. Such a value is a formal
sum

∑
i ti ⊗ vi, where vi is the value of the aggregated at-

tribute in the ith tuple, while ti is the provenance of that
tuple. We can think of ⊗ as an operation that pairs val-
ues (from a monoid M) with provenance annotations. Each
such pair is called a tensor. The formal sum, presented by
the ⊕ operation is used to capture the aggregation function.

Example 2.1. Consider a crowdsourcing application, sim-
ilar to IMDb, that allows users to rate different movies and
aggregates their ratings. A possible provenance expression
for the movie “Pretty Woman”, may e.g. be P1 = UID1 ⊗
(5, 1) where UID1 is a user id, and as aggregation we use
a monoid of pairs to capture the aggregated rating (MAX
rating with value 5 here) and how many users contributed
to this aggregated value (1 here). Multiple reviews (say, for
“Free Willy”) can be combined using the formal sum opera-
tion, e.g. P2 = UID2⊗(1, 1)⊕UID3⊗(3, 1)⊕UID4⊗(5, 1)
The ⊕ operation is given a “concrete semantics” depend-
ing on the aggregation function used to aggregate the ratings
(e.g. SUM, MAX or AVG 1).

Valuations and provisioning. An important use of semir-
ing provenance is for provisioning, i.e. examining changes to
the application’s execution that are the result of some hypo-
thetical modifications to the data. Examples include “how
would the movie ratings change if we ignore some reviews
(suspected as spam)?” Provenance expressions enable this
using truth valuations applied to annotations. Intuitively,

1These correspond formally to a choice of operation for the
aggregation monoid

specifying that UID1 is a spammer corresponds to mapping
it to false (and that UID1 is reliable to mapping it to true),
and recomputing the derived value w.r.t this valuation. Such
valuation can again be extended in the standard way to a
valuation V : N[X] �→ {true, false}.

Summarization through mappings. Full description of the
provenance may be extremely long and convoluted, and so
instead we would like to summarize the provenance expres-
sion. We formalize such summarization through the notion
of mappings. Let X be a domain of annotations (for the
N[X] semiring) and X ′ be a domain of annotation “sum-
maries”. Typically, we expect that | X ′ |<<| X |. We then
define a mapping h : X �→ X ′ which maps each annotation
to a corresponding “summary”. Abusing notation, this ex-
tends naturally to a homomorphism h : N[X] �→ N[X]′ (i.e.
define h(x + y) = h(x) + h(y), h(x · y) = h(x) · h(y)) and
further extends to N[X]′ ⊗M by the standard construction
h(k⊗m) = h(k)⊗m. Essentially, to apply h to a provenance
expression p (we denote the result by h(p)), each occurrence
of x ∈ X in p is replaced by h(x). The mapped expression
is a “summary” of the real provenance, in the sense that
we lose track of some exact annotations and summarize the
provenance using the “abstract” annotations in X ′.

Example 2.2. We may map user annotations to annota-
tion summaries that intuitively reflect values of attributes of
the corresponding users. Then if we map UID3 and UID4

to an “annotation summary” called “Female” 2, we obtain
(by applying congruences in the tensor structure and the use
of max as aggregate function), an expression describing a
maximum female score of 5 collected from two users):
P ′

2 = UID2 ⊗ (1, 1)⊕ Female⊗ (5, 2)
Another possible summary may e.g. be the result of mapping
annotations UID2 and UID3 to the annotation “Student”:
P ′′

2 = Student⊗ (3, 2)⊕ UID4 ⊗ (5, 1)
Both of these mappings do not concern the provenance ex-
pression P1 which stays intact.

In the example, we used two possible mappings h that
combine reviews based on gender or occupation. In general
there may be many possible mappings and the challenge is,
given a provenance expression p, to (a) define what a good
mapping h is (correspondingly, what is a good summary
h(p)), and (b) find such good h.

Quantifying Summary Quality. Several, possibly compet-
ing, considerations need to be combined.
Provenance size. Since the goal of summarization is to

reduce the provenance size, it is natural to use the size of
the summary, the number of annotations it consists of after
simplifications, as a measure of its quality.
Semantic Constraints. The obtained summary may be

of little use if it is constructed by identifying multiple un-
related annotations; it is thus natural to impose constraints
on which annotations may be grouped together. One sim-
ple example of such a constraint is to allow two annotations
x, x′ ∈ X to be mapped to the same annotation in X ′ (or to
0 or 1) only if they annotate tuples in the same input table,
meaning that they belong to the same domain. We further
allow user-defined constraints based on equality of values of

2We later describe which mappings are possible and which
are preferable to ours.

621

these annotated tuples in user-selected attributes, such as
occupation or gender in the above examples.

Distance. Depending on the intended use of the prove-
nance expression, we may quantify the distance between the
original and summarized expression. As an example, con-
sider a distance function designed to use provenance for pro-
visioning in presence of spammers. For that we use again the
notion of valuations, and consider as input to the problem a
subset VX of all possible valuations w.r.t. the original prove-
nance. Intuitively VX reflects possible scenarios that are of
interest to the user. A central issue is how we transform a
valuation in VX , on the original annotations to one in VX′ ,
on the annotation summaries. We propose that this will be
given by a combiner function φ, that sets a boolean value to
x′ ∈ X ′ based on the truth values assigned to x annotations
that were mapped to it. E.g. φ may be a disjunction of these
values, then intuitively an annotation summary is cancelled
only if all of the annotations it summarizes are cancelled.

We next define the distance between a provenance expres-
sion p and its summary h(p) as an average over all truth
valuations, of some property of p, h(p), and the valuation.
This property is based on yet another function we call VAL-
FUNC, whose choice depends on the intended provenance
use. For provisioning, we may e.g. use the absolute differ-
ence between the two expressions values under the valuation
or, alternatively, a function whose value is 0 if the two ex-
pressions agree under the valuation, and 1 otherwise (so the
overall distance is the fraction of disagreeing valuations).
Similarly, when dealing with multiple expressions (such as
one for each movie) we need a function to combine the VAL-
FUNC values; here a natural choice is Euclidean distance.

Example 2.3. To simplify the example we assume that
the scenarios include at most a single spammer. So the class
of valuations consists of those assigning 0 to some single
user annotation, and 1 to all others. Observe that P ′′

2 is at
distance 0 from P2 with respect to this class of valuations:
all these valuations yield the same value with respect to the
two provenance expressions (if UID4 is mapped to true then
the aggregated MAX value is 5 regardless of other truth val-
ues, and otherwise both UID2 and UID3 are mapped to true
and so is Student). In contrast, P ′

2 differs from P2 for the
valuation that maps UID4 to false and the rest to true.

Computing Summarizations. We can show that comput-
ing an optimal summarization is �P -hard, since even com-
puting the distance (even under highly limiting restrictions)
is already �P -hard. On the other hand, we have imple-
mented an absolute approximation algorithm for comput-
ing the distance between two such provenance expressions,
based on sampling the possible valuations. This leads to a
simple greedy algorithm. The details of the algorithm are
omitted for lack of space and can be found in [3].

Related Work. Provenance models have been extensively
studied in multiple lines of research such as provenance for
database transformations (see [6]), for workflows (see [7]),
for the web [2], for data mining applications [9], and many
others, but typically full and exact provenance is presented.
Provenance views have been proposed in context of work-
flows (see e.g. [7]), but the summarization obtained through
these views is based on a notion of granularity levels, and is
lossless rather than approximate. A notion of approximate

PROX Server (Apache Tomcat)

Database +
Provenance

Selection
Service

Summarization
Service

Provisioning
Service

WEB UI
PROX User PROX Client

(1) Select provenance

(2) Return selected
provenance

(3) Summarize
provenance

(4) Return
provenance summary

along with
intermediate results

(5) Evaluate valuation
on input provenance

(6) Return
evaluation result

Figure 1: System Architecture

provenance was proposed in [11], and somewhat resembles
ours, but is limited to UCQs (and in particular allows no
aggregates), geared towards probabilistic computation, and
does not account for semantic constraints. Our notion of
mapping to summarized annotations is also reminiscent of
clustering, however the function that we optimize is one that
depends on the provenance expression itself and its intended
uses, which leads to different design choices and results.

3. SYSTEM IMPLEMENTATION

PROX Architecture. PROX server-side is implemented in
Java and its client-side is implemented in Angular JS. This
web application is deployed to Apache Tomcat server on a
Windows 7 machine. The system architecture is depicted in
Figure 1. The server is comprised of three major services: a
selection service that allows simple restriction of the prove-
nance according to user-defined selection criteria, the sum-
marization service that summarizes the selected provenance;
and a provisioning service that allows to use the summarized
provenance for exploration of hypothetical scenarios.

PROX Web UI. We developed a web UI which contains
three views. The selection view allows the user to choose
movies, whose provenance she would like to observe, accord-
ing to title or genre and year (as shown in Figures 2a and
2b respectively). The summarization view presented in Fig-
ure 2c shows the selected provenance and allows the user to
configure parameters for the summarization algorithm. The
third view presents the summary in two views shown in Fig-
ures 2d and 2e: the expression view that shows the summary
in its polynomial form, as exemplified throughout this pa-
per and the groups view that shows the groups of users that
the algorithm chose to map together. For instance, for the
Female group in the figure, we can see the group size (9),
its aggregated (MAX) rating (AGG:4), its users, the movies
they rated and their aggregated ratings. Also, on hover on
group user or movie their meta data is displayed. Using this
last view, the user can choose a valuation to evaluate on the
current provenance by selecting annotations or attributes to
cancel (assign to false), as shown in Figure 2f. Using the
left and right arrows, the user can also view and provision
the algorithm’s intermediate results.

4. DEMONSTRATION SCENARIO
We will demonstrate the usefulness of PROX in the con-

text of a movies review system. We will use a real-life movies
data set taken from [1]. The first example will demonstrate
how PROX can be used for provisioning. We will first se-
lect provenance by title, e.g. the movie “Free Willy”. Before

622

(a) Selection View (b) Selection View (c) Summarization View

(d) Expression View (e) Groups View (f) Provisioning View

Figure 2: PROX Web UI

we compute the summary, we will show the different pa-
rameters for the summarization algorithm. We will use the
default values e.g. MAX for aggregation and will limit the
number of steps to 1 for this example. Using the groups
view, we will show the user the two annotations that the
algorithm chose to map to an annotation summary. For the
same reasons discussed in Example 2.3, we expect that the
algorithm would prefer to first map the annotations of users
that did not give the movie the MAX rating and we will
show that this is indeed the case. To end this example, we
will provision the result, by choosing a valuation that can-
cels the two annotations. We expect that the result would
be the same as if we applied the valuation on the original
expression. To prove this, using the left arrow for navigating
back, we will evaluate the valuation on the original expres-
sion as well. By summarizing the original provenance, we
are able to provision the result by evaluating valuations on
the summary, which is more efficient.

The second example will demonstrate another important
provenance use which is presentation. For this example, we
will choose a large provenance expression, e.g. provenance
of “Comedy”movies released in the year 2000. We will sum-
marize it using Average aggregation and a large number of
steps. We will next show the groups of annotations along
with their meta data and then switch to the expression view
and compare its size to the original expression size which is
much greater. Finally, we will let a volunteer user select her
own provenance, summarize and provision the result.

5. ACKNOWLEDGMENTS
This work has been partially funded by the European Re-

search Council under the FP7, ERC grant MoDaS, agree-
ment 291071, by the Broadcom Foundation and Tel Aviv
University Authentication Initiative, by the Israeli Science

Foundation (Grant No. 1636/13), by the National Science
Foundation Institute (NSF), Information and Intelligent Sys-
tems (IIS) Division (Grant No. 1302212) and by the French
National Research Agency (ANR), Aggreg project.

6. REFERENCES
[1] Movielens site. https://movielens.org/.

[2] Provenance working group.
http://www.w3.org/2011/prov/.

[3] E. Ainy, P. Bourhis, S. B. Davidson, D. Deutch, and
T. Milo. Approximated summarization of data
provenance. In CIKM, 2015.

[4] Y. Amsterdamer, S. B. Davidson, D. Deutch, T. Milo,
J. Stoyanovich, and V. Tannen. Putting Lipstick on
Pig: Enabling Database-style Workflow Provenance.
PVLDB, 2012.

[5] Y. Amsterdamer, D. Deutch, and V. Tannen.
Provenance for aggregate queries. In PODS, 2011.

[6] J. Cheney, L. Chiticariu, and W. C. Tan. Provenance
in databases: Why, how, and where. Foundations and
Trends in Databases, 1(4):379–474, 2009.

[7] S. B. Davidson and J. Freire. Provenance and
scientific workflows: challenges and opportunities. In
SIGMOD, pages 1345–1350, 2008.

[8] D. Deutch, Y. Moskovitch, and V. Tannen. A
provenance framework for data-dependent process
analysis. PVLDB, 7(6):457–468, 2014.

[9] B. Glavic, J. Siddique, P. Andritsos, and R. J. Miller.
Provenance for Data Mining. In Theory and Practice
of Provenance (TAPP), 2013.

[10] T. J. Green, G. Karvounarakis, and V. Tannen.
Provenance semirings. In PODS, pages 31–40, 2007.

[11] C. Ré and D. Suciu. Approximate lineage for
probabilistic databases. PVLDB, 1(1):797–808, 2008.

623

	PROX: Approximated Summarization of Data ProvenanceEleanor Ainy, Pierre Bourhis, Susan Davidson, Daniel Deutch, Tova Milo

